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Abstract

The stability of the normal state of superconductors in the pres-

ence of electric currents is studied in the large domain limit. The

model being used is the time-dependent Ginzburg-Landau model, in

the absence of an applied magnetic field, and with the effect of the

induced magnetic field being neglected. We find that if the current

is nowhere perpendicular to the boundary, or if the minimal current

on the boundary, at points where it is perpendicular to it, is greater

than the critical current in the one-dimensional case, then the normal

state is stable. We also prove some short-time instability when the

current is both perpendicular to the boundary and smaller then the

one-dimensional critical current.

1 Introduction

It is well known that when a superconductor is placed in a temperature
lower than the critical one, it looses its electrical resistivity. This means
that current can flow through a superconducting sample with a vanishingly
small voltage drop. If one raises the current above a certain critical level,
superconductivity will be destroyed and the material would revert to the
normal state, even if the temperature is kept fixed below the critical one.

The reverse experiment can also be considered. One can flow a strong
current through the sample which would set it in the normal state. Then,
if we lower the current, there is a critical current where the sample would
abruptly become purely superconducting. Though the two experiments sub-
stantially differ from each other from a theoretical point of view, hysteresis
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was not experimentally observed in the current-voltage characteristics of the
sample [8, 12, 13].

We consider here the second experiment. To this end we must analyze
the stability of the normal state. The model we use in this work is the time-
dependent Ginzburg-Landau model [7, 4], presented here in a dimensionless
form

∂ψ

∂t
+ iφψ = (∇− iA)2 ψ + ψ

(

1− |ψ|2
)

in Ω (1.1a)

−κ2∇× (∇× A)− σ

(

∂A

∂t
+∇φ

)

= ψ̄∇ψ − ψ∇ψ̄ + |ψ|2A in Ω (1.1b)

ψ = 0 on ∂Ωc (1.1c)

(i∇+ A)ψ · ν = 0 on ∂Ωi . (1.1d)

In the above ψ is the superconducting order parameter, so that |ψ| represents
the number density of superconducting electrons. Superconductors for which
|ψ| = 1 are said to be wholly superconducting, and those for which ψ = 0
are said to be at the normal state. A is the magnetic vector potential and
φ is the electric scalar potential. The constant σ is a measure of the normal
conductivity of the superconducting material so that −σ∇φ is the normal
current, and κ is the Ginzburg-Landau parameter. Length has been scaled
with the coherence length ξ, which is the natural length-scale for variations
in ψ. The domain Ω ⊂⊂ R

n (n = 1, 2, 3), where the superconducting sample
resides, is smooth, has interface, denoted by ∂Ωc, with a conducting metal
which is at the normal state. The rest of the boundary, denoted by ∂Ωi

is adjacent to an insulator. We allow non-smoothness of ∂Ω in the sense
that ∂Ωc and ∂Ωi are required to be perpendicular to each other in order to
include cylindrical-like domains. Figure 1 presents a typical two dimensional
sample, where the current flows into the sample from one part of ∂Ωc, and
exits from another part, disconnected from the first one. Most wires would
fall into the above class of domains.

Equations (1.1) are gauge invariant in the sense that they are invariant
under transformations of the form

A→ A+∇ω , φ→ φ− ∂ω

∂t
, ψ → ψeiκω .

Note that none of the important physical properties: |ψ|, the magnetic field
H = ∇×A, and the electric field E = −∂A/∂t−∇φ, is altered by the above
transformation.

To obtain a well-posed problem one must add to (1.1) initial conditions,
and the equations satisfied by A and φ outside Ω, that is the Maxwell equa-
tions. Continuity of the tangential components of A and ∇×A through ∂Ω
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Figure 1: Typical superconducting sample. The arrows denote the direction
of the current flow (Jin for the inlet, and Jout for the outlet).

and some conditions on ∇× A at infinity should be required as well. Since
these details are irrelevant in the context of the present contribution we omit
them. Interested readers may be able to find them in [4, 6].

We consider here the stability of the normal state. If ψ ≡ 0, we obtain
that the steady state solution must satisfy

∇×H = − σ

κ2
∇φ ,

and hence φ is harmonic in Ω. To obtain φ we thus need to solve the following
problem











∆φ = 0 in Ω

φ = φ0(x) on ∂Ωc

∂φ
∂ν

= 0 on ∂Ωi

. (1.2)

We note that instead of prescribing the potential on ∂Ωc we can prescribe
the current in the normal direction to the boundary Jn(x) = −σ∂φ/∂ν.
For simplicity we assume that ∇φ 6= 0 everywhere in Ω. This can easily
be achieved: for instance, for the samples described in fig. 1, if inf φ on one
connected component of ∂Ωc is greater than the supφ on the other connected
component ∇φ never vanishes.
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Once (1.2) is solved, one can solve for the magnetic field. Here we need
to solve a problem in R

n











∇×H = − σ
κ2
∇φ = 1

κ2
J in Ω

∇×H = 0 in R
n \ Ω

H → hex as |x| → ∞
, (1.3)

with H continuous across ∂Ω. We assume zero applied magnetic field (hex =
0). To simplify our problem further we shall assume A = H = 0. This as-
sumption can be justified in the case where κ≫ 1 in view of (1.3). However,
since we intend to consider large domains, one must assume that κ≫ diamΩ.
In real world coordinates this means that our domain size must be much
larger than the coherence length ξ but also much smaller than the penetration
depth λ which is the length scale characterizing variations in H (κ = λ/ξ).
While this assumption significantly limits the validity of our results, it has
been made very often by physicists [13, 8] and it is reasonable to adopt it as
a start point.

Once the above assumption is adopted on obtains



















∂ψ
∂t

−∆ψ + iφψ − ψ(1− |ψ|2) = 0 in Ω

ψ = 0 on ∂Ωc

∂ψ
∂ν

= 0 on ∂Ωi

ψ(x, 0) = ψ0(x) in Ω

.

It should be noted that in [6] Du and Gray proves, within the framework of
a more general case, convergence in the limit κ → ∞ of (1.1) to a different
limit problem where the magnetic field is not negligible. The domain size
considered there is, however much larger than in our case, as it is comparable
with the penetration depth.

Linearizing the above near the normal state we obtain



















∂ψ
∂t

−∆ψ + iφψ − ψ = 0 in Ω

ψ = 0 on ∂Ωc

∂ψ
∂ν

= 0 on ∂Ωi

ψ(x, 0) = ψ0(x) in Ω

. (1.4)

The above problem has been analyzed by physicists in one-dimensional set-
tings. Ivlev and Kopnin review these results in [8]. In these settings we have
φ = Jx + µ where the current J and µ are constants. Previous results in-
clude the closed form solution of (1.4) in R for any initial condition. In R+,
the first critical current Jc for which a steady state solution (∂|ψ|/∂t = 0)
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exists is found. Then weakly non-linear analysis is performed, where it is
shown that [9] the bifurcation taking place near J = Jc is sub-critical (i.e.,
unstable).

We consider (1.4) in three dimensional settings. While all the results are
stated for three dimensional objects they are equally valid for two dimensional
objects as well. We deal with (1.4) in the large domain limit, i.e., we consider
a domain ΩR which is obtained from Ω via the transformation

x→ Rx . (1.5)

The portions of the boundaries ∂Ωc
R and ∂Ωi

R are similarly obtained from
∂Ωc and ∂Ωi respectively. To keep ∇φ unaltered we consider also potentials
of the form

φR = Rφ(x/R) .

Thus, we consider the following problem



















∂ψR

∂t
−∆ψR + iφRψR − ψR = 0 in ΩR

ψR = 0 on ∂Ωc
R

∂ψR

∂ν
= 0 on ∂Ωi

R

ψR(x, 0) = ψ0(x) in ΩR

. (1.6)

Our main result is the following

Theorem 1.1. Let φ satisfy (1.2). Let ∂Ωn
c denote the portion of ∂Ωc on

which ∇φ is perpendicular to the boundary. Let further

Jm = min
x∈∂Ωn

c

∣

∣

∣

∣

∂φ

∂ν

∣

∣

∣

∣

.

and let Jc denote the critical current for the problem in R+ (which is precisely
defined in (2.19)). Suppose further that |J | > 0 everywhere on ∂Ωc. Then,
if Jm > Jc , or if ∂Ωn

c is empty, there exists R0 > 0 such that ψR ≡ 0 is a
stable solution of (1.6) in L2(ΩR) sense for all R > R0.

Furthermore, if Jm < Jc there exists ψ0 ∈ L2(ΩR) and TR > 0 such that

lim inf
R→∞

TR
lnR

> 0 ,

and such that the solution ψR of (1.6) has the following property:

t < TR ⇒ ‖ψR‖L2(ΩR) >
1

2
‖ψ0‖L2(ΩR)e

βt , (1.7)

where
β = 1− (J/Jc)

2/3 .
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In the next section we review and enhance the results in [8] in the one di-
mensional case. In § 3 we extend some of the results in § 2 to unbounded
three-dimensional domains. In § 4 we provide the proof of the theorem.
Finally, in the last section we highlight some possible directions of future
research.

2 One-dimensional problems

In this section we consider (1.4) in two different one-dimensional settings:
on R and on R+. The solution of these simple problems would provide us
with some important intuition on the solution of (1.6) in three-dimensional
bounded domains in the large domain limit. In both cases we shall assume
φ = Jx, i.e., that the current is uniform and equals J throughout the sample.

2.1 Infinite 1D domain

Here we consider the problem

∂ψ

∂t
− ψ′′ − ψ + iJxψ = 0 . (2.1)

We consider here the only case J > 0. Otherwise, if J < 0 we can consider
the complex conjugate of (2.1). Applying the coordinate transformation

x→ J1/3x ; t→ J2/3t (2.2)

we obtain the problem
∂ψ

∂t
+ Lψ = λJψ ,

where
Lψ = −ψ′′ + ixψ , (2.3)

and λJ = J−2/3.
We first focus interest on the spectrum of the operator L : DR(L) →

L2(R,C), where DR(L) is the dense subset of L2(R,C) defined as

DR(L) = {u ∈ L2(R,C) | − u′′ + ixu ∈ L2(R,C)} .

Lemma 2.1. The operator L − λI is invertible for all λ ∈ C.
(Thus σ(L) = φ.)
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Proof: It is sufficient to consider here λ ∈ R. Otherwise, if λ = λr + iλi
we apply the transformation x→ x− λr.

Though it is not necessary, we first prove injectivity of L− λI. We shall
later make use of a similar argument in three dimensions. To the problem

Lu = λu

we apply the Fouriér transform

û(ω) = F(u) =
1√
2π

∫

R

e−iωxu(x)dx , (2.4)

to obtain

ω2û− ∂û

∂ω
= λû .

Since the above equation doesn’t possess any non-trivial solutions with bounded
L2(R) norm L − λI must be injective.

To find the spectrum of L we construct the Green’s function of L − λI.
Let

{

w1(x, λ) = Ai
(

eiπ/6x+ λei2π/3)
)

w2(x, λ) = Ai
(

− e−iπ/6x+ λe−i2π/3)
) (2.5)

where Ai denotes Airy’s function [1] (cf. also equation (A.2) in the appendix
for the asymptotic behaviour of Ai). It is easy to show that u1, u2 constitute
a fundamental set of solutions to (L − λI)u = 0 [11]. We can now write the
Green’s function in the form

G(x, ξ, λ) =

{

w2(ξ,λ)
W (w1,w2)

w1(x, λ) x > ξ
w1(ξ,λ)
W (w1,w2)

w2(x, λ) x < ξ
.

where W (w1, w2) denote the Wronskinan (which is a constant that clearly
doesn’t vanish since w1 and w2 are linearly independent).

Using the asymptotic behaviour of Airy’s functions [1], we can show,
using the same procedure applied in Appendix A to the semi-infinite case,
that G(·, λ) ∈ L2(R2,C) for all λ ∈ R. The lemma is proved.

�

The spectrum of the operator L : DR(L) → L2(R,C) can teach us there-
fore very little on the stability of the normal state in this case. The following
lemma proves its stability in a direct manner.

Lemma 2.2. The trivial solution of (2.1), ψ ≡ 0 is globally stable in L2,
i.e., if f(x) ∈ L2(R,C), then the solution of (2.1) ψ(x, t) satisfying the initial
condition ψ(x, 0) = f(x) satisfies ψ(x, t) −−−→

t→∞
0 in L2(R,C).
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Proof: As long as ψ(x, t) ∈ L2(R,C) we can apply to (2.1) the Fouriér
transform (2.4). We obtain

∂ψ̂

∂t
+ ω2ψ̂ − ∂ψ̂

∂ω
− λJ ψ̂ = 0 .

The unique solution to the above problem is given by

ψ̂(ω, t) = f̂(ω) exp

{

−ω2t− ωt2 − 1

3
t3 + λJt

}

, (2.6)

in which f̂(ω) denotes the Fouriér transform of f . Integrating over R with
respect to ω we obtain

‖ψ(., t)‖2 ≤ C‖f‖2 exp
{

− 1

12
t3 + λJt

}

,

where ‖ · ‖2 denotes the L2(R,C) norm.

�

The above superlinear convergence is in accordance with the result proved
in the previous lemma by which the spectrum of L is empty. We note that
in [8] the inverse transform of (2.6) is obtained, but no decay proof is given.

2.2 Semi-infinite 1D domain

We now consider (2.1) on R+. We concentrate here on the Dirichlet boundary
condition ψ(0) = 0, however, the same analysis apply to Neumann and mixed
boundary conditions as well.

We start by proving the following result on the spectrum of the operator
L : DR+

(L) → L2(R,C), where

DR+
(L) = {u ∈ L2(R+,C) | − u′′ + ixu ∈ L2(R+,C), u ∈ H1

0 (R+,C)} .

Lemma 2.3. 1. There exists a sequence of eigenvalues {λn}∞n=1 and eigen-
functions, with unity norm, {un}∞n=1 ⊂ DR+

(L) of L, i.e.,

Lun = λnun .

2.
m = max

n∈N
ℜλn > 0 (2.7)

3. span{un}∞n=1 = L2(R+,C).
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4. Suppose that u, v ∈ L2(R+,C) can be represented in the form

v =
∞
∑

n=1

αnun ; w =
∞
∑

n=1

βnun

where the convergence is in L2 sense. Let then

〈v, w〉U =
∞
∑

n=1

αnβ̄n . (2.8)

Then,
inf

v∈DR+
(L)

ℜ〈v,Lv〉U ≥ m‖v‖2U , (2.9)

where ‖ · ‖U denotes the norm induced by (2.8).

Proof: Let
z = −ix+ λ

Let u(x, λ) ∈ DR+
(L) denote an eigenfunction of L, i.e., Lu = λu. Let

v(z, λ) = u(x, λ). We have
{

∂2v
∂z2

− zv = 0 z ∈ C

v(λ, λ) = 0
. (2.10)

Since u ∈ L2(R+,C), v must be subdominant (i.e., it decays exponentially
fast [11]) in the sector

S1 : −π < arg z < −π
3
.

The decaying solution of (2.10) in S1 is given by (cf. [11])

v = Ai
(

e2πi/3z
)

.

Since the zeroes of Airy’s functions are eigenvalues of the self-adjoint operator
d2/dx2 − x in DR+

(L) they must all be real. Let {µn}∞n=1 ⊂ R denote the
zeroes of Airy’s function on the real axis. By the maximum principle they
must all be strictly negative. We arrange them so that µn ↓ −∞. As every
eigenvalue of L must satisfy v(λ, λ) = 0, the set {λn}∞n=1 where

λn = e−i2π/3µn (2.11)

contains all the eigenvalues of L. Since µ1 < 0 we have that

m = ℜλ1 = −µ1

2
> 0 .
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The set {ũn}∞n=1 of eigenfunctions of L in DR+
(L) is given by

ũn = Ai
(

ei2π/3(−ix+ λn)
)

= Ai
(

eiπ/6x+ µn
)

∀n ∈ N . (2.12)

We then set

un =
ũn

‖ũn‖L2(R+)

. (2.13)

To prove that {un}∞n=1 is complete in L2(R,C) we consider the resolvent
L−1
λ = (L − λI)−1 (which is also the modified resolvent of L−1). We have

L−1
λ f =

∫ ∞

0

G̃(x, ξ, λ)f(ξ)dξ , (2.14a)

in which

G̃(x, ξ, λ) =

{

w̃2(ξ,λ)
W (w1,w̃2)

w1(x, λ) x > ξ
w1(ξ,λ)
W (w1,w̃2)

w̃2(x, λ) x < ξ
, (2.14b)

where

w̃2(x, λ) =
w1(0, λ)

w2(0, λ)
w1(x, λ)− w2(x, λ) , (2.15)

and w1 and w2 are given in (2.5). In the appendix, we prove that G̃ ∈
L2(R+ × R+), and that

‖G̃(., ., λ)‖L2(R+×R+) ≤ eM |λ|3/2 , (2.16)

as long as λ 6∈ {λn}∞n=1.
Let u ∈ DR+

(L). We now multiply Lu by eiθū and integrate over R+ to
obtain

ℜ < eiθLu, u >=
∫ ∞

0

(cos θ|u′|2 − sin θx|u|2)dx .

By theorem 12.8 in [2] we have that every direction ei arg λ with

π/2 < arg λ < 3π/2

is a direction of minimal growth of the resolvent of eiθL for every
−π/2 < θ < 0. Consequently, every direction ei arg λ with

π/2 < arg λ < 2π

is a direction of minimal growth of L−1
λ , i.e. (cf. [2])

‖L−1
λ ‖ ∼ O(|λ|−1) π/2 < arg λ < 2π . (2.17)
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We now apply the same argument used in the proof of theorem 16.4 in
[2]. Let f ∈ L2(R+), and g ∈ V ⊥, where V = span{Ai(eiπ/6x + µn)}∞n=1 =
sp′(L−1). Then,

F (λ) =< L−1
λ f, g >

is an entire function (cf. [2]) of λ satisfying by (2.16) and (2.17)

{

|F (λ)| ≤ C
|λ|

π/2 < arg λ < 2π

|F (λ)| ≤ CeM |λ|3/2 λ ∈ C
.

By theorem 16.1 in [2] (or the Phragmen-Leindelöf theorem) and Liouville’s
theorem we must have F (λ) ≡ 0. Hence, V = range(L−1) = DR+

(L).
It remains still necessary to prove (2.9). Let w ∈ DR+

(L). Then,

w =
∞
∑

n=1

αnun

and

Lw =
∞
∑

n=1

αnλnun .

Hence

ℜ〈w,Lw〉U =
∞
∑

n=1

ℜλn|αn|2 ≥ m‖w‖2U .

�

We note that the set {un}∞n=1 is not a basis in the usual sense in Banach
spaces. In fact, it has been demonstrated in [5] that the system {ũn, ũn}∞n=1,
which is a bi-orthogonal system after we appropriately normalize it, is wild.
This means that ‖un‖2 grows faster than any algebraic rate as n→ ∞.

We now prove the existence of a critical current Jc obtained in [8, 9].

Lemma 2.4. Let ψ(x, t) ∈ H2
0 (R+×R+,C) denote a solution of the equation

∂ψ

∂t
− ∂2ψ

∂x2
− ψ + iJxψ = 0 in R+ × R+ . (2.18)

If

J > Jc =
(

−µ1

2

)−3/2

, (2.19)

in which µ1 is the rightest zero of Airy’s function, then ‖ψ(·, t)‖U −−−→
t→∞

0.

Otherwise, if J < Jc, then ψ ≡ 0 is an unstable solution of (2.18).
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Proof: We first apply (2.2) to obtain











∂ψ
∂t

+ Lψ − λJψ = 0

ψ(0, t) = 0

ψ(x, 0) = ψ0(x)

,

where ‖ψ0‖U < ∞. Taking the inner product (2.8) of the above equation
with ψ we obtain

1

2

d

dt
‖ψ‖2U ≤

(

λJ +
µ1

2

)

‖u‖2U .

Hence, if (2.19) is satisfied we have λJ + µ1/2 < 0 and hence ψ tends to 0
exponentially fast as t→ ∞, in the ‖ · ‖U sense.

If J < Jc let ψ(x, 0) = u1(x) where u1 is given in (2.13). Then

ψ(x, t) = u1(x)e
(λJ+µ1/2)t .

Returning to the original variables by applying the inverse of (2.2) we obtain

ψ(x, t) = u1(J
1/3x)e[1−(J/Jc)2/3]t ,

and hence ψ ≡ 0 is unstable.
�

3 Unbounded domains in R
3

In this section we consider several different problems: in R
3, in R

3
+ and

in a quarter-space. In contrast with the previous section we analyze these
problems only to the extent needed in the next section, which is the existence
of eigenvalues with non-positive real part of the elliptic operator on the right-
hand-side of (1.4).

3.1 Eigenfunctions in R
3

We consider here (1.4) with φ = Jx1. This choice summarizes all possible
electric potentials with constant gradients as the problem is invariant to
translations and rotations. Thus, we have for every eigenfunction u

−∆u− u+ iJx1u = −λu . (3.1)

We shall assume here that λ ∈ R, otherwise we can apply the transformation
x1 → x1 −ℑλ/J .
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It is easy to find all L2 solutions of (3.1) in R
3: apply the Fouriér trans-

form (2.4) in the x2 and x3 directions (using the respective Fouriér coordi-
nates ω2 and ω3) to obtain

Lû =
(

(1− λ)J−2/3 − ω2
2 − ω2

3

)

û . (3.2)

where assuming J > 0 we have applied the transformation

x→ J1/3x .

(We confine the discussion in the sequel to the case J > 0, as if J < 0 we
can consider the complex conjugate of (3.2) to obtain a new problem with
J > 0.)

By lemma 2.1 we have that û ≡ 0 is the unique L2 solution of (3.2).
However, for the blow-up arguments employed in the next section we need
to obtain the above result for any uniformly bounded solution of (3.1) in R

3.
This is exactly what the next lemma states

Lemma 3.1. Let u denote a uniformly bounded solution of (3.1), in R
3.

Then, u ≡ 0.

Proof: We first show that u(., x2, x3) ∈ L2(R,C). Let χr ∈ C∞(R+, [0, 1])
satisfy

χr(x) =

{

1 x < r/2

0 x > r
|χ′| ≤ C

r
. (3.3)

Multiplying (3.1) by χ2
r(|x−x0|)ū we obtain, taking the real part of identity,

that
∫

B(x0,r)

|∇(χru)|2 ≤
∫

B(x0,r)

[

χ2
1 + |∇χ1|2

]

|u|2 . (3.4)

Consequently, since u is bounded in L∞(R3) we have

∫

B(x0,r/2)

|∇u|2 ≤ C ∀x0 ∈ R
3 . (3.5)

From the imaginary part of the identity we obtain that
∫

B(x0,r)

(

∇(χ2
r) · ℑ

(

ū∇u
)

+ Jx1χr|u|2
)

= 0 .

Let x0 = (x10, x
2
0, x

3
0). Then,

∫

B(x0,r/2)

|x1||u|2dx1 ≤ C

∫

B(x0,r)

[

|u|2 + |∇u|2
]

.
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Consequently, for |x10| > r, since u is bounded and in view of (3.5) we have
∫

B(x0,r/2)

|u|2 ≤ C

|x10| − r
2

≤ C

|x10|
.

Repeating the above steps (from (3.4) to the above inequality) k times we
obtain that

∫

B(x0,r/2k)

|u|2 ≤ Ck
|x10|k

Hence,
∫

B(x0,r/2k)

|x1|2|u|2 ≤
Ck

|x10|k−2
,

which allows us to apply standard elliptic estimates [3] to obtain that

|u| ≤ Ck
(|x1|+ 1)k

∀k ∈ N .

In view of the above we have that xk1u(x1, x
′) ∈ L2(R,C) for all fixed

x′ ∈ R
2. Thus, one can apply to (3.1) the Fouriér transform (2.4) to obtain

−∆⊥û+ (ω2 − 1 + λ)û− J
∂û

∂ω
= 0 , (3.6)

where

−∆⊥ =
∂2

∂x22
+

∂2

∂x23
.

Let

x̃r(x) =

{

1 |x| < r

e−
1

r
(|x|−r) |x| > r

(3.7)

Multiplying (3.6) by χ̃2
r(|x′ − x0|)û and integrating over R2 we obtain

−J dUr
dω

+ (ω2 − 1 + λ)Ur =

∫

R2

(

−|∇(χ̃rû)|2 + |∇χ̃r|2|û|2
)

dx′ .

where

Ur(ω) =

∫

R2

χ̃2
r|û|2dx′ .

For the last term we have
∫

R2

|∇χ̃r|2|û|2 ≤
1

r2
Ur .

Consequently,

−J dUr
dω

+ (ω2 − 1 + λ− r−2)Ur ≤ 0 ,
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and therefore, for every ω0 ∈ R and ω > ω0 we have

Ur(ω) ≥ Ur(ω0) exp

{

1

3
(ω3 − ω3

0)− (1 + λ+ r−2)(ω − ω0)

}

Thus, since Ur is positive, it must diverge exponentially fast , unless

Ur ≡ 0 .

From which the lemma easily follows.

�

3.1.1 Eigenfunctions in R
3
+: perpendicular current

Let
R

3
+ = {(x1, x2, x3) | x1 > 0} .

We consider here solutions of (3.1) in R
3
+ satisfying a Dirichlet boundary

condition on ∂R3
+. Instead of considering complex eigenvalues we consider

only real ones and treat their imaginary part as part of the electric potential.

Lemma 3.2. Let u ∈ H2(R3
+) denote a uniformly bounded solution of

{

−∆u− u+ iJ(x1 − µ)u = −λu in R
3
+

u = 0 on ∂R3
+ ,

(3.8)

with λ ∈ R+. Then, if J > Jc, where Jc is defined in (2.19), u must vanish
identically.

Proof: Let un(x1) be defined in (2.12). Let further

an(x2, x3) =

∫ ∞

0

un(x1)u(x1, x2, x3)dx1 =< un, ū > ,

where the inner product is in the regular L2 sense. Clearly, an is uniformly
bounded in R

2 as u ∈ L∞(R3,C) and un ∈ L1(R,C).
Applying the transformation

x→ J1/3x , (3.9)

multiplying (3.8) by un, and integrating over R+ with respect to x1 we obtain,
in view of the boundedness of u and the exponential rate of decay of un as
x1 → ∞, that

−∆⊥an + (λn − λ̃J − iµ)an = 0 , (3.10)
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where λ̃J = (1 − λ)J−2/3 and the definition of λn is given in lemma 2.3.
Multiplying (3.10) by χ̃r(|x′|), we obtain for the real part
( |µn|

2
− λ̃J

)
∫

R2

|χ̃r|2|an|2 = −
∫

R2

|∇(χ̃ran)|2+
∫

R2

|∇χ̃r|2|an|2 ≤
C

r2

∫

R2

|χ̃r|2|an|2 .

Since λ̃J < |µ1|/2 ≤ |µn|/2 by our assumption we obtain, that for sufficiently
large r we must have

∫

R2

|χ̃r|2|an|2 = 0 .

Hence, an ≡ 0 in R
2. Since by lemma 2.3 {un}∞n=1 is a basis for L2(R+,C)

we must have u ≡ 0.
�

3.1.2 Steady solutions in R
3
+: non-perpendicular current

This problem is very similar to the problem in R
3. Consider the equation

{

−∆u− u+ i(J1x1 + J2x2 − µ)u = −λu in R
3
+

u = 0 on ∂R3
+

, (3.11)

with J2 6= 0 and λ ∈ R+. Like the problem in R
3, there is no need to consider

µ 6= 0 here since the transformation

x2 → x2 +
µ

J2

sets µ = 0 in the transformed problem. Furthermore, we also obtain the
following result, which is exactly the same as the result obtained in R

3

Lemma 3.3. Let u denote a bounded solution of (3.11) with J2 6= 0. Then
u ≡ 0.

Proof: Consider first the case where J1 6= 0. We first apply the transfor-
mation (3.9) with J = J1 to obtain

−∆⊥u+ Lu− λ̃J1u+ iγx2u = 0 , (3.12)

where λ̃J1 = (1 − λ)J
−2/3
1 and γ = J2/J1. Multiplying (3.12) by un and

integrating over R+ with respect to x1 we obtain,

−∆⊥an + (λn − λ̃J1)an + iγx2an = 0 in R
2 ,

where an =< un, ū >. The above equation cannot have any non-trivial
bounded solution in R

2, otherwise it would also be a bounded solution in R
3,
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which by lemma 3.1 must identically vanish. Consequently, since an must be
bounded, we must have an ≡ 0 for all n, from which the lemma easily follows
in this case.

Consider now the case where J1 = 0. Here we define

ũ(x1, x2, x3) =

{

u(x1, x2, x3) x1 > 0

−u(−x1, x2, , x3) x1 < 0
.

Clearly, ũ is a bounded weak solution of (3.1) in R
3 and hence by lemma 3.1

ũ ≡ 0.
�

For later reference we shall also need the following lemma:

Lemma 3.4. Let u denote a bounded solution of
{

−∆u− u+ iJ2x2u = −λu in R
3
+

∂u
∂x1

= 0 on ∂R3
+

,

with λ ∈ R+. Then u ≡ 0.

Proof: Once again we define, this time an even function,

ũ(x1, x2, x3) =

{

u(x1, x2, x3) x1 > 0

u(−x1, x2, , x3) x1 < 0
.

Clearly, ũ is a bounded weak solution of (3.1) in R
3 and hence by lemma 3.1

ũ ≡ 0.
�

The last result in this section is needed in the next section in order to
deal with the interface between ∂Ωi and ∂Ωn (that are perpendicular by
assumption).

Lemma 3.5. Let

Q = {(x1, x2, x3) ∈ R
3
+ | x2 > 0} .

Let u denote a bounded solution of










−∆u− u+ i(J2x2 + J3x3)u = −λu in Q
∂u
∂x1

(0, x2, x3) = 0 x2 > 0 , x3 ∈ R

u(x1, 0, x3) = 0 x1 > 0 , x3 ∈ R

,

with λ ∈ R+. Then u ≡ 0.

17



Proof: Once again we define an even extension of u,

ũ(x1, x2, x3) =

{

u(x1, x2, x3) x1 > 0

u(−x1, x2, , x3) x1 < 0
.

By lemma 3.3 ũ = 0.
�

4 Large bounded domains in R
3

We consider here (1.6) in the limit R → ∞ which is the large domain limit.
We first show that any eigenfunctions of the elliptic operator in (1.6) must
decay exponentially fast, as R → ∞ away from the boundary. As in the
previous section we insert the imaginary part of λ into the electric poten-
tial (and consequently consider a family of potentials) and the confine the
discussion to real values of λ.

Before getting into the main discussion we repeat here the definition of
φR brought in § 1 and list some of its properties. Recall that φ is the unique
solution of (1.2), and that

φR(x) = Rφ(x/R) .

The following proposition lists some of the properties of φ and φR.

Proposition 4.1. Let φ denote a solution of (1.2) and φR(x) = Rφ(x/R).
Let µ ∈ R and µR = Rµ. Let further xj ∈ ΩRj

where Rj ↑ ∞, and {µj}∞j=1 ⊂
R. Then

(i). Either |φRj
(xj)− µj| is unbounded, or else we must have, up to a sub-

sequence,

∃(b, J) ∈ R× R
3 : ‖φRj

− µj − J · x− b‖L∞(Dr(xj) → 0 ∀r > 0 ,

where Dr(xj) = ΩR ∩ B(xj, r).

(ii). Let Γµ denote the level set φ = µ. Let M = maxx∈∂Ωc φ(x) and m =
maxx∈∂Ωc φ(x). If µ 6∈ [m,M ], then Γµ is empty.

(iii). Assume that ∂Ωc is composed of exactly two connected sets as in Fig.
3, and that Ω is diffeomorphic to a cylinder. If µ ∈ [m,M ], but µ 6∈
φ(∂Ωc) , then Γµ ∩ ∂Ωi is simple closed contour, separating ∂Ω into
two subsets, such that none of them is a subset of ∂Ωi. Furthermore,
∇φ 6= 0 on Γµ.

18



Proof. Let bj = φRj
(xj)−µj and Jj = ∇φRj

(xj). To prove (i) we first choose
a subsequence such that (bj, Jj) → (b, J). The claim then follows from the
Taylor expansion of φRj

near xj.
The proof of (ii) follows immediately from the maximum principle.
To prove (iii) we notice first that since φ is real analytic Γµ must be either

closed or intersect ∂Ω. If it is closed then φ ≡ µ inside Γµ and hence also
outside Γµ (in view of its analyticity), which is clearly a contradiction. Thus
Γµ must intersect the boundary on ∂Ωi.

Since φ is continuous and since on one the connected sets we must have
φ < µ and on the other one φ > µ, the intersection of ∂Ωi with Γµ must
contain at least one closed contour. This contour, separates ∂Ω into two
disjoints subsets ∂Ω+ and ∂Ω−, the first of them contains the connected
subset of ∂Ωc over which φ > µ and a portion of ∂Ωi. Moreover, this contour
is the boundary of a continuous subset of Γµ which we denote by A.

To see this define cylindrical coordinates (r, θ, z) in Ω, where θ ∈ [−π, π)
and 0 ≤ r < R(θ, z). Then, for each (r, θ) there exists a finite (as φ is real
analytic) set {zj} such that (r, θ, zj) ∈ Γµ. Denote the minimum in this set
by zm. Clearly, z = zm(r, θ) is continuous, and thus we can define

A = {(r, θ, z) | z = zm(r, θ)} .

We now consider the problem for φ in a subdomain of Ω whose boundary
consists of A and ∂Ω+. By the maximum principle and Hopf’s lemma we
have φ > µ on ∂Ω+ and in the interior. In a similar manner we show that
φ < µ on ∂Ω−, and in the interior of the subdomain surrounded by A and
∂Ω−. This shows that A = Γµ. From Hopf’s lemma it follows that ∇φ 6= 0
on Γµ.

Remark 4.1. While property 1 will be used extensively throughout this sec-
tion, properties 2 and 3 are brought here to provide the reader with some
intuition of the behaviour of φ in the “wire-like” domain presented in figure
3.

Since (1.6) contains the term i(φR − µR)ψR which might be unbounded
as R → ∞ we must provide here the following elliptic estimate.

Lemma 4.1. Let uR denote a solution of










−∆uR − uR + i(φR − µR)uR = −λuR in ΩR

∂ψR

∂ν
= 0 on ∂Ωi

R

ψR = 0 on ∂Ωc
R

, (4.1)

in which λ ∈ R+. Let Dr(x0) = ΩR ∩ Br(x0), where x0 ∈ ΩR is chosen such
that either
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i. Dr(x0) = Br(x0) .

or

ii. x0 ∈ ∂ΩR and either (∂Dr(x0) ∩ ∂ΩR) ⊂ ∂Ωc
R or (∂Dr(x0) ∩ ∂ΩR) ⊂

∂Ωi
R .

Then,

∃r̃ > 0 : ‖uR‖L∞(Dr(x0)) ≤ Cr‖uR‖L2(D2r(x0)) ∀x0 ∈ ΩR, r < r̃ , (4.2)

where Cr is independent of R and x0.

Proof. Let ρR = |uR|. By (4.1) we have that

−∆ρR − ρR ≤ 0

in ΩR. Let x0 ∈ ΩR. We set Ur to be the solution (we discuss its existence
below) of



















−∆Ur − Ur = 0 in Dr(x0)

Ur = 0 on ∂Dc
r(x0)

∂Ur

∂ν
= 0 on ∂Di

r(x0)

Ur = ρR on ∂Ds
r(x0)

, (4.3)

where ∂Dc
r(x0) = ∂Dr(x0)∩∂Ωc

R, ∂D
i
r(x0) = ∂Dr(x0)∩∂Ωi

R, and ∂D
s
r(x0) =

∂Dr(x0) \ (∂Dr(x0) ∩ ∂ΩR). Note that either ∂Dc
r(x0) = φ or ∂Di

r(x0) = φ.
Clearly, there exists r̃, independent of x0 and R, such that for every r < r̃
we have

inf
u∈D

intDr(x0)|∇u|2
intDr(x0)|u|2

> 1 , (4.4)

where
D = {u ∈ H1(Dr) | u = 0 on ∂Dr(x0) \ ∂Di

r(x0)} .
For r < r̃ the elliptic operator in (4.3) is invertible, and hence a unique Ur
exists.

Let then V = ρR − Ur. Clearly











−∆V − V ≤ 0 in Dr(x0)
∂V
∂ν

= 0 on ∂Di
r(x0)

V = 0 on ∂Dr(x0) \ ∂Di
r(x0)

. (4.5)

Let further

V+ =

{

V V ≥ 0

0 V < 0
.
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Multiplying (4.5) by V+ and integrating over Dr(x0) we obtain that

∫

Dr

|∇V+|2 − |V+|2 ≤ 0 ,

and since V ∈ D, we obtain by (4.4) that V+ = 0. Consequently we have

ρR ≤ Ur in Dr(x0) (4.6)

To complete the proof of (4.2) it is necessary, thus, to obtain an estimate
of ‖Ur‖L∞(Dr) in terms of ‖ρR‖L2(Dr). In case (i) above, since Ur is unique,
we can use theorem 10.5 in [3], together with Sobolev embeddings to obtain

‖Ur‖L∞(Dr(x0)) ≤ Cr‖ρR‖H1/2(∂Ds
r)
, (4.7)

where Cr is independent of x0 and R.
In case (ii) Dr(x0) is diffeomorphic to a hemisphere with radius r. Denote

the diffeomorphism by TR,x0 . Note that TR,x0 → I as R → ∞ uniformly in x0
(as long as the assumption in (ii) hold), in view of the transformation (1.5).
Let B+ = TR,x0(Dr). On the flat surface of B+ we have either ∂Ur/∂ν = 0
or Ur = 0. In the first case one can extend Ur evenly to a sphere B whereas
in the second case we use an odd extension for that matter. In both cases
Ur satisfies

A : ∇(At∇Ur) + Ur = 0 in B ,

Where A = DTR,x0 is smooth in B and satisfies A → I uniformly in B as
R → ∞. On ∂B Ur is equal either to the even extension or the odd extension
of ρR. Hence, for sufficiently large R, Ur must satisfy (4.7) in case (ii) as
well.

Clearly,
‖ρR‖H1/2(∂Ds

r)
≤ ‖ρR‖H1(Dr(x0)) . (4.8)

Multiplying (4.1) by χ2
2r(|x−x0|)ūR and integrating over ΩR we obtain from

the real part of the identity

∫

D2r(x0)

|∇(χ2ruR)|2 −
(

|∇χ2r|2 + (1− λ)χ2
2r

)

|uR|2 = 0 .

Hence,
∫

Dr(x0)

|∇ρR|2 ≤ Cr

∫

D2r(x0)

|ρR|2 . (4.9)

Combining the above with (4.6-4.8) yields (4.2).

As an immediate conclusion of lemma 4.1 we prove the following lemma
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Lemma 4.2. Let uR denote a solution of (4.1) with λ ∈ R+. Let XR denote
a maximum point of |uR| in ΩR. Then, |φR(xR)−µR| is bounded as R → ∞.

Proof. We first normalize uR by |uR(xR)| so that ‖uR‖∞ = 1. Let Dr(xR) =
B(xR, r)∩ΩR. Multiplying (4.1) by χ2

r(|x− xR|)ūR and integrating over ΩR

we obtain from the imaginary part of the identity

∫

Dr)

∇(χ2
r) ·

1

2i
(ūRj∇uR −∇ūR) +

∫

Dr

χ2
r(φR − µR)|uR|2 = 0 .

Let bR = φR(xR)−µR. Since ∇φR is bounded in ΩR, and since r is fixed, we
have

inf
x∈Dr

|φR − µR| ≥
1

2
bR .

Thus,

bR

∫

Dr/2

|uR|2 ≤ Cr

∫

Dr

|uR|2 + |∇uR|2 .

Using (4.9) we obtain, and the fact that |uR| ≤ 1 we obtain that

∫

Dr/2

|uR|2 ≤
C

bR
.

By lemma 4.1 we then have that

1 = |uR(xR)| ≤
Cr
bR

.

From which the lemma immediately follows.

Remark 4.2. Note that if φR 6= µR for all x ∈ ΩR then uR ≡ 0 must be the
unique solution of (4.1). To see this multiply (4.1) by ūR and integrate over
ΩR to obtain from the imaginary part:

∫

ΩR

(φR − µR)|uR|2 = 0 .

Since φR − µR is either positive or negative throughout ΩR, uR must vanish
everywhere.

Denote the curve in Ω along which we have φ = µ by Γµ. Denote its
image under the mapping (1.5) by ΓR. By the previous lemma we have
that d(xR,ΓR) is bounded as R → ∞. We now prove that uR must decay
exponentially fast away from ΓR.
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Lemma 4.3. Let uR denote a solution of (4.1) with λ ∈ R+. Then, there
exists α > 0 such that

∫

ΩR

|uR|2e2αs ≤ C , (4.10)

where s = d(x,ΓR) and C is independent of R.

Recall that by proposition 4.1, for domains that are diffeomorphic to a
cylinder, when φ 6= µ for every x ∈ ∂Ωc, Γ1 must be a surface whose boundary
is a closed simple contour on ∂Ωi. We also have ∇φ 6= 0 on Γµ. Note also
that by the above remark, if ΓR is empty, then uR ≡ 0.

Proof: It is convenient to consider here uR for which ‖uR‖L2(ΩR) = 1. Let
Ω+
β and Ω−

β be respectively defined by

Ω+
β = {x ∈ ΩR |φR − µR > β}

Ω−
β = {x ∈ ΩR |φR − µR < −β} .

for some β > 0 which is independent of R.
Let η+β ∈ C∞(ΩR, [0, 1]) and η

−
β respectively be defined by

η+β =

{

1 x ∈ Ω+
β

0 x ∈ Ω−
0

and

η−β =

{

1 x ∈ Ω−
β

0 x ∈ Ω+
0

.

Let C±
β respectively denote the portion of ∂Ω±

β which is not on ∂Ω. As
∇φR(x) = ∇φ(x/R) and since ∇φ is bounded in Ω we have that

d(C±
β ,Γµ) ≥

β

‖∇φ‖L∞(Ω)

.

Hence, we can choose η±β such that |∇η±β | < C. Let

D+
β = {x ∈ ΩR | 0 < η+β < 1} .

We choose η±β such that
sup
x∈D+

β

s ≤ 1 .
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Multiplying (4.1) by (η+β )
2e2αsūR and integrating over ΩR we obtain, for

the the imaginary part and the real part respectively

∫

ΩR

∇((η+β )
2e2αs) · 1

2i
(ūR∇uR − uR∇ūR) +

∫

ΩR

(φR − µR)(η
+
β )

2|uR|2e2αs = 0 ,

(4.11a)
∫

ΩR

(η+β )
2|∇uR|2e2αs = (1− λ)

∫

ΩR

(η+β )
2|uR|2e2αs −

1

2

∫

ΩR

∇((η+β )
2e2αs) · ∇|uR|2 .

(4.11b)

From the real part, (4.11b), we obtain, that for every ǫ > 0 we have

(1−2αǫ)

∫

ΩR

(η+β )
2e2αs|∇uR|2 ≤

(

1+
α

2ǫ

)

∫

ΩR

(η+β )
2e2αs|uR|2+C

∫

D+

β

e2αs|∇uR|2 .

(4.12)
From (4.11a), or the imaginary part, we obtain

β

∫

Ω+

β

|uR|2e2αs ≤ α

∫

ΩR

(η+β )
2e2αs[|uR|2+ |∇uR|2]+C

∫

D+

β

e2αs[|uR|2+ |∇uR|2]

Combining the above with (4.12) for ǫ = 4α−1 we obtain

(β − 2α− 4α3)

∫

Ω+

β

|uR|2e2αs ≤ C

∫

D+

β

e2αs[|uR|2 + |∇uR|2] . (4.13)

Multiplying (4.1) by ūR and integrating over ΩR we obtain (for the real
part)

∫

ΩR

|∇uR|2 = (1− λ)

∫

ΩR

|uR|2 = 1− λ .

Consequently, we obtain from (4.13), that for any given α we may choose β
to be sufficiently large (but still independent of R) so that β > 2α+4α3 and
hence

∫

Ω+

β

|uR|2e2αs ≤ Ce2α
∫

D+

β

[|uR|2 + |∇uR|2] ≤ 2Ce2α .

�

Remark 4.3. By lemma 4.1 it follows that |uR| decays exponentially fast
away from ΓR also in a pointwise sense.

We now prove that any eigenfunction corresponding to a non-positive
eigenvalue must decay exponentially fast away from the boundary
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Lemma 4.4. Let uR denote a solution of (4.1). Then

∃α > 0 : |uR| ≤ Ce−αd(x,∂Ω) ∀µR ∈ R , (4.14)

where α is independent of R, µR, and λ. Furthermore, denote by xR the
maximum point of |uR|. Then d(xR, ∂ΩR) is bounded as R → ∞.

Proof: We apply standard blow up arguments to prove the lemma. Let

Ω(R, k, s) = {x ∈ ΩR| d(x, ∂ΩR) ≥ ks} .

We prove exponential rate of decay by showing first that

∃R0, s0 : ‖uR‖
L∞

(

Ω(R,k+1,s)
) ≤ 1

2
‖uR‖

L∞

(

Ω(R,k,s)
) ∀s > s0, R > R0, k ∈ N

(4.15)
Suppose, for a contradiction, that (4.15) does not hold. Then, there exist

sequences {Rj}∞j=1, {sj}
∞
j=1, and {kj}∞j=1 satisfying Rj ↑ ∞, sj ↑ ∞, kj ∈ N,

and

∥

∥uRj

∥

∥

L∞

(

Ω(Rj ,kj+1,sj)
) ≥ 1

2

∥

∥uRj

∥

∥

L∞

(

Ω(Rj ,kj ,sj)
)

def
=

1

2
mj (4.16)

Let
ũRj

=
uRj

mj

.

By (4.15) there exists xj ∈ Ω(Rj, kj + 1, sj) such that

|ũRj
(xj)| ≥

1

2
. (4.17)

For notation convenience we also let fj(x) = ũRj
(xj + x).

We now distinguish between two different cases:
case 1:

bj = inf
x∈B(xj ,sj)

|φRj
− µRj

| → ∞

up to a subsequence.
Let χr ∈ C∞(R+, [0, 1]) be defined by (3.3). Since fj satisfies (4.1) we

multiply it by χ2
r(0)f j and integrate over B(0, r) to obtain, from the imagi-

nary part
∫

B(0,r)

∇(χ2
r) ·

1

2i
(f̄j∇fj − fj∇f̄j) +

∫

B(0,r)

χ2
r(φRj

− µRj
)|fj|2 = 0 .

Yielding

bj

∫

B(0,r/2)

|fj|2 ≤ Cr

∫

B(0,r)

|fj|2 + |∇fj|2 , (4.18)
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for all r < sj. From the real part we obtain that

∫

B(0,r)

|∇(χrfj)|2 −
(

|∇χr|2 + (1− λ)χ2
r

)

|fj|2 = 0 ,

and hence
∫

B(0,r/2)

|∇fj|2 ≤ C

∫

B(0,r)

|fj|2 . (4.19)

Combining (4.18) with (4.19) we obtain

∫

B(0,r/2)

|fj|2 ≤
Cr
bj

∫

B(0,2r)

|fj|2 .

As |fj| ≤ 1 we obtain that

∫

B(0,r/2)

|fj|2 → 0

as j → ∞, and by lemma 4.1 also that fj(0) → 0. A contradiction.
Case 2: lim supj→∞ bj <∞
Let J = |∇φ|. We choose a coordinate system where ∇φ(xj) is parallel

to the x1 axis. Then, by lemma 4.2 we have a subsequence for which

φRj
− µRj

→ Jx1 + b ,

uniformly in B(0, r) for all r > 0, where b is a constant. Thus, by stan-
dard elliptic estimates and Sobolev embeddings, there exists a subsequence
{fJk}∞k=1 such that fJk → f∞ uniformly on every compact set in R

3 and such
that f∞ is a bounded solution of

−∆f∞ − f∞ + i(Jx1 + b)f∞ = −λf∞ in R
3 .

By lemma 3.1 we must have f∞ ≡ 0. A contradiction.
Thus, we have proved (4.15), and hence also (4.14). The boundedness of

d(xR, ∂ΩR) follows from (4.14) as well.

�

The following lemma provides the basis for our main stability result

Lemma 4.5. Let ∂Ωn denote the subset of ∂Ωc where ∇φ is perpendicular
to ∂Ω. Suppose that either |∇φ| > Jc for all x ∈ ∂Ωn or that ∂Ωn is empty.
Then, for sufficiently large R, uR ≡ 0 is the unique solution of (4.1) for all
µR ∈ R.
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Proof: Let Let xR be the point where uR obtains its maximum in ΩR.
Let xR0 denote its projection on ∂ΩR. Recall that by lemma 4.4 |xR − xR0 | is
bounded as R → ∞. Note that by lemma 4.2 φR converges uniformly to a
linear function in Dr(x

R
0 ) for all fixed r > 0 as R → ∞. Suppose first that

xR0 ∈ ∂ΩR
i . Following [10], let (t1, t2, t3) denote a local curvilinear coordinate

system, whose origin lies at xR0 , such that t3 = d(x, ∂ΩR) when x ∈ ΩR

and such that the t1 and t2 curves on ∂Ω are the lines of curvature. Let
further κR1 and κR2 denote the respective principal curvature on ∂ΩR. Clearly,
κRi = κi/R (i = 1, 2) where κi is the corresponding principal curvature on
∂Ω, at x0 = xR0 /R.

Since ∂Ω is smooth near xR0 , this curvilinear coordinate system is properly
defined in some neighborhood of xR0 . Let

B+(0, r) = {(t1, t2, t3) ∈ B(0, r) | t3 > 0} .

Then, the above coordinate system is well-defined in B+(0, δR) for some
δ > 0. We can now present any x in this neighborhood by

x = r(t1, t2)− t3ν ,

where ν is the outward normal at (t1, t2, 0). Let

gij(t1, t2) =
∂r

∂ti
· ∂r
∂tj

i, j = 1, 2

and
Gij = [1− κit3/R]gij i, j = 1, 2 .

Since our coordinate system is orthogonal we have

g12 = 0 .

Furthermore, we can scale t1 and t2 so that

g11 = g22 = 1 +O(1/R) as R → ∞ ,

uniformly in B+(0, r) for every fixed r > 0. Finally, we define










G =
√
G11G22

αj =
G
Gjj

j = 1, 2

α3 = G

.

Let wR(x) = uR(x)/|uR(xR)|. In the new coordinates (4.1) takes the form

−
3

∑

j=1

1

G

∂

∂tj

(

αj
∂wR
∂tj

)

− wR + i(φR − µR)wR = −λwR ,
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in B+(0, δR). Standard elliptic estimates then prove the existence of a se-
quence {wRj

}∞j=1 such that wRj
→ w∞ uniformly on every compact set in R

3
+

where here
R

3
+ = {(t1, t2, t3) | t3 > 0} .

By standard elliptic estimates again we have that w∞ satisfies the following
problem

{

−∆w∞ − w∞ + i(J1t1 + J2t2 + b)w∞ = −λw∞ in R
3
+

∂w∞

∂ν
= 0 on ∂R3

+

.

By lemma 3.4 we have w∞ ≡ 0 in R
3
+ - a contradiction since |wR(xR)| = 1

and |xR − xR0 | is bounded.
Consider now the case where xR0 ∈ ∂ΩR

c . Following the same procedure
as before we obtain that wR → w∞ uniformly on every compact set in R

3
+

where w∞ must satisfy
{

−∆w∞ − w∞ + i(J1t1 + J2t2 + J3t3 + b)w∞ = −λw∞ in R
3
+

w∞ = 0 on ∂R3
+

.

If ∂Ωn is empty we have J2
1 + J2

2 > 0. By lemma 3.3 we then have w∞ ≡ 0.
Otherwise, if x0 ∈ ∂Ωn we must have w∞ ≡ 0 by lemma 3.2 since J3 > Jc.

Finally, if x0 lies on the interface between ∂Ωi and ∂Ωc we obtain that
w∞ must satisfy, since the two surfaces are perpendicular to each other at
the interface, a problem in Q where

Q = {(t1, t2, t3) | t3 > 0, t1 > 0} .

We have










−∆w∞ − w∞ + i(J1t1 + J2t2 + b)w∞ = 0 in Q
∂w∞

∂ν
= 0 x ∈ ∂Q t3 = 0

w∞ = 0 x ∈ ∂Q : t1 = 0

.

By lemma 3.5 we have w∞ ≡ 0. (Note that some modification of the local
coordinate system is necessary in this case.)

�

Proof of Theorem 1.1: Since the principal part of the differential opera-
tor on the left-hand-side of (4.1) is the Laplacian, it can be regarded as a
perturbation of a self-adjoint operator. Thus, it follows from the discussion
below theorem 15.2 in [2] regarding such perturbations that it has exactly
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one direction which is not a direction of of minimal growth: arg λ = 0.
Hence, it follows from theorem 15.1 there, that the spectrum of this differ-
ential operator must be discrete and that all its eigenvalues must have finite
multiplicity. Furthermore, by theorem 16.5 in [2], the eigenfunctions span
L2(ΩR,C). Hence, for J > Jc, since all the eigenvalues of the above operator
must have positive real part, the normal state must be stable.

Consider now the case where a point x ∈ ∂Ωc exists where

|∂φ
∂ν

| = |∇φ| = J < Jc .

To prove the short time instability we look at the solution of (1.6), after
applying to it the transformation (2.2), with the initial condition

ψ(x, 0) = u1(t3)χR1/2(t1, t2)ηR(t3) ,

where (t1, t2, t3) are the above-defined system of local curvilinear coordinates,
χr is defined in (3.3) and

ηR(x) =

{

1 x < 1
2
δR

0 x > δR
,

is a smooth cutoff function.
Let β̃ = λJ − λJc . We write

ψR = v + ψ0(x)e
β̃t , (4.20)

to obtain
∂v

∂t
−∆v − λJv = f . (4.21)

The precise form of f need not concern us except for the fact that

‖f‖2 ≤
Cα
Rα

‖ψ0‖2eβ̃t ∀α < 1 . (4.22)

Multiplying (4.21) by v̄ and integrating by parts we obtain for the real part

{

∂‖v‖2
∂t

− λJ‖v‖2 = ‖f‖2
‖v‖2(0) = 0

.

Consequently,

‖v‖2(t) ≤
∫ t

0

eλ(t−τ)‖f‖2(τ)dτ ,
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and hence,

‖v‖2 ≤
Cα
Rα

‖ψ0‖2e(λJ+β̃)t .

Clearly, there exist TR ∼ O(lnR), as R → ∞, such that

t < TR ⇒ Cα
Rα

eλJ t <
1

2
,

and thus

t < TR ⇒ ‖ψ‖2 ≥
1

2
‖ψ0‖2eβ̃t .

Applying the inverse of (2.2) we obtain (1.7).

�

The above instability result is valid, of course, only for T < TR. Proving
long time instability appears to be a much more difficult problem. The
stability proof presented above relies on the convergence of any solution of
(4.1) to a solution of (3.8) uniformly on every compact set near the point
on the boundary where J is perpendicular to it. This however does not
prove convergence of the spectrum and not even of its bottom. What has
been demonstrated is only the upper semi-continuity of the spectrum of the
differential operator on the left-hand-side of (4.1). Lower semi-continuity of
the spectrum appears to be much harder to prove especially since the operator
is not self-adjoint. Nevertheless, it does seem reasonable to conjecture that
the solution would continue to grow exponentially fast as t→ ∞, in view of
the above short-time instability result. Further research is necessary in order
to establish that result.

5 Concluding remarks

In the previous section we proved that the normal state remains stable in
the large domain limit, as long as the current on the boundary, at points
where it is perpendicular to it, is greater than Jc. If the current is nowhere
perpendicular to the boundary, then as long as it doesn’t vanish there, the
normal state must be stable. We also demonstrate short time instability
when Jm < Jc.

In the following we provide a short list of interesting problems that are
waiting to be resolved:

1. Proving long time instability when J > Jc. We have elaborated on this
matter in the preceding section end.
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2. Adding the effect of magnetic fields. This magnetic field can be either
induced by the electric current [via (1.3)], or else be applied externally
(or both). It has been verified experimentally that an induced magnetic
field can generate vortices [12] if the current is sufficiently large, and
the material is closed to the wholly superconducting state . However
it’s effect on the critical current Jc has not been investigated. It is
reasonable to believe that Jc would become smaller if we combine that
effect.

3. Adding the effect of temperature: since electric currents have the ten-
dency to heat the sample, thereby creating vortices [12]. Incorporating
this effect requires modification of (1.1), and the use of different non-
dimensionalization, otherwise the domain would become temperature-
dependent

4. Proving that the bifurcating branch (at J = Jc) is unstable.
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A The Hilbert-Schmidt norm of L−1
λ

Lemma A.1. Let G̃ be given by (2.14b). Then, for any λ ∈ C \ {λn}∞n=1,
where {λn}∞n=1 are given in (2.11)

∃C,M > 0 : ‖G̃‖ ≤ CeMλ3/2 . (A.1)

Proof: We first note that

W (w1, w̃2)(x, λ) = w′
2(x, λ)w1(x, λ)− w′

1(x, λ)w2(x, λ),

is independent of x by Abel’s formula. Furthermore, for y = x+ iλ we have

W (w1, w̃2)(x, λ) = W (w1, w̃2)(y, 0) = W (w1, w̃2)(0, 0) .

Therefore, W is independent of both x and λ.
Since W is constant, it follows that G̃ is symmetric, i.e.,

G̃(x, ξ, λ) = G̃(ξ, x, λ) .
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Consequently, suffices it to prove that

∫ ∞

0

dξ

∫ ∞

ξ

dx|G̃(x, ξ)|2 = C1

∫ ∞

0

dξ|w̃2(ξ)|2
∫ ∞

ξ

dx|w̃1(x)|2 ≤ CeMλ3/2 ,

where C, C1, and M are all independent of λ.
To obtain the above estimate we use asymptotic properties of Airy’s func-

tions [1, 11], from which it follows that

|Ai(z)| ≤
C

|z|1/4
∣

∣

∣
e−

2

3
z3/2

∣

∣

∣
. (A.2)

Consider then first the domain ξ > M0λ for sufficiently large M0 > 0. We
have

∫ ∞

ξ

|w1(x)|2dx ≤
∫ ∞

ξ

dx

|x+ iλ|1/2 e
−β(x)|x+iλ|3/2 ,

where

β(x) =
4

3
cos

(

3

2
arg(x+ iλ) +

π

4

)

.

It is easy to show that

{

|β′(x)| ≤ C |λ|
|x+iλ|2

|β′(x)| ≤ C |λ|
|x+iλ|3

. (A.3)

Let then
γ(x) = β(x)|x+ iλ|3/2 .

By (A.3) we have







|γ′(x)| ≥ 3
2
β(x)|x+ iλ|1/2

[

1− C |λ|
|x+iλ|

]

|γ′′(x)| ≤ 3
4
β(x)|x+ iλ|−1/2

[

1 + C |λ|
|x+iλ|

] . (A.4)

Using (A.4) and integration by parts we obtain

∫ ∞

ξ

e−γ(x)dx ≤ 1

|γ′(ξ)|e
−γ(ξ) +

∫ ∞

ξ

|γ′′(x)|
|γ′(x)| e

−γ(x)dx

≤ C

|ξ + iλ|1/2 e
−γ(ξ) +

C

|ξ + iλ|3/2
∫ ∞

ξ

e−γ(x)dx .

Hence,
∫ ∞

ξ

e−γ(x)dx ≤ C

|ξ + iλ|1/2 e
−γ(ξ) ,
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from which we easily obtain that

∫ ∞

ξ

|w1(x)|2dx ≤ C

|ξ + iλ|e
−γ(ξ) . (A.5)

From the asymptotic behaviour of Airy’s function (A.2) we obtain again

|w̃2(ξ)|2 ≤
C

|ξ + iλ|1/2 e
γ(ξ) .

Thus,
∫ ∞

M0λ

dξ|w̃2(ξ)|2
∫ ∞

ξ

dx|w̃1(x)|2 ≤
C

λ1/2
.

To complete the proof we need to bound the norm for 0 < ξ < M0λ. By
(A.2) and (2.14b) we have

|G̃(x, ξ, λ)| ≤ C exp

{

2

3
(M0 + 1)3/2|λ|3/2

}

.

Consequently, from the above and (A.5) we obtain

∫ M0λ

0

dξ|w̃2(ξ)|2
∫ ∞

ξ

dx|w̃1(x)|2 =
∫ M0λ

0

dξ|w̃2(ξ)|2
∫ M0λ

ξ

dx|w̃1(x)|2

+

∫ M0λ

0

dξ|w̃2(ξ)|2
∫ ∞

M0λ

dx|w̃1(x)|2 ≤ CM2
0λ

2 exp

{

2

3
(M0 + 1)3/2|λ|3/2

}

.

from which (A.1) easily follows.
�
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