
The emergence of the triangular lattice near a flat wall

Y. ALMOG ∗

Abstract

The bifurcation of periodic solutions near a flat wall for applied magnetic fields

which are slightly weaker than HC2 is considered for a reduced Ginzburg-Landau model

obtained in the large κ limit. We formally demonstrate that following the bifurcation

of the first mode, when the applied magnetic field is further decreased, there is a

second bifurcation, after which the solution develops continuously into the well-known

triangular lattice.

1 Introduction

Consider a planar superconducting body at a sufficiently low temperature (below the critical

one) under the action of an applied magnetic field . Its energy is given by the Ginzburg-

Landau energy functional which can be represented in the dimensionless form [10]

E =

∫
Ω

(
−|Ψ|2 + |Ψ|4

2
+ |h− hex|2 +

∣∣∣∣ iκ∇Ψ+ AΨ

∣∣∣∣2
)
dx1dx2 , (1.1)
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in which Ψ is the (complex) superconducting order parameter, such that |Ψ| varies from

|Ψ| = 0 (when the material is at a normal state) to |Ψ| = 1 (for the purely superconducting

state). The magnetic vector potential is denoted by A (the magnetic field is thus h = ∇×A),

hex is the constant applied magnetic field, and κ denotes the Ginzburg-Landau parameter

which is a material property. The superconductor lies in Ω, which is a connected domain.

Its Gibbs free energy is given by E, which is invariant under the gauge transformation

Ψ → eiκηΨ ; A→ A+∇η . (1.2)

wherein η is any smooth function.

For sufficiently large magnetic fields it is well known, from both experimental observations

[20] and theoretical predictions [14], that superconductivity is destroyed and the material

must be at the normal state. If the applied magnetic field is then decreased there exists a

critical field where the material enters the superconducting phase. This field is called “the

onset field” and is denoted by HC3 .

It is well-known that at the bifurcation from the normal state, superconductivity is

concentrated near the boundary. Alternatively we can say that Ψ decays exponentially

fast away from the boundaries as either κ or the size of Ω tend to infinity, which is why

the phenomenon has been termed surface superconductivity. This result has first been

established for a half-plane [24], then for disks [6], and for general smooth bounded domains

in R2 [7, 19, 12, 16]. It has later been extended to weakly non-linear cases in the large κ

limit [17].

In the absence of boundaries the critical field at which superconductivity nucleates is
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denoted by HC2 and is smaller than HC3 (HC3 ≈ 1.7κ whereas HC2 = κ). Furthermore,

the bifurcating modes are periodic Abrikosov lattices [1, 9, 2] which have been observed ex-

perimentally [13]. Rubinstein [23] has therefore conjectured that superconductivity remains

concentrated near the boundary for HC2 < hex < HC3 ; when hex ≈ HC2 (either for κ large

or for large domains) Abrikosov’s lattices bifurcate away from the wall.

Recently, it has been proved both in the large κ limit [22, 5], and in the large domain

limit [3] that as long as HC2 < hex < HC3 superconductivity remains concentrated near the

boundaries. Furthermore, Pan [22] proved that when κ≫ 1, the solution near the boundary

is close to the solution of the problem

(
i∇+ x1î2

)2
ψ = λψ

(
1− |ψ|2

)
in R2

+ (1.3a)

∂ψ

∂x1

∣∣∣∣
x1=0

= 0, (1.3b)

where λ = κ/hex. In addition, it is conjectured in [22], that the unique solution when λ < 1

is essentially one-dimensional, i.e.,

ψ = f(x1, λ)e
iω0x2 , (1.4)

for some ω0 ∈ R and f(x1, λ) which satisfies

−f ′′ + (x− ω0)
2f = λf(1− f 2) ; f ′(0) = 0.

Non-trivial positive solutions exist for all λ > β(ω0), where

β(z) = inf
ϕ∈H1(z,∞)

∫∞
z

|ϕ′|2 + x2|ϕ|2∫∞
z

|ϕ|2
. (1.5)
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Furthermore, f < 1, and [22]

f(x) ∼ x−
1−λ
2 e−

1
2
x2

as x→ ∞ , (1.6)

(cf. [21] for the definition of ∼). In a previous contribution [4], we studied (1.3), after

applying the transformation

x1 → x1 − ω0 ,

in the space

Pω0
L =

{
ϕ ∈ H1

mag([−ω0,∞)× R) | ϕ(x1, x2 + L) = ϕ(x1, x2)
}
. (1.7)

In this setting the solutions of (1.3a) may be treated as critical points of the functional

E(ψ) =

∫ ∞

0

∫ 2π/ω

0

∣∣∣(i∇+ x1î2)ψ
∣∣∣2 + λ

(
1

2
|ψ|4 − |ψ|2

)
dx2dx1 . (1.8)

We proved in [4] that (1.4) must undergo a bifurcation for λ slightly greater than unity,

i.e., we proved the existence of a sequence of critical values {λn}∞n=1 such that λn → 1 as

n → ∞ where a bifurcation from (1.4) can take place. Furthermore, we proved that near

the bifurcation, the bifurcating branch is given in the form

λ ∼= λn + ϵ2
( ω
2π

)3/2
+O(ϵ3) (1.9a)

ψ ∼= eiω0x2
{
f(x1, λ) + ϵ

[
ϕn(x1)e

inωx2 + ϕ−n(x1)e
−inωx2

]}
+O(ϵ2) , (1.9b)

where ϵ ≪ 1, ω = 2π/L, and ϕ±n satisfy a system of ordinary differential equations which

is described in the next section. Finally, we proved that near the bifurcation, the energy of

the bifurcating branch is lower than the energy of (1.4). Hence, for λ > 1 (1.4) must lose its

stability.
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While the results in [4] prove the bifurcation of a single Fourier mode, they do not address

the behaviour of the bifurcating branch with increasing λ. It was expected in [4] that with

growing λ the solution tends to become periodic in the x1 direction as well. In other words,

the solution should approach an Abrikosov lattice [9, 2]. The manner by which (1.9) develops

into a periodic solution is not clear: it may either result from a sequence of bifurcations, or

it may evolve continuously, or else undergo some combination of the above.

The present contribution focuses on the evolution of (1.9) with increasing λ. We assume

that the first bifurcation takes place at λ = λN , where N ≫ 1 (we discuss this choice in § 5).

Then, by using a combination of formal and rigorous arguments, we find

1. The value of λ at which the next bifurcation (hereafter referred to as the “second”

bifurcation) should take place.

2. The bifurcating mode.

3. The behaviour of the solution with increasing λ following the second bifurcation. We

find that if no other bifurcation occurs after the second bifurcation, then, as N → ∞,

for λ > λN−l where 1 ≪ l ≪ N , the solution tends pointwise to the triangular lattice

[18] for (
N − 5

8
l

)
ω < x1 <

(
N − 3

8
l

)
ω.

We note that there are many indications, both theoretical [2, 9, 18] and experimental [13],

that the minimizer of (1.1) is indeed the triangular lattice. It is thus plausible that the

transition from (1.9) to a periodic solution in the x1 direction is indeed described by the
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results in this work, despite a number of gaps that must be addressed in order to prove these

results rigorously.

The rest of this contribution is arranged as follows: In the next section we prove the

exact asymptotic behaviour of λn and ϕ±n as n → ∞ and conjecture that λn > 1 for all

n. In § 3 we make use of the asymptotic formulas and the above conjecture to analyze the

second bifurcation. In § 4 we formally analyze the behaviour of the solution with increasing

λ after the second bifurcation. Finally, in § 5, we briefly summarize the main results of this

work, emphasize some additional key points, and list the gaps that must be bridged in order

to rigorously prove the main results.

2 Preliminaries

Consider the problem

(
i∇+ x1î2

)2
ψ = λψ

(
1− |ψ|2

)
in R2

+ (2.1a)

∂ψ

∂x1

∣∣∣∣
x1=0

= 0 ψ(x1, x2 + L) = eiθψ(x1, x2) , (2.1b)

where θ is constant. Pan [22] conjectured that for λ < 1 the unique solution of (2.1) is

given by (1.4). In [4] we prove that there exists a sequence of critical values {λn}∞n=n0

where solutions of (2.1) can bifurcate from (1.4) such that λn ↓ 1. Furthermore, near the

bifurcation,

ψ ≈ f(x1)e
iω0x2 + C(λ)

[
ϕn(x1)e

inωx2 + ϕ−n(x1)e
−inωx2

]
,
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where upon applying the transformation x→ x− ω0, ϕn, ϕ−n satisfy

−ϕ′′
n +

[
(x1 − nω)2 − λ

]
ϕn + λf 2

(
2ϕn + ϕ−n

)
= 0 x1 > −ω0 , (2.2a)

−ϕ′′
−n +

[
(x1 + nω)2 − λ

]
ϕ−n + λf 2

(
2ϕ−n + ϕn

)
= 0 x1 > −ω0 , (2.2b)

ϕ′
n(−ω0) = ϕ′

−n(−ω0) = 0 , (2.2c)

and C(λ) ∼ O
(
|λ− λn|1/2

)
. The asymptotic behaviour of λn has been studied as well. In

particular, it is proved in [4], that

1 + C1e
− 1

2
(nω+ω0)2 < λn < 1 + C2e

− 1
2
(nω+ω0)2 . (2.3)

We now prove the exact asymptotic behaviour of λn.

Lemma 2.1 Let λn be the lowest critical value of (2.2). Then

λn ∼ 1 + 2a2e−(nω+ω0)2/2 +O
(
e−2(nω+ω0)2/3

)
as n→ ∞, (2.4a)

where

a = lim
x→∞

ex
2/2f(x, 1). (2.4b)

Furthermore, let ϕn, ϕ−n be the corresponding eigenmodes. Then, for sufficiently large n we

have ∥∥∥ϕn − e−(x−nω)2/2
∥∥∥2
2
+ ∥ϕ−n∥22 ≤ e−2(nω+ω0)2/3 , (2.5)

where ∥ · ∥2 denotes the L2 norm on (−ω0,∞).

Proof: Let

H =
{
ϕ ∈ H2(−ω0,∞) | xϕ ∈ L2(−ω0,∞) ; ϕ′(−ω0) = 0

}
,
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and Pn : H ×H → L2 × L2 denote the operator

Pn =

− d2

dx2
1
+ (x1 − nω)2 0

0 − d2

dx2
1
+ (x1 + nω)2

+ λnf
2(x1, λn)

2 1

1 2

 .
Clearly,

(Pn − λn)

 ϕn

ϕ̄−n

 = 0 .

We now choose the quasi-mode

vn = Cn

χ(x+ ω0)e
(−x−nω)2/2

0

 ,

where Cn is chosen such that
∫
|vn|2 = 1 and χ is a smooth cutoff function satisfying

χ(x) =


0 x ≤ 1

2

1 x ≥ 1

.

Let

αn = 1 + 2λn

∫
f 2(x, λn) |vn|2 .

Then,

|⟨vn, (Pn − αn) vn⟩| ≤
∫

|−χ′′ + 2(x− nω)χ′| e−(x−nω)2 ≤ Ce−(nω+ω0)2 . (2.6)

We now represent the quasi-mode vn

vn = anΦn + ṽn ,

where

Φn =

 ϕn

ϕ−n

 ,
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and

an = ⟨vn,Φn⟩ .

From (2.6) we have

a2n |λn − αn| ≤ |⟨vn, (Pn − αn) vn⟩|+ |⟨ṽn, (Pn − αn) ṽn⟩| ≤

≤ ∥ṽn∥2 ∥(Pn − αn) vn∥2 + Ce−(nω+ω0)2 . (2.7)

Let

µn = inf
u∈H̃n
∥u∥2=1

⟨Pnu, u⟩ ,

where H̃n is the orthogonal complement of span {Φn} in H ×H.

Then,

∥ṽn∥22 ≤
∥(Pn − αn) ṽn∥22

|µn − αn|2
≤ ∥(Pn − αn) vn∥22

|µn − αn|2
. (2.8)

We claim that

lim inf
n→∞

µn − αn = 2 . (2.9)

To prove (2.9) we define the operator

Qn =

− d2

dx2
1
+ (x1 − nω)2 0

0 − d2

dx2
1
+ (x1 + nω)2

 . (2.10)

Clearly,

νn = inf
u∈H̃n
∥u∥2=1

⟨Qnu, u⟩ ≤ µn. (2.11)
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We now prove that

lim inf
n→∞

νn ≥ 3 . (2.12)

Denote by Un the minimizer of < Qnu, u > in H ×H. For sufficiently large n we have

Un =

un
0

 ,

where un satisfies

−u′′n + (x− nω)2un = βnun u′n(−ω0) = 0 ,

in which βn = β(−nω − ω0) is given by (1.5) and ∥un∥2 = 1. Let w denote a unit vector in

H̃n. Then,

⟨w,Un⟩ = ⟨w,−Φn + ⟨Φn, Un⟩Un⟩+ (1− ⟨Φn, Un⟩) ⟨w,Un⟩ .

We seek to estimate the norm of Φn−⟨Φn, Un⟩Un. To this end we apply to it first Qn−βn

and then estimate the norm of the outcome. We have

∫
|(Qn − βn) (Φn − ⟨Φn, Un⟩Un)|2 ≤ (λn − βn)

2 + 4λ2n

∫
f 2
(
|ϕn|2 + |ϕ−n|2

)
.

To estimate the second term on the right-hand-side, we recall from [4] that

λn

∫
f 2
(
|ϕn|2 + |ϕ−n|2 + |ϕn + ϕ̄−n|2

)
=

= −
∫ [

|ϕ′
n|2 + |ϕ′

−n|2 + (x− nω)2|ϕn|2 + (x+ nω)2|ϕ−n|2
]
+ λn ≤ (λn − βn) .

From [8, 19] we know that

βn ∼ 1−O
(
e−(nω+ω0)2

)
.
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Hence, in view of (2.3) we obtain

∫
|(Qn − βn) (Φn − ⟨Φn, Un⟩Un)|2 ≤ Ce−(nω+ω0)2/2 . (2.13)

Since Φn − ⟨Φn, Un⟩Un is orthogonal to Un we have

∫
|(Qn − βn) (Φn − ⟨Φn, Un⟩Un)|2 ≥ (σn − βn)

2 ∥Φn − ⟨Φn, Un⟩Un∥22 ,

where

σn = inf
u∈span{Un}⊥

∥u∥2=1

⟨Qnu, u⟩ .

Semi-classical analysis [15, 8] shows that

σn −−−→
n→∞

3. (2.14)

Combining the above with (2.13) yields

∥Φn − ⟨Φn, Un⟩Un∥22 ≤ Ce−(nω+ω0)2/2,

and consequently

⟨w,Un⟩ ≤ Ce−(nω+ω0)2/4 , (2.15)

where C is independent of w and n.

We now present w in the form

w = ⟨w,Un⟩Un + wn.

Clearly, wn⊥Un, and hence

⟨Qnw,w⟩ = βn ⟨w,Un⟩2 + ⟨Qnwn, wn⟩ ≥ σn∥wn∥22 ≥ σn(1− e−(nω+ω0)2/2) ,
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which proves (2.12). In view of (2.11), we have proved (2.9) too.

We now substitute (2.9) into (2.8) and then into (2.7) to obtain

a2n |λn − αn| ≤ ∥(Pn − αn) vn∥22 + Ce−(nω+ω0)2 ,

or, equivalently

a2n |λn − αn| ≤ 2 (αn − 1)2 + 5

∫
f 4 |vn|2 + Ce−(nω+ω0)2 ≤ Ce−2(nω+ω0)2/3.

Furthermore,

a2n = 1− ∥vn∥22 ≥ 1− ∥(Pn − αn) vn∥22 ≥ 1− Ce−2(nω+ω0)2/3.

Hence,

λn ∼ 1 + 2λn

∫
f 2(x, λn) |vn|2 +O

(
e−2(nω+ω0)2/3

)
as n→ ∞. (2.16)

In [4] we proved that |∂f/∂λ| ≤ C for all x in some neighborhood of λ = 1. Utilizing this

result together with (2.3) we obtain

λn ∼ 1 + 2

∫
f 2(x, 1)e−(x−nω)2 +O

(
e−2(nω+ω0)2/3

)
as n→ ∞,

from which (2.4) readily follows. Similarly, from (2.8) we obtain (2.5).

□

We conclude this section by stating the following conjecture, and by making a simple

observation.

Conjecture 1 Let

γn(λ) = inf
(χn,χ−n)∈H×H

∥χn∥22+∥χ−n∥22=1

Jn(χn, χ−n), (2.17a)
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where

Jn(χn, χ−n) =:

∫ ∞

−ω0

|χ′
n|

2
+ (x− nω)2|χn|2 +

∣∣χ′
−n

∣∣2 + (x+ nω)2|χ−n|2−

− λ
[
|χn|2 + |χ−n|2 − f 2

(
|χn|2 + |χn + χ̄−n|2 + |χ−n|2

)]
. (2.17b)

Then,

∀n ∈ N,∃δn > 0 : λ < 1 + δn ⇒ γn(λ) > 0 . (2.18)

Note that by (2.4) the above conjecture is correct for sufficiently large n, since γn(λ) > 0

for all λ < λn. For n which is not necessarily large, it is still expected that (2.18) remains

valid since otherwise the surface superconductivity solution (1.4) would loose its stability for

λ ≤ 1 for some n ∈ N. This would contradict the physical intuition suggesting that (1.4)

must be stable for λ ≤ 1.

Finally, we prove the leading asymptotic behavior for γn(λ) as n→ ∞ .

Lemma 2.2 Let λ < 2. Then,

γn(λ) ∼ (λn − λ)
(
1 + Ce−

1
3
(nω+ω0)2

)
. (2.19)

Proof: It is easy to show that

−ϕ′′
n +

[
(x1 − nω)2 − λ− γn

]
ϕn + λf 2

(
2ϕn + ϕ−n

)
= 0 x1 > −ω0

−ϕ′′
−n +

[
(x1 + nω)2 − λ− γn

]
ϕ−n + λf 2

(
2ϕ−n + ϕn

)
= 0 x1 > −ω0

ϕ′
n(−ω0) = ϕ′

−n(−ω0) = 0 .

Consequently, in the same manner used to derive (2.16) we can obtain that

γn(λ) ∼ 1 + 2λ

∫
f 2(x, λ) |vn|2 +O

(
e−2(nω+ω0)2/3

)
− λ as n→ ∞.
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Utilizing (2.16) we have

γn(λ) ∼ (λn − λ)

(
1 + 2

∫
f 2(x, λn) |vn|2

)
+ 2λ

∫ [
f 2(x, λ)− f 2(x, λn)

]
|vn|2

and since |∂f/∂λ| ≤ C (cf. [4]) we readily obtain (2.19).

3 The second bifurcation

In the preceding section we have considered the bifurcation from the one-dimensional solution

(1.4). In this section we study the linear bifurcation from the bifurcating branch, i.e. the

second bifurcation. Let then

ψ = ψ0 + u (3.1)

where ψ0(λ) denotes the solution which bifurcates from (1.4) at λ = λN for N ≫ 1. It is

convenient to present ψ0 using the parametric form

ψ0
∼= f0 + ϵV0 +O

(
ϵ2, e−(Nω+ω0)2/2

)
(3.2a)

λ ∼= λN + ϵ2λ
(2)
N +O

(
ϵ2
)
, (3.2b)

in which

Vn = ϕn+N(x1)e
i(n+N)ωx2 + ϕ−n−N(x1)e

−i(n+N)ωx2 , (3.2c)

f0(x1) = f(x1, 1) , (3.2d)

λ
(2)
N

∼=
( ω
2π

)3/2
+O

(
e−(ωN+ω0)2/2

)
. (3.2e)
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We shall consider in the sequel positive ϵ values which are of O
(
e−[(N−N0)ω+ω0]2/4

)
for

N0 ≪ N . In view of (3.2c) we have

(
i∇+ x1î2

)2
vn − λN+n

[
vn − f 2

∣∣
λ=λN+n

(2vn + v̄n)
]
= 0. (3.3)

Consider now the bifurcation from the branch which bifurcated at λ = λÑ from the surface

superconductivity solution (1.4) for Ñ ̸= N which is still much greater than 1. In this case

we obtain from (2.5) that apart from an exponentially small error

ψ̃0 − f0

∣∣∣
(x1,x2)

∼= ψ̃0 − f0

∣∣∣
(x1+ω(Ñ−N),x2

,

where ψ̃0 is the mode bifurcating from f at λ = λÑ . Thus, the choice of N has little impact

on the results obtained in this section. We shall return to this problem in the last section.

Substituting (3.1) into (2.1) while keeping in mind that ψ0 is a solution of (2.1), we

obtain

(
i∇+ x1î2

)2
u− λ

[
u−

(
2|ψ0|2u+ ψ2

0ū+ 2|u|2ψ0 + u2ψ̄0 + |u|2u
)]

= 0 x ∈ R2
ω0
, (3.4a)

ux1(−ω0, x2) = 0 ; u(x1, x2 + L) = u(x1, x2) , (3.4b,c)

where L = 2π/ω, and R2
ω0

= {(x1, x2) | − ω0 < x1, x2 ∈ R}. We look for solutions in Pω0
L

which bifurcate from u ≡ 0. We thus assume that such a bifurcation takes place at λ = µ

and linearize (3.4) by introducing the expansion

λ ∼= µ+ δµ(1) + δ2µ(2) +O
(
δ3
)
, (3.5a)

u ∼= δu(0) + δ2u(1) + δ3u(2) +O
(
δ4
)
, (3.5b)
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to obtain (
i∇+ x1î2

)2
u(0) − µ

[
u(0) −

(
2|ψ0|2u(0) + ψ2

0ū
(0)
)]

= 0 , (3.6)

together with (3.4b,c).

We shall now obtain a necessary condition for the existence of non-trivial solutions of

(3.6) involving Vn with N + n≫ 1.

Lemma 3.1 Let

µ = λN + ϵ2λ
(2)
N ,

where λ
(2)
N is given by (3.2e). Let further ψ0 be given by (3.2) and u(0) satisfy (3.6). Denote

by ûn the Fourier coefficient

ûn =

∫ 2π/ω

0

e−iωnx2dx2 .

Then, if there exist ϵ ≤ exp
{
−1

4
[(N − l)ω + ω0]

2
}

(where l ≪ N) such that a non-trivial

u(0) satisfying ∫ ∞

−ω0

|ûN+n|2 + |ûN−n|2 dx1 ≥
1

2
(3.7)

exists for some 0 ≤ n ≤ l, we must have

ϵ2 ∼= η2−n

1− 2qn
2

(1− 2qn2)
2 − q4n2

(3.8a)

and

2

ω
π3/2u(0) ∼=

1− 2qn
2√

(1− 2qn2)
2
+ q4n2

exp

{
−1

2
[x1 − (N − n)ω]2 + iω(N − n)x2

}
+

+
q2n

2√
(1− 2qn2)

2
+ q4n2

exp

{
−1

2
[x1 − (N + n)ω]2 + iω(N + n)x2

}
, (3.8b)
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where

η2n =

(
2π

ω

)3/2

(λN − λN+n) ; η2−n =

(
2π

ω

)3/2

(λN − λN+n) , (3.8c)

and

q = e−
1
2
ω2

. (3.8d)

Proof: Multiplying (3.6) by V̄n and integrating by parts over D = (−ω0,∞)× (0, L) we

obtain

(µ− λN+n)

∫
u(0)V̄n = (µ− λN+n)

∫
V̄n
[
2|ψ0|2u(0) + ψ2

0ū
(0)
]
+

+ λN+n

∫
f 2
(
u(0)V̄n − ū(0)Vn

)
+ λN+n

∫
V̄n
[
2
(
|ψ0|2 − f 2

)
u(0) +

(
ψ2
0 − f 2

)
ū(0)
]
. (3.9)

We need first an estimate for the first two integrals on the right-hand-side of (3.9). Without

loss of generality we assume that ∥u(0)∥L2(D) = 1 (which may always be achieved through

appropriately adjusting δ). By (3.6) we also have∫ ∣∣∣(i∇+ x1î2)u
(0)
∣∣∣2 ≤ C

∫ ∣∣u(0)∣∣2 ≤ C . (3.10)

For the first integral on the right-hand-side of (3.9) we obtain by using (3.2)∫
V̄n|ψ0|2u(0) ∼=

∫
V̄nf

2
0u

(0) + 2ϵ

∫
V̄nf0ℜ(V0)u(0) +O(ϵ2).

Then , utilizing (2.5) we have∣∣∣∣∫ V̄nf
2
0u

(0)

∣∣∣∣2 ≤ ∫ f 4
0 |Vn|2 ≤ Ce−2[(N+n)ω+ω0]2/3 ,∣∣∣∣∫ V̄nf0V0u

(0)

∣∣∣∣2 ≤ ∫ f 2
0 |Vn|2|V0|2 ≤ Ce−2[(N+n/2)ω+ω0]2/3.
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To estimate the second integral on the right-hand-side of (3.9) we multiply (3.6) once by

e−i(N+n)x2 and once by ei(N+n)x2 and integrate by parts to obtain the system

−û′′N+n+
[
(x− nω)2 − µ

]
ûN+n + µf 2

(
2ûN+n + û−N−n

)
=

= −
∫ 2π/ω

0

[(
|ψ0|2 − f 2

)
2u(0) +

(
ψ2
0 − f 2

)
ū(0)
]
e−iω(N+n)x2dx2 (3.11a)

−û′′−N−n+
[
(x+ nω)2 − µ

]
û−N−n + µf 2

(
2û−N−n + ûN+n

)
=

= −
∫ 2π/ω

0

[(
|ψ0|2 − f 2

)
2u(0) +

(
ψ2
0 − f 2

)
ū(0)
]
eiω(N+n)x2dx2 (3.11b)

û′N+n(−ω0) = û′−N−n(−ω0) = 0 . (3.11c)

Multiplying (3.11a) by ¯̂uN+n and (3.11b) by ¯̂u−N−n, summing the resulting equations, and

integrating with respect to x1 we obtain

JN+n(ûN+n, û−N−n, µ) =

∫ [
e−iω(N+n)x2ûN+n + eiω(N+n)x2û−N−n

]
·

[(
|ψ0|2 − f 2

)
2u(0) +

(
ψ2
0 − f 2

)
ū(0)
]
,

where J is defined in (2.17). Since ûne
iωnx2 is the projection of u(0) on the subspace of the

n’th Fourier harmonic, it is easy to show that its H1
mag norm is uniformly bounded for all N

and n. Consequently,

∥u(0)∥L4 ≤ C ; ∥ûneiωnx2∥L4 ≤ C.

Therefore, it is not difficult to show that for sufficiently large N + n

∫
|û−N−n|2 + f 2 |ûN+n|2 −

(
µ− β

∣∣
z=ω(N+n)+ω0

)
≤

≤ JN+n(ûN+n, û−N−n, µ) ≤ C
(
ϵ+ e−(Nω+ω0)2/4

)2
. (3.12)
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where β(z) is defined in (1.5). It is thus easy to show from (3.12) that

∫
|û−N−n|2 + f 2 |ûN+n|2 ≤ C

(
ϵ+ e−(Nω+ω0)2/4

)2
.

Let Un be the minimizer of < Qnu, u > in H×H where Qn is defined in (2.10). Let further

ûN+n = ⟨ûN+n, UN+n⟩UN+n + ũN+n. (3.13)

Then, by (3.12) and (2.14) we also have

∫
|ũN+n|2 ≤ C

(
ϵ+ e−(Nω+ω0)2/4

)2
. (3.14)

We now return to the second integral on the right-hand-side of (3.9). Obviously,

∫
f 2ū(0)V̄n =

∫ ∞

−ω0

f 2
[
ϕ̄N+n

¯̂u−N−n + ϕ̄−N−n
¯̂uN+n

]
dx1. (3.15)

From (3.12), (2.5) and (2.4) we obtain

∣∣∣∣∫ ∞

−ω0

f 2ϕ̄N+n
¯̂u−N−n

∣∣∣∣2 ≤ ∫ ∞

−ω0

f 4 |ϕN+n|2
∫ ∞

−ω0

|û−N−n|2 ≤

≤ C
(
ϵ+ e−[ω(N+n)+ω0]2/4

)2
e−2[ω(N+n)+ω0]2/3 , (3.16)

and

∣∣∣∣∫ ∞

−ω0

f 2ϕ̄−N−n
¯̂uN+n

∣∣∣∣2 ≤ ∫ ∞

−ω0

f 4 |ûN+n|2
∫ ∞

−ω0

|ϕ−N−n|2 ≤

≤ C
(
ϵ+ e−[ω(N+n)+ω0]2/4

)2
e−2[ω(N+n)+ω0]2/3 . (3.17)

Consequently,

(µ− λN+n)

∫
u(0)V̄n = λN+n

∫
V̄n
[
2
(
|ψ0|2 − f 2

)
u(0) +

(
ψ2
0 − f 2

)
ū(0)
]
+ ϵ̃ , (3.18a)
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where

|ϵ̃| ≤ C

{
ϵ2
(
ϵ+ e−[ω(N+n)+ω0]2/3

)2
+
(
ϵ+ e−[ω(N+n)+ω0]2/4

)2
e−[ω(N+n)+ω0]2/3

}
. (3.18b)

We now estimate the remaining terms on the right-hand side of (3.9). Evidently,

∫
V̄n
(
|ψ0|2 − f 2

)
u(0) ∼=

∫
V̄n
(
f 2
0 − f 2

)
u(0)+2ϵ

∫
f0ℜ

{
V0u

(0)V̄n
}
+ϵ2

∫
|V0|2 u(0)V̄n+O

(
ϵ3
)
.

(3.19)

For the first term on the right-hand-side we have

∣∣∣∣∫ V̄n
(
f 2
0 − f 2

)
u(0)
∣∣∣∣2 ≤ ∥∥∥∥∂f∂λ

∥∥∥∥2
L∞(−ω0,∞)

|λn − 1|2
∫

(f0 + f)2 |Vn|2 .

In view of (2.4) and since ∂f/∂λ is uniformly bounded [4], we have

∣∣∣∣∫ V̄n
(
f 2
0 − f 2

)
u(0)
∣∣∣∣2 ≤ Ce−3[ω(N+n)+ω0]2/2. (3.20)

For the second term on the right-hand-side of (3.19) we have

∣∣∣∣∫ f0ℜ
{
V0u

(0)V̄n
}∣∣∣∣2 ≤ ∫ f 2

0 |V0Vn|
2 ≤ Ce−2[ω(N+n)+ω0]2/3. (3.21)

Combining (3.19), (3.20), and (3.21) we obtain

∫
V̄n
(
|ψ0|2 − f 2

)
u(0) ∼= ϵ2

∫
|V0|2 u(0)V̄n +O

(
ϵ2e−[ω(N+n)+ω0]2/12

)
.

In a similar manner we can obtain a similar estimate for the second term on the right-hand

side of (3.18a). Thus,

(µ− λN+n)

∫
u(0)V̄n = ϵ2

∫
V̄n
[
2 |V0|2 u(0) + V 2

0 ū
(0)
]
+ ϵ2ϵ̃n , (3.22a)
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where

|ϵ̃n| ≤ e−[ω(N+n)+ω0]2/12. (3.22b)

Let

d̃n =

∫
u(0)V̄n.

Then, we can write (3.22) in the form

(
ϵ2 + η2n

)
d̃n = ϵ2qn

2
[
2d̃n + d̃−nq

n2
]
+ Cϵ2ϵ̃n (3.23a)(

ϵ2 − η2−n

)
d̃−n = ϵ2qn

2
[
2d̃−n + d̃nq

n2
]
+ Cϵ2ϵ̃−n . (3.23b)

Let [dn, d−n]
T denote a non-trivial solution and ϵ

(0)
n be a critical value of

(
ϵ2 − η2−n

)
d−n = ϵ2qn

2
[
2d−n + d̄nq

n2
]

(3.24a)(
ϵ2 − η2−n

)
d−n = ϵ2qn

2
[
2d−n + d̄nq

n2
]
. (3.24b)

Let further µN−n denote a critical value of µ for which a non-trivial solution of (3.6) satisfying

(3.7) exists. Let ϵn be given by

ϵ2n =
µN−n − λN

λ
(2)
N

.

By (3.7) we have to look for a solution of (3.23) which satisfies

∣∣∣d̃n∣∣∣2 + ∣∣∣d̃−n

∣∣∣2 ≥ 1

2
.

It is not difficult to show that

∣∣ϵn − ϵ(0)n

∣∣+ ∣∣∣d̃n − dn

∣∣∣+ ∣∣∣d̃−n − d−n

∣∣∣ ≤ Cϵ̃n , (3.25)
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where C is independent of n and N . Furthermore, one can easily show that whenever

1 ≤ k ≤ 2l and k ̸= n, the solutions of (3.23) with ϵ = ϵk must satisfy

∣∣∣d̃n∣∣∣+ ∣∣∣d̃−n

∣∣∣ ≤ Cϵ̃n. (3.26)

To solve (3.24) we multiply (3.24a) by d̄−n and (3.24b) by d̄n to obtain

[
ϵ2
(
1− 2qn

2
)
− η2−n

]
|d−n|2 = ϵ2q2n

2

d̄nd̄−n (3.27a)[
ϵ2
(
1− 2qn

2
)
+ η2n

]
|dn|2 = ϵ2q2n

2

d̄nd̄−n. (3.27b)

We confine the subsequent discussion to the case q < 1/2, (and later also to q <
√
2 − 1).

This is done because most of the analysis in the next section will be devoted to the limit

q → 0. Furthermore, the periodic solution with the minimal energy in R2 is the triangular

lattice [1, 9, 2] for which q is either e−π
√
3 or e−π/

√
3 which are both smaller than 1/2.

For q < 1/2 we must have by (3.27b)

d̄nd̄−n = |dn| |d−n| .

Hence,

det


(
ϵ
(0)
n

)2 (
1− 2qn

2
)
− η2−n −

(
ϵ
(0)
n

)2
q2n

2

−
(
ϵ
(0)
n

)2
q2n

2
(
ϵ
(0)
n

)2 (
1− 2qn

2
)
+ η2n

 = 0 .

We now observe that by (2.4)

η2n
η2−n

≤ Ce−ωnN .

Hence, we can approximate ϵ
(0)
n by

(
ϵ(0)n

)2 ∼= η2−n

1− 2qn
2

(1− 2qn2)
2 − q4n2

.
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Using (3.2b) the critical values of λ are accordingly

µN−n = λN +
1− 2qn

2

(1− 2qn2)
2 − q4n2

(λN−n − λN) .

As long as q <
√
2− 1 we have

λN−n < µN−n < λN−n−1,

and

µN−n − λN−n

λN−n−1 − λN−n

≤ Ce−ωN .

Consequently, we can assert that the next bifurcation takes place at λ = µN−1 where

µN−1
∼= λN +

1− 2q

(1− 2q)2 − q4
(λN−1 − λN) . (3.28)

The corresponding eigenmode is

2

ω
π3/2

d−1

d1

 =
1√

(1− 2q)2 + q4

1− 2q

q2

 . (3.29)

Combining (3.13),(3.14),(3.25), and (3.26) we obtain

2

ω
π3/2u(0) ∼=

1− 2q√
(1− 2q)2 + q4

exp

{
−1

2
[x1 − (N − 1)ω]2 + iω(N − 1)x2

}
+

+
q2√

(1− 2q)2 + q4
exp

{
−1

2
[x1 − (N + 1)ω]2 + iω(N + 1)x2

}
+ ṽl , (3.30)

where ṽl satisfies∫ 2π/ω

0

e−iωnx2 ṽldx2 = 0 ∀x1 ∈ (−ω0,∞) N − 2l ≤ |n| ≤ N + 2l .

We first consider the case |n| ≤ N − l − 1. By (3.12) and (2.17) we have

γn(µ)
[
∥ûn∥22 + ∥û−n∥22

]
≤ C

(
ϵ+ e−(Nω+ω0)2/4

)2
.
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By (2.19) and (2.18) there exists n0 such that

n > n0 ⇒ γn(µ) ≥
1

2
(λn − µ) .

Let first n0 < n ≤ N − l − 1. Then

∥ûn∥22 + ∥û−n∥22 ≤ C
ϵ2

λn − µ
≤ C

µ− λN
λn − µ

≤ C
µ− λN
λn − µ

≤ C
λN−l − λN
λN−2l − λN−l

≤ Ce−
1
2
lNω.

Consider now the case n ≤ n0. Let

γ̃ = min
1≤n≤n0
1≤µ≤λN−l

γn(µ) .

By (2.18) γ̃ must be positive for sufficiently large N . Consequently,

∥ûn∥22 + ∥û−n∥22 ≤ C
ϵ2

γ̃
.

Finally, we consider the case n ≥ N +2l+1. In this case we can write instead of (3.23a)

(
ϵ2 + η2n

)
d̃n = 2ϵ2qn

2

d̃n + Cϵ2ϵ̃n ,

wherein

ϵ̃n ≤ e−
1
4
lNω .

Hence, d̃n ≤ Cϵ̃n. Since (3.14) is still valid we have

∥ṽl∥ ≤ Ce−
1
4
lNω ,

which completes the proof of (3.8).

□
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Note that as q → 0

µ→ λN−1 ;

d−1

d1

→

1
0

 .
This is the limit of weak interaction between the modes: As q → 0, ω tends to ∞ and hence,

since ϕn ∼ exp {−(x− nω)2/2}, we obtain exponentially small interaction between the V0

and its adjacent modes V1 and V−1. Consequently, as q → 0, the next bifurcation is almost

identical in nature with the first bifurcation: It takes place at µ = λN−1 and the bifurcating

mode is VN−1.

The fact that by (3.30) u(0) depends only on a finite number of modes is surprising:

One expects that the bifurcating branch would include infinitely many modes since the term

|ψ|2ψ on the right-hand-side of (2.1) does not allow us to separate a finite number of modes

from the others. It is thus expected that if we consider additional terms in the expansion

(3.5), we shall obtain additional modes, so that u, the solution of (3.4) would consist of an

infinite number of modes.

Upon multiplying (3.4) by V̄n and integrating by parts we obtain

(λ− λN+n)

∫
uV̄n = (λ− λN+n)

∫
V̄n
[
2|ψ0|2u+ ψ2

0ū
]
+

+ λN+n

∫
f 2
(
uV̄n − ūVn

)
+ λN+n

∫
V̄n
[
2
(
|ψ0|2 − f 2

)
u+

(
ψ2
0 − f 2

)
ū
]
+

+ λ

∫
V̄n
[
2|u|2ψ0 + u2ψ̄0

]
+ λ

∫
V̄n|u|2u .

We now substitute (3.5) into the above and obtain for the O(δ2) balance for n = ±1, making
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the same approximations as before

( ω
2π

)3/2 [
ϵ21 ± η2±1

) ∫
u(0)V̄n + µ

(1)
N−1

∫
u(0)V̄n =

= ϵ21

∫
V̄n
[
2 |V0|2 u(1) + V 2

0 ū
(1)
]
+ ϵ1

∫
V̄n

[
2
∣∣u(0)∣∣2 V0 + V0

(
u(0)
)2]

+

+ µ
(1)
N−1

(
2π

ω

)3/2 ∫
V̄n
[
2 |V0|2 u(0) + V 2

0 ū
(0)
]
+ ϵ21ϵ̂n. (3.31)

It is possible to show that ϵ̂n is exponentially small as N → ∞, since it results from inter-

actions between “distant” modes, e.g. f0 and Vn. We skip the details here and proceed by

formally obtaining the next-order term.

To find µ
(1)
N−1 we write the equations for n = ±1 neglecting the exponentially small terms

(
ϵ21 − η2−1

)
d
(1)
−1 = ϵ21q

[
2d

(1)
−1 +

¯d(1)1q
]
+ µ

(1)
N−1

[
(1− 2q)2 − q4

]
, (3.32)(

ϵ21 + η21
)
d
(1)
1 = ϵ21q

[
2d

(1)
1 + ¯d(1)−1q

]
, (3.33)

where

d(1)n =

∫
u(1)V̄n. (3.34)

It is easy to show that (3.32) can have solutions only if

µ
(1)
N−1 = 0. (3.35)

In this case the solutions are proportional to (3.29) and are therefore of no interest. For

n = 0 we have

d
(1)
0 = 2d

(1)
0 + d̄

(1)
0 +

2q

ϵ1

[
(1− 2q)2 + q3 − q4

]
.
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Hence,

d
(1)
0 = − q

ϵ1

[
(1− 2q)2 + q3 − q4

]
+ iC, (3.36)

where the last term can be eliminated using the gauge transformation (1.2). For n = ±2 we

obtain

(
ϵ21 − η2−2

)
d
(1)
−2 = ϵ21q

4
[
2d

(1)
−2 +

¯d(1)2q
4
]
+ ϵ1q

2(1− 2q)
[
2q5 + 1− 2q

]
,(

ϵ21 + η22
)
d
(1)
2 = ϵ21q

4
[
2d

(1)
2 + ¯d(1)−2q

4
]
+ ϵ1q

6[2q(1− 2q) + 1].

Since ϵ21/η
2
−2 ∼ O

(
e−ωN

)
, we obtain

∣∣∣d(1)−2

∣∣∣ ∼ O
(
e−ωN

)
.

One can then obtain

d
(1)
2

∼=
q6

ϵ1
[2q(1− 2q) + 1] +

(
e−ωN

)
.

For n ≥ 3 it is easy to show that d
(1)
±n = 0.

We can proceed in the same manner to obtain the next order term in the expansion (3.5).

However, this solution will not provide any significant information except for the fact that

µ(2) ∼=
( ω
2π

)3/2 [
ϵ1

(
4d

(0)
−1d

(1)
0 q + 2d

(0)
1 d

(1)
0 q2 + 2d

(0)
1 d

(1)
2 q5

)
+

+

(∣∣∣d(0)−1

∣∣∣2 + 2q4
∣∣∣d(0)1

∣∣∣2) d(0)−1

]
1 +O

(
e−ωN

)
(1− 2q)2 − q4

∼= 1− 2q +O
(
q2, e−ωN

)
as q → 0. (3.37)

We see that while u(0) contains the modes V1 and V−1, u
(1) contains V2 and V−2 as well.

It can be shown that u(n−1) contains Vn and V−n and hence by (3.5) u contains infinitely

many modes. However, the coefficients of V−n for n ≥ 2 are exponentially small.
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If we increase δ in (3.5) such that δ ≫ ϵ1, then the series (3.5) does not seem to converge:

It is possible to show from (3.31) that u(n) ∼ O (qn/ϵn1 ). Therefore, convergence of (3.5) can

be guaranteed only when δ ≪ ϵ1/q. We are interested, however, in the behaviour of the

bifurcating branch when δ ≫ ϵ1 as well and therefore need to apply a different approach to

obtain this behaviour, which is what we do in the next section.

To this end we discuss here the behaviour of u near the bifurcation in the limit q → 0.

Let then,

an = lim
q→0

∫
uV̄n.

Formally, we have

an =
∞∑
k=1

a(k)n δk,

where

a(k)n = lim
q→0

∫
u(k−1)V̄n.

By (3.8b) we have

a(1)n =


1 n = −1

0 n ̸= −1

.

Furthermore, since

u(n) ∼ O (qn) as q → 0,

we must have a
(k)
n = 0 for all n and k ≥ 2. Consequently,

ψ ∼ f0 + ϵV0 + δV−1 +O(q)as q → 0. (3.38)
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4 Post-bifurcation behaviour

Consider again (2.1). We multiply the equation by V̄n and integrate by parts to obtain

λ

∫
ψ
(
1− |ψ|2

)
V̄n = λN+n

∫
ψ
[
V̄n − f 2

(
2V̄n + Vn

)]
,

or

(λ− λN+n)

∫
ψV̄n = (λ− λN+n)

∫
ψ |ψ|2 V̄n+

+ λN+n

∫
ψ |ψ − f |2 V̄n − λN+n

∫
f 2
[
(ψ̄ − f)V̄n − (ψ − f)Vn

]
. (4.1)

We look for solutions of (2.1) for

0 < λ− µN−1 ≪ 1,

which are close to (1.4), i.e.

λ = λN +
( ω
2π

)3/2
ϵ2 (4.2a)

and

ψ ∼= f0 + ϵψ(1) + ϵ2ψ(2), (4.2b)

where

ψ(1) =
∑

n=−N+1

CnVn, (4.2c)

ϵ1 < ϵ ≪ 1, and ∥ψ(2)∥ is bounded as ϵ → ϵ1 and N → ∞. (Note that (4.2) is an

extrapolation of the results in the preceding section.)
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We now estimate the various terms on the right hand side of (4.1). For the first term we

have

∫
ψ |ψ|2 V̄n = ϵ

∫
f 2
[
2ψ(1) + ψ̄(1)

]
V̄n+ϵ

2

∫
f 2
[
2ψ(2) + ¯ψ(2)

]
V̄n+ϵ

2

∫
f
[
2
∣∣ψ(1)

∣∣2 + (ψ(1)
)2]

V̄n ,

in which we have the estimates∣∣∣∣∫ f 2
[
2ψ(1) + ψ̄(1)

]
V̄n

∣∣∣∣2 ≤ C

∫
f 4 |Vn|2

∫ ∣∣ψ(1)
∣∣2 ≤ Ce−2[(N+n)ω+ω0]2/3,

∣∣∣∣∫ f
[
2
∣∣ψ(1)

∣∣2 + (ψ(1)
)2]

V̄n

∣∣∣∣2 ≤ e−[(N+n)ω+ω0]2/2.

Hence,∣∣∣∣(λ− λN+n)

∫
ψ|ψ|2V̄n

∣∣∣∣ ≤ C |λ− λN+n|
[
ϵe−[(N+n)ω+ω0]2/3 + ϵ2e−[(N+n)ω+ω0]2/4 + ϵ3

]
. (4.3)

For the last term on the right-hand-side of (4.1) we have∫
f 2
[
(ψ̄ − f)V̄n − (ψ − f)Vn

]
= ϵ

∫
f 2
[
ψ̄(1)V̄n − ψ(1)Vn

]
+ ϵ2

∫
f 2
[

¯ψ(2)V̄n − ψ(2)Vn

]
,

in which we have the estimates∣∣∣∣∫ f 2
[
ψ̄(1)V̄n − ψ(1)Vn

]∣∣∣∣ ≤ C

∣∣∣∣∫ ∞

−ω0

f 2ϕnϕ−ndx1

∣∣∣∣ ≤ Ce−2[(N+n)ω+ω0]2/3,

∣∣∣∣∫ f 2ψ(2)Vn

∣∣∣∣ ≤ Ce−[(N+n)ω+ω0]2/3.

For the second term on the right-hand-side of (4.1) we have∫
ψ |ψ − f |2 V̄n = ϵ2

∫
f
∣∣ψ(1)

∣∣2 V̄n + 2ϵ3
∫
fℜ
{
ψ̄(1)ψ(2)

}
V̄n + ϵ3

∫
ψ(1)

∣∣ψ(1)
∣∣2 V̄n +O

(
ϵ4
)
,

in which ∣∣∣∣∫ f
∣∣ψ(1)

∣∣2 V̄n∣∣∣∣ ≤ C sup
k<n

∣∣∣∣∫ fVkVn−k−N V̄n

∣∣∣∣ ≤ Ce−[(N+n)ω+ω0]2/2 ,
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and ∣∣∣∣∫ fℜ
{
ψ̄(1)ψ(2)

}
V̄n

∣∣∣∣ ≤ Ce−[(N+n)ω+ω0]2/4 .

Combining the above estimates and (4.1) we obtain

(λ− λN+n)

∫
ψ(1)V̄n = ϵ2

∫
ψ(1)

∣∣ψ(1)
∣∣2 V̄n + ϵ2ϵ̃n , (4.4)

where ϵ̃n satisfies (3.22b).

Substituting (4.2) into (4.4) and neglecting the exponentially small terms yields

∞∑
r,m=n−N+1

Cn+rC̄n+r+mCn+mq
m2+r2 − νnCn = 0, (4.5a)

where

ν2n =
λ− λN+n

λ− λN
(4.5b)

which is formally valid only when (N + n) ≫ 1. Let l ∈ N and

1

2
(λN−l+1 + λN−l) < λ ≤ 1

2
(λN−l + λN−l−1) .

Then, by (2.4), we have

νn ∼


1 +O(e−ωN) n ≥ −l + 1

−O(eωN) n ≤ −l − 1

. (4.6)

For n = −l the above ratio varies from a negative O(eωN) value for λ = (λN−l+1 + λN−l) /2

to a value close to unity for λ = 1
2
(λN−l + λN−l−1). An immediate consequence of (4.6) is

that

Cn ∼ O
(
e−ωN

)
∀n ≤ −l − 1. (4.7)
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Equation (4.5) possesses infinitely many solutions. We first consider solutions which are

analytic functions of q, i.e.

Cn =
∞∑
k=0

ankq
k. (4.8)

We first look at λ(q) such that ν−l is independent of q. Note that by (4.6) νn remains too

independent of q except for an O(e−ωN) term, which is negligible for ω ≪ N . For q = 0 (4.5)

has the form

an0 = |an0|2 an0 − l + 1 ≤ n (4.9a)

ν−la−l,0 = |a−l,0|2 a−l,0 . (4.9b)

Note that the real roots of (4.9) are all simple provided that λ ̸= λN−l. Consequently, all

real solutions of (4.5) are holomorphic in q in some neighborhood of q = 0 for λ ̸= λN−l. We

later show that the converse statement is also true, i.e. every solution of the form (4.8) is

essentially real.

Consider first the case l = −1. We shall assume that (3.5) and (4.2) should match

δ ∼ o(ϵ1). If we continue (3.5) into the region where δ ≫ ϵ1 [where (3.5) does not necessarily

converge], we obtain via the superposition ψ = ψ0 + u a solution in the form (4.2). Near the

bifurcation we have by (3.38)

an0 = 0 ∀n ̸= 0,−1. (4.10)

By (3.38) we have

a00 = 1 ; a−1,0 = lim
q→0

ν−1=const.

δ

ϵ
, (4.11)
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or, equivalently, that near the bifurcation

|a−1,0|2 = ν−1 ,

which is in accordance with (4.9).

We now make the following claim

Lemma 4.1 Let {Cn}∞n=−N+1 satisfy (4.5) and (4.8). Then,

Cn = ei[θ0(q)+nθ1(q)]C ′
n , (4.12)

where C ′
n ∈ R for all n ≥ −N + 1, and θ0(q) and θ1(q) are holomorphic in q in some

neighborhood of q = 0. Furthermore, let {an0}∞n=−N+1 be real solutions of (4.9). Then, there

exists a unique solution of (4.5) which satisfies (4.8) in some neighborhood of q = 0.

We bring the proof in appendix A.

In view of (4.12) we can replace {Cn}∞n=−N+1 by {C ′
n}

∞
n=−N+1 by applying the transfor-

mation

ψ → eiθ0(q)ψ(x1, x2 + θ1(q)/ω) .

We may thus assume that the Cn’s are all real (all other solutions will be gauge equivalent

by (4.12)).

Consequently, using (4.12), we can set

a−1,0 = ν−1 .

When λ− λN−1 ≫ λN−1 − 1 we obtain a−1,0 = 1.
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We now set l = −2 to examine the behaviour of C−2 with increasing λ. As stated earlier

C−2 is exponentially small when λ−1 ≪ λN−2−1. However, we expect C−2 to become O(1)

for λ > λN−2.

Substituting (4.8) into (4.5) we obtain for the O(q) balance

νnan1 = 3a2n0an1 + 2
[
a2n+1,0 + a2n−1,0

]
an0 . (4.13)

For n ̸= 0,−1 we have an1 = 0. For n = 0,−1 we have

a01 = −ν−1 ; a−1,1 = − 1

ν
1/2
−1

.

The O(q2) balance is

νnan2 = 3a2n0an2 + 3a2n1an0 + 4 (an+1,0an+1,1 + an−1,0an−1,1) an0+

+ 2
[
a2n+1,0 + a2n−1,0

]
an1 +

[
a2n+1,0an+2,0 + 2an+1,0an0an−1,0 + a2n−1,0an−2,0

]
. (4.14)

Since we are interested in the behaviour of C−2 with increasing λ we solve (4.14) for n = −2

ν−2a−2,2 = a2−1,0a00.

Consequently,

C−2 ∼
ν−1

ν−2

q2 . (4.15)

As was expected in (4.7) C−2 is exponentially small provided that λ − 1 ≪ λN−2 − 1.

If, however, λ ↑ λN+2, then a−2,2 → −∞ and (4.15) ceases to be valid. To obtain the

leading behaviour of C−2 in the limit q → 0 when ν−2 ≪ 1 we consider first the case where

ν−2 ∼ O(q). Let then

ν−2 = ρq .
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Substituting into (4.9), (4.13), and (4.14) (recalling that ν−1
∼= 1 up to an exponentially

small error) we obtain

a−2,0 = 0

ρa−2,1 = 2 .

Consequently,

C−2
∼=

1

ρ− 2
q . (4.16)

It is not difficult to show that in the overlap range where ν−2 ∼ O(qα) for 0 < α < 1 (4.15)

and (4.16) match. We thus formally conclude that (4.15) develops into (4.16), which is valid

as long as ρ < 2.

When ρ ↑ 2, a−2,1 → −∞ and hence we must consider separately the case |ρ − 2| ≪ 1.

We thus consider ν−2 values satisfying

ν−2 = 2q + τq4/3.

In this case (4.8) is no longer valid. We therefore use the more general ansatz

Cn =
∞∑
k=0

bnkq
k/3.

Substituting in (4.5) and applying an appropriate gauge transformation we obtain

b00 = 1 ; b−1,0 = 1 ; b−2,0 = 0,

b−2,1 = 0,

and (
|b−2,2|2 − τ

)
b−2,2 = −b2−1,0b00 = −1. (4.17)
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Since our goal is to follow C−2 with increasing λ we look for the solution of (4.17) which

matches (4.16) as τ → −∞. Consequently, we must have

b−2,2 ∼
1

τ
as τ → −∞.

Using the theory of cubic equations, it is easy to show that (4.17) has only one solution for

τ < τc =
3

2 3
√
2
,

since (4.17) admits only real solutions. We now follow this solution with increasing value of

τ in order to find its behaviour as τ → ∞.

When τ = τc, (4.17) possesses two distinct solutions

b−2,2 =
1
3
√
2

with double multiplicity (4.18a)

and

b−2,2 =
3
√
4 with single multiplicity . (4.18b)

The former solution does not exist for τ < τc, and therefore, the latter solution is the one

we follow. Since |b−2,2(τc)|2 > τc, we must have |b−2,2(τ)|2 > τ for all τ ≥ τc. Consequently,

as τ → ∞,

C−2 ∼ −τ 1/2q2/3C2
−1C0 ∼ −τ 1/2q2/3. (4.19)

Consider now the case ν−2 = ρq when ρ > 2. In this case we use the ansatz

Cn =
∞∑
k=0

Bnkq
k/2.
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Substituting into (4.5) yields, upon applying an appropriate gauge transformation,

B00 = 1 ; B−1,0 = 1 ;B−2,0 = 0,

|B−2,1| =
√
ρ− 2. (4.20a)

To find the phase of B−2,1 we match (4.20) with (4.19) to obtain

C−2 ∼ −
√
ρ− 2 q1/2C2

−1C0 ∼ −
√
ρ− 2 q1/2 . (4.21)

Finally, we consider positive ν−2 ∼ O(1). Here we assume (4.8) once again. By (4.9) we

have

|a−2,0| =
√
ν−2.

The sign of a−2,0 is determined from matching with (4.21). We obtain

C−2 ∼ −ν1/2−2 C
2
−1C0 ∼ −ν1/2−2 . (4.22)

If λ further increases so that λN−2 − 1 ≪ λ− 1 ≪ λN−3 − 1, then ν−2 ∼ 1 and C−2 ∼ −1.

To summarize: we have followed the C−2(λ) and found that it varies from a small negative

value when λ − 1 ≪ λN−2 − 1 to approximately −1 for λ − 1 ≫ λN−2 − 1. This procedure

can be applied recursively to obtain

C−l ∼ −C2
−l+1Cl+2 , (4.23)

from which we obtain

Cn ∼


(−1)[(n+1)/2] −l ≤ n ≤ 0

0 otherwise

+O(q) , (4.24)
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wherein [·] denotes the integer value.

We have thus formally obtained the behaviour of the Cn’s in the limit q → 0. We now

claim that for l ≫ 1 and N − l ≫ 1, when substituting (4.24) into (4.2c), ψ becomes close to

the well-known triangular lattice [1, 18, 9, 2]. The following lemma proves a stronger result:

If an0 satisfy (4.24), then any solution of the form (4.8) is close to the triangular lattice, for

all q where (4.8) converges and not only when q → 0. We should, however, emphasize that

the foregoing discussion demonstrates (4.24) only formally and in the limit q → 0. No such

result has been proved for an0.

Lemma 4.2 Let

ϕ = ϵD(q)
∞∑

n=−∞

(−1)[(n+1)/2] exp

{
−1

2
(x1 − nω)2 + inωx2

}
, (4.25a)

where

1

D2
=

∑
(m,r)∈Z2

(−1)mrqm
2+r2 . (4.25b)

Let ψ be given by (4.2) and {Cn}∞n=−N+1 satisfy (4.5). Then,

∥ϕ− ψ∥∞ ≤ Cϵ
[
ql

2/64 + ϵ1/2 + eCl2−ωNl/4
]
, (4.26a)

where

∥ · ∥∞ = ∥ · ∥L∞{[(N−5l/8)ω,(N−3l/8)ω]×[0,2π/ω]}. (4.26b)

Proof: Let

ψ̃ = ϵ

∞∑
n=−∞

en exp

{
−1

2
(x1 − nω)2 + inωx2

}
, (4.27)
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where {en}∞n=−∞ denotes the solution of

∑
(r,m)∈Z2

erēm−n+remq
(r−n)2+(m−n)2 − en = 0 , (4.28)

which is holomorphic in q, or

en =
∞∑
k=0

enkq
k,

such that

en0 =


(−1)[(n+1)/2] −l ≤ n ≤ 0

0 otherwise

. (4.29)

We first prove that there exists A > 0 which is independent of k, l, ω, q, and N such that

|enk − ank| ≤ Ake−ωNl/4 , (4.30)

for all 0 ≤ k ≤ l2/16 and −3l/4 ≤ n ≤ −l/4. This can be done by using the recurrence

relation obtained by substituting (4.8) into (4.5):

νnank =
∑

r2+s2≤k

∑
m,j≥0

m+j≤M

a(n+r)ja(n+r+s)(M−m−j)a(n+s)m , (4.31)

where M(r, s) = k − r2 − s2. Note that the Cn’s were assumed all real in view of (4.12).

By (4.28), enk satisfy the same recurrence relation with νn = 1. We can thus proceed by

induction: We assume (4.30) for 0 ≤ k ≤ K − 1. Substituting in (4.31) we obtain

νnanK =
∑

r2+s2≤K

∑
m,j≥0

m+j≤M(K)

e(n+r)je(n+r+s)(M−m−j)e(n+s)m +∆nK ,

where

∆nK ≤
K∑
j=1

3AK−jj2e−ωNl/4.
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Any A > 0 satisfying
∞∑
n=1

A−nn2 ≤ 1

3

would then satisfy (4.30).

Using (4.27) and (4.2) we now have

∥ψ − ψ̃∥∞ ≤ ∥f0∥∞ + ϵ

∞∑
n=−∞

|Cn − en|
∥∥∥e− 1

2
(x1−nω)2

∥∥∥
∞
.

For the first term we have, since l ≪ N ,

∥f0∥∞ ≤ C exp

{
−1

2

(
N − 5

8
l

)2

ω2

}
≤ C exp

{
−3

8
N2ω2

}
≤ Cϵ3/2.

For the second term we have the bound

ϵ
∞∑

n=−∞

|Cn − en|
∥∥∥e− 1

2
(x1−nω)2

∥∥∥
∞

≤

≤ ϵ

−l/4∑
n=−3l/4

|Cn − en|+ Ce−l2ω2/128 ≤

≤ ϵ
l

2

l2/64∑
k=0

(Aq)ke−ωNl/4 + Cql
2/64 ,

from which we obtain

∥ψ − ψ̃∥∞ ≤ Cϵ
(
ql

2/64 + ϵ1/2 + eCl2−ωNl/4
)
. (4.32)

To complete the proof we need to obtain a similar estimate for ∥ϕ− ψ̃∥∞. By (4.25) we

can write

ϕ = ϵ

∞∑
n=−∞

gn exp

{
−1

2
(x1 − nω)2 + inωx2

}
,
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where {gn}∞n=−∞ satisfies (4.28) and

gn =
∞∑
k=0

gnkq
k,

but in contrast with {en}∞n=−∞

gn0 = (−1)[(n+1)/2].

Substituting the above into (4.28) yields

gnk = enk

for all 0 ≤ k ≤ l2/16 and −3l/4 ≤ n ≤ −l/4. The proof of the lemma then easily follows.

□

5 Concluding remarks

In § 2 we prove the exact asymptotic behaviour of the critical values {λn}∞n=1 of (2.2) and

their corresponding modes. We proved that

λn ∼ 1 + 2a2e−(nω+ω0)2/2 +O
(
e−2(nω+ω0)2/3

)
as n→ ∞,

where

a = lim
x→∞

ex
2/2f(x, 1) ,

and that

∥∥∥ϕn − e−(x1−nω)2/2
∥∥∥2
2
+ ∥ϕ−n∥22 ≤ e−2(nω+ω0)2/3 .
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Consequently, immediately after the first bifurcation we have

λ ∼= λn + ϵ2
( ω
2π

)3/2
,

ψ ∼= eiω0x2

{
f(x1, λ) + ϵe−(x1−nω)2/2einωx2

}
+O

(
e−(nω+ω0)2/3

)
,

Where f is given in (1.4).

At the conclusion of § 2 we conjecture that λn > 1 for all n ∈ N. This appears plausible

since we expect that (1.4) would serve as the global minimizer of (1.8) in Pω0
L when λ ≤ 1.

In [4] it was shown that any bifurcating branch has lower energy than (1.4) independently

of n and λ. Thus, no bifurcation should take place for λ ≤ 1 if (1.4) is indeed the global

minimizer.

In § 3 we consider the second bifurcation, while assuming that the first bifurcation takes

place at λ = λN . We can explain this choice by considering (1.3a) not in R+
2 but in [0, d]×R

in the limit d→ ∞. In this case we have to add to (2.2) the boundary conditions

ϕ′
n(d− ω0) = ϕ′

−n(d− ω0) = 0.

As a result of introduction of the additional boundary we have

λn(d) ∼ n2ω2 when nω ≫ d. (5.1)

However, because of continuity [11], one expects that

λn(d) −−−→
d→∞

λn(∞).

While the above convergence is clearly not uniform in n, it still implies that for sufficiently

large d there is a large number of critical values λn(d) which can be approximated by (2.4).

42



Let then,

λN = min
n∈N

λn(d) .

In view of (5.1) such a minimum must exist. Furthermore, if (2.18) is correct then λN must

be very close to 1. Since with increasing λ the first bifurcation from (1.4) must take place

at λ = λN we see that the assumption that the bifurcation takes place at λ = λN is in

accordance in principle with the situation in finite domains.

We show in § 3 that, if the second bifurcation exists and if (2.18) is correct, then the

second bifurcation must take place at

µN−1
∼= λN +

1− 2q

(1− 2q)2 − q4
(λN−1 − λN) ,

where q = e−ω2/2, and the bifurcating mode must have the form

2

ω
π3/2u(0) ∼=

1− 2q√
(1− 2q)2 + q4

exp

{
−1

2
[x1 − (N − n)ω]2 + iω(N − n)x2

}
+

+
q2√

(1− 2q)2 + q4
exp

{
−1

2
[x1 − (N + n)ω]2 + iω(N + n)x2

}
.

By formally evaluating the next order terms in (3.5) we obtain that each term provides two

additional Fourier modes to ψ. Thus, u(1) adds the modes V−2 and V2 etc. However, the

coefficients of V−k have been shown to be exponentially small for all k ≥ 2.

In § 4 we extrapolate the behaviour of ψ near the bifurcation into the region where

λ− µN−1 ∼ O (λ− λN) .

To this end we assume that

ψ ∼= f + ϵ
∞∑

n=−N+1

CnVn, (5.2)
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and

λ ∼= λN + ϵ2
( ω
2π

)3/2
.

Based upon this assumption we find that as N → ∞ the Cn’s must satisfy the system

∞∑
r,m=n−N+1

Cn+rC̄n+r+mCn+mq
m2+r2 − ν2nCn = 0,

where

ν2n =
λ− λN+n

λ− λN
.

This system of polynomial equations is very similar to the one obtained by Abrikosov [1] in

the absence of boundaries where

∞∑
r,m=−∞

Cn+rC̄n+r+mCn+mq
m2+r2 − νCn = 0,

in which ν is proportional to λ− 1.

To investigate the solution of the above system with increasing λ we first match (5.2)

with the solution obtained in § 3. We obtain that near λ = µN−1 as q → 0 with fixed ν−1 we

have

C0 ∼ 1 C−1 ∼
√
ν−1 .

By following the leading order of C−2 as q → 0 (with fixed ν−2) with increasing λ, we obtain

that when ν−2 ∼ 1

C−2 ∼ −C2
0C−1 = −1.

Since the same procedure can be applied again to derive the behaviour of C−n when ν−n ∼ 1,
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we obtain that

Cn ∼


(−1)[(n+1)/2] −l ≤ n ≤ 0

0 otherwise

+O(q).

Finally, we show that if Cn is holomorphic in q for all n, then the above asymptotic

relation implies that (5.2) is closed to the triangular lattice, which is given by

ϕ = ϵD(q)
∞∑

n=−∞

(−1)[(n+1)/2] exp

{
−1

2
(x1 − nω)2 + inωx2

}
,

where

1

D2
=

∑
(m,r)∈Z2

(−1)mrqm
2+r2 .

We prove that

∥ϕ− ψ∥∞ ≤ Cϵ
[
ql

2/64 + ϵ1/2 + eCl2−ωNl/4
]
,

where 1 ≪ l ≪ N and

∥ · ∥∞ = ∥ · ∥L∞{[(N−5l/8)ω,(N−3l/8)ω]×[0,2π/ω]}.

We conclude this section by listing the main gaps which need to be addressed in order

to establish a rigorous proof of the main result of this work

1. Proof of (2.18).

2. Existence proof of the second bifurcation.

3. Proving that (5.2) is indeed a continuation of (3.1).
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4. Proving that Cn must be holomorphic in q when νn ∼ 1 for n ≥ −l and νn ∼ −O(eωN)

for n ≤ −l − 1 (here l is any integer smaller than N/2).

5. Proof that either no other bifurcation exists after the second one or, if another bifur-

cation does exist, then (5.2) has lower energy than the supposed bifurcating branch.

A Proof of lemma 4.1

We prove here an equivalent statement to (4.12), i.e. that

Cn−1C̄
2
nCn+1 ∈ R. (A.1)

We prove (A.1) by invoking inductive arguments. We first prove that

ℑ
(
Cn−1C̄

2
nCn+1

)
∼ O(q) ∀n, (A.2)

and then that

ℑ
(
Cn−1C̄

2
nCn+1

)
∼ O(qk) ⇒ ℑ

(
Cn−1C̄

2
nCn+1

)
∼ O(qk+1) ∀n. (A.3)

Substituting (4.8) into (4.5) we obtain from the O(q2) balance that [2]

ℑ
{
ā(n+2)0a

2
(n+1)0ān0 + 2a(n+1)0(ān0)

2a(n−1)0 + ā(n−2)0a
2
(n−1)0ān0

}
= 0 ∀n .

From this we easily conclude that

ℑ
{
a(n+1)0(ān0)

2a(n−1)0

}
= 0 ∀n,

which is exactly (A.2).
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To prove (A.3) we assume by induction that

ℑ
(
Cn−1C̄

2
nCn+1

)
∼ O(qk).

Equivalently we may assume the existence of θ0, θ1, holomorphic in q, such that

ℑ
{
Cne

i[θ0(q)+nθ1(q)]
}
∼ O

(
qk
)
.

Let

C ′
n = ei[θ0(q)+nθ1(q)]Cn.

Then,

c′n =
∞∑
j=0

a′njq
j ,

where

a′nj ∈ R ∀0 ≤ j ≤ k − 1.

Let further

a′nk =
[
a′n + bkn

]
a′n0 − l ≤ n ≤ 0.

It is easy to show that when a′n0 = 0, then a′nk ∈ R. Thus, it remains necessary to show that

bkn = 0 for all −l ≤ n ≤ 0. The recurrence relation (4.31) for complex anj becomes

νna
′
nj =

∑
r2+s2≤j

∑
m,j≥0

m+j≤M

a′(n+r)j ā
′
(n+r+s)(M−m−j)a

′
(n+s)m , (A.4)

where M(r, s) = j− r2− s2. It is easy to show that (A.4) is satisfied for j = k and j = k+1

independently of the values of the bkn’s. For j = k + 2 we obtain after a tedious calculation

that (A.4) is solvable if and only if

Pb = 0 (A.5a)
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where b is the vector

b =


b0k

...

b−l,k

 , (A.5b)

and P is the matrix

P =



−p−l+1 2p−l+1 −p−l+1 0 . . . 0

2p−l+1 −4p−l+1 − p−l+2 2(p−l+1 + p−l+2) −p−l+2 0 . . .

−p−l+1 2(p−l+1 + p−l+2) −p−l+1 − 4p−l+2 − p−l+3 2(p−l+2 + p−l+3) −p−l+3 · · ·

...
... · · · · · · · · · ...

0 · · · 0 −p−1 2p−1 −p−1


,

(A.5c)

in which,

pn = a′n−1,0 (a
′
n0)

2
a′n+1,0. (A.5d)

The matrix P can conveniently be decomposed into the product

P = P (1)P (2) , (A.6a)
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where

P (1) =



0 −p−l+1 0 0 · · · 0 0

0 2p−l+1 −p−l+2 0 · · · 0 0

0 −p−l+1 2p−l+2 −p−l+3 · · · 0 0

...
...

0 0 0 0 · · · −p−1 0


, (A.6b)

and

P (2) =



−2 1 0 · · · 0 1

1 −2 1 0 · · · 0

...
...

0 · · · 0 1 −2 1


. (A.6c)

The matrix P (2) is circulant. Its kernel is spanned by [1, . . . , 1]T . For P (1) we have

kerP (1) = span





1

0

...

0


;



0

...

0

1




Obviously [1, . . . , 1]T ∈ kerP . Furthermore, any vector b ∈ Rl+1 for which P (2)b ∈ kerP (1)

belongs to kerP as well. Consequently, r(P ) = 2 and

kerP = span





1

1

...

1


;



0

1

...

l




49



and hence

bkn = bk + nb̃k,

which proves (A.3). □
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