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Abstract. We consider the linearization of the time-dependent Ginzburg-Landau system near
the normal state. We assume that an electric current is applied through the sample, which
captures the whole plane, inducing thereby, a magnetic field. We show that independently of
the current, the normal state is always stable. Using Fourier analysis the detailed behaviour
of solutions is obtained as well. Relying on semi-group theory we then obtain the spectral
properties of the steady-state elliptic operator.
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1. Introduction

Consider a superconductor placed at a temperature lower than the critical one. If an
electric current is applied through the sample it will induce a magnetic field. It is well-
understood that if the electric current is sufficiently strong, then the sample must be at
a normal state. If the current is then lowered, the normal state would loose stability
and the sample would become superconducting again. Such a pattern of behaviour has
been observed in numerous experiments [28]. It has also been obtained theoretically
by analyzing the stability of the normal state for the time dependent Ginzburg-Landau
system, but with the induced magnetic field neglected [20, 3]. Our interest here is the
joint effect of the current and the magnetic field it induces on the stability of the normal
state. From a mathematical point of view we thus need to consider the linearization of
the Ginzburg-Landau system near the normal state, this time with the effect of induced
magnetic field included.

In contrast with the simplified model, for which the induced magnetic field is neglected,
one cannot present the full model in a one-dimensional setting. In the present contribu-
tion we thus consider a two-dimensional superconducting sample capturing the entire
xy-plane. For a complete analysis of the effect of induced magnetic fields, we need, of
course, to include boundaries and three-dimensional effects. However, the present contri-
bution appears to be a necessary first step before one moves on to include these effects.
Assuming that a magnetic field of magnitude He is perpendicularly applied to the sample
the time-dependent Ginzburg-Landau system can be written as follows (see for instance
[4, 6, 9, 10, 20, 27, 29]):

{
∂tψ + iκΦψ = ∇2

κA
ψ + κ2(1 − |ψ|2)ψ in (0, T ) × R

2,

κ2curl2A + σ(∂tA + ∇Φ) = κ Im (ψ̄∇κAψ) + κ2curlHe in (0, T ) × R
2,

(1.1)

where ψ is the order parameter, A is the magnetic potential, Φ is the electric potential,
the Ginzburg-Landau parameter of the superconductor is denoted by κ and the normal
conductivity of the sample by σ. The triplet (ψ,A,Φ) should also satisfy an initial
condition at t = 0. A solution (ψ,A,Φ) is called a normal state solution if ψ ≡ 0. From
(1.1) we see that if (0,A,Φ) is a time-independent normal state solution then (A,Φ)
satisfies the equality

κ2curl2A + σ∇Φ = κ2curlHe in R
2. (1.2)

In the following we further assume that a current of constant magnitude J is flown
through the sample in the y-axis direction, and that the applied magnetic field is of
constant magnitude, hence He = hiz, throughout the entire sample. Here ix, iy and iz
denote the canonical basis in R

3. Under these additional assumptions (1.2) admits the
following solution, which is also a normal state solution of (1.1),

A =
1

2J
(Jx+ h)2iy, Φ =

κ2J

σ
y. (1.3)

Note that the magnetic field

H = curlA = (Jx+ h)iz,
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is the sum of the constant applied magnetic field hiz and a linear term produced by the
electric current. The linearization of (1.1) near the normal state solution (1.3) is

∂tψ+
iκ3Jy

σ
ψ = ∆ψ− iκ

J
(Jx+ h)2∂yψ− (

κ

2J
)2(Jx+ h)4ψ+ κ2ψ in (0, T )×R

2 . (1.4)

Applying the transformation

(x, y) → (x− h

J
, y − h

J
) ,

we obtain

∂tψ +
iκ3Jy

σ
ψ = ∆ψ − iκJx2∂yψ −

(
(
κJ

2
)2x4 − κ2

)
ψ. (1.5)

In this work we shall analyze the asymptotic behavior of the solutions of (1.5) for large t.
We assume J > 0 in the sequel. Otherwise we may either consider the complex con-

jugate of (1.4) or apply the transformation y → −y. Hence, we can rescale x and t by
applying

t→ (κJ)2/3t, (x, y) → (κJ)1/3(x, y) , (1.6)

yielding

∂tu = −(A0,c − λ)u , (1.7)

where A0,c is the differential operator defined by

A0,c := −∂xx − (∂y +
i

2
x2)2 + icy , (1.8)

and

c =
κ2

σ
, λ =

κ4/3

J2/3
, u(x, y, t) = ψ((κJ)−1/3x, (κJ)−1/3y, (κJ)−2/3t) .

Our main objective in this work is to analyze the long time behavior of the semi-group
associated with A0,c. If one assumes that the magnetic field induced by the current is
negligible, the following simplified elliptic operator is obtained from (1.8)

B = −∆ + icy .

In [3] it is shown that one can obtain the spectral properties of B in large two or three-
dimensional bounded domains, by analyzing first a pair of one-dimensional problems for
functions which depend on y only and involve the so called complex Airy operator

D2
y + icy

on R or R+. Obviously, for the present operator (1.8), it is impossible to find a meaningful
one-dimensional setting which could teach us anything about the properties of A0,c. Thus,
we have to discuss two-dimensional settings as our basic problems, imposing a significant
complication on the spectral analysis. We shall therefore confine the present discussion
to samples capturing the whole plane. We leave the analysis of the effect of boundaries
to future researches.

Applying to (1.7) the transformation

u→ u eicyt
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yields

∂tu = ∂xxu+
(
∂y − i(

1

2
x2 + ct)

)2
u+ λu . (1.9)

Note that by applying the partial Fourier transform in y,

û(x, ω, t) =
1√
2π

∫

R

e−iωyu(x, y, t) dy , (1.10)

to (1.9) we obtain

∂tû = ∂xxû−
[(1

2
x2 + (ct− ω)

)2

− λ

]
û . (1.11)

The above can in turn be rewritten as a family (depending on ω ∈ R) of time-dependent
problems on R

∂tû = −Lβ(t,ω)û+ λû , (1.12)

with Lβ being the well-known anharmonic oscillator [22] :

Lβ = −∂xx + (
1

2
x2 + β)2 , (1.13)

and
β(t, ω) = ct− ω .

From this point we may proceed by translating t by −ω/c, i.e. by setting

τ = t− ω

c
, v(x, τ) = û(x, t) (1.14)

to obtain from (1.12) the following

∂τv(x, τ) = −(Lcτv)(x, τ) + λv(x, τ) . (1.15)

The initial condition at t = 0 is then prescribed at

τ = −ω
c
.

Hence the dependence on ω appears only through the time at which the initial condition
is set up.

The main result of this work is that all solutions of (1.5) decay exponentially fast as
t → ∞, for every J 6= 0. This means that the normal state ψ ≡ 0 is stable even for very
weak currents. The simplest form in which this fact is being displayed in this contribution
is (4.2). We bring it here in terms of the physical variables and parameters in (1.5):

‖ψ(t)‖L2(R2) ≤ ‖ψ(t = 0)‖L2(R2) exp
(
− 2

√
2

3

κ2J

σ1/2
t3/2 + κ2t+ Ct3/4

)
, (1.16)

where C is an appropriately chosen positive constant.
The rest of this contribution is arranged as follows. In Section 2, we derive some of the

basic properties of the non-selfadjoint operator introduced in (1.8). In Section 3 we review
some semi-classical properties of the anharmonic operator (1.13) for large β, which will
play a key role in our analysis. In Section 4 we obtain the long-time asymptotic behaviour
of solutions of (1.7) as shown in (1.16), and then apply the estimates obtained there to
control the norm of the resolvent. In Section 5, we propose a finer analysis of (1.7) which
allows us in particular to obtain a lower bound for the norm of the resolvent.
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2. Basic Properties of A0,c

2.1. Preliminaries and maximal accretiveness. Since some of the methods applied
in this section can deal with classes of operators more general than (1.8), we state our
results more generally, and then apply them to A0,c. Denote then by L2(Rn) the space of
real valued functions with finite L2 norm, and L2(Rn,C) the complex valued functions.
To simplify notation we use ‖u‖L2(Rn) to denote the norms in both spaces and

〈u, v〉 =

∫

Rn

uv̄dx

to denote the inner product in them. Let A = (A1, · · · , An) ∈ C∞(Rn,Rn) and V ∈
C∞(Rn,C). Define

∇2
A

=
n∑

j=1

(∂xj
− iAj)

2, PA,V = −∇2
A

+ V (x). (2.1)

Then ∇2
A, and PA,V are well-defined in C∞

c (Rn,C). The operator PA,V with domain
C∞

0 (Rn) is closable and hence we can define

P = PA,V (2.2)

as its closure. By the definition, the domain of P , D(P), is the closure of C∞
0 (Rn,C)

under the graph norm

u 7→ (‖u‖2
L2(Rn) + ‖Pu‖2

L2(Rn))
1/2.

We study here the mapping properties of this operator and its spectrum. The operator
A0,c, introduced in (1.8), clearly belongs to the class (2.1) via the particular choice

n = 2 , A1(x, y) = 0 , A2(x, y) = −x
2

2
, V (x, y) = icy , c ∈ R \ {0} . (2.3)

Hence, we can derive from the spectral properties of P the spectral properties of

A = A0,c . (2.4)

Semi-boundedness.

Clearly, for all u ∈ C∞
0 (Rn,C), we have

〈PA,V u, u〉 = 〈−∇2
A
u, u〉 + 〈V u, u〉 = ‖∇Au‖2

L2(Rn) +

∫

Rn

V |u|2dx . (2.5)

Assuming on ReV ≥ 0, we can introduce the bottom of the numerical range

E∗ = inf
u∈C∞

c (Rn,C)\{0}

Re 〈PA,V u, u〉
‖u‖2

L2(Rn)

. (2.6)
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Note that E∗ is the bottom of the spectrum of 1
2
(P + P∗) (where P is given in (2.2) and

P∗ is the conjugate of P), which is the bottom of the spectrum of the (unique) selfadjoint
realization of −∇2

A
+ ReV :

E∗ := inf σ(PA,Re V ) ≥ 0 . (2.7)

In the particular case where (2.3) is satisfied, E∗ is the bottom of the selfadjoint operator

D2
x + (Dy + x2

2
)2. As we shall see in the next section, we have in this case

E∗ = inf
β∈R

inf σ
(
D2

x + (β +
x2

2
)2

)
. (2.8)

Theorem 2.1. Consider the magnetic Schrödinger operator P defined in (2.2) on R
n

with A ∈ C∞(Rn,Rn) and V ∈ C∞(Rn,C) such that

ReV (x) ≥ 0 . (2.9)

Then the operator P − E∗ is maximally accretive. Moreover

P = (PA,V̄ )∗ . (2.10)

The proof of this theorem is given in the next subsection.

2.2. Proof of maximal accretiveness. By the definition of E∗, PA,V − E∗ is positive
on C∞

0 (Rn). Hence the main point for the proof of Theorem 2.1 is to apply Lumer-Phillips
theorem for closable operators (see [8, theorem 8.3.5]) to PA,V − E∗ and PA,V̄ − E∗. By
this theorem, if the range of (PA,V − E∗ + γ) is dense in L2(Rn,C) for some γ > 0,
then P − E∗ is the generator of a one-parameter contracting semigroup, and hence also
maximally accretive. This reduces the proof of Theorem 2.1 to the following proposition:

Proposition 2.2. Under the condition (2.9), for any γ > 0, (PA,V −E∗+γ) (C∞
0 (Rn,C))

is dense in L2(Rn,C).

Proof. Changing V into V − E∗ if necessary, we can assume that E∗ = 0. We rely on a
proof given in [12] to a similar statement appearing in the proof of essential selfadjointness
of PA,V in the case when V is real. Suppose that f ∈ L2(Rn,C) is such that

〈f, (PA,V + γ)u〉 = 0 for all u ∈ C2
0(Rn,C). (2.11)

Proving that f ≡ 0 would achieve our goal.
We first observe that (2.11) implies that

(−∇2
A

+ V̄ + γ)f = 0

in the sense of distributions. Standard elliptic regularity theory for the Laplacian (with
our assumptions on V and A in mind) implies then that f ∈ H2

loc(R
n,C). We now

introduce a family of cut-off functions, ζk , by

ζk(x) := ζ(
x

k
), for all k ∈ N,

where ζ ∈ C∞
0 (Rn,C) satisfies 0 ≤ ζ ≤ 1 , ζ = 1 on the unit ball B1(0) and Supp ζ ⊂

B2(0) , where BR(x0) denotes the ball with center at x0 and radius R. For any u ∈
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C∞
0 (Rn,C) we have the identity

∫

Rn

{∇A(ζkf) · ∇A(ζku) + ζ2
k V̄ f ū}dx

=
〈
f, (PA,V + γ)(ζ2

ku)
〉

+

∫

Rn

{|∇ζk|2fū+ ζk∇ζk · [f∇Au− ū∇Af ]}dx.
(2.12)

Since f satisfies (2.11) we obtain
∫

Rn

{∇A(ζkf) · ∇A(ζku) + ζ2
k(V̄ + γ)fū}dx

=

∫

Rn

{|∇ζk|2fū+ ζk∇ζk · [f∇Au− ū∇Af ]}dx .

This formula can be extended by continuity to all functions u ∈ H1
loc(R

n,C) . In particular,
letting u = f and taking the real part of the above identity we obtain

‖∇A(ζkf)‖2
L2(Rn) +

∫

Rn

ζ2
k(ReV + γ)|f |2 dx =

∫

Rn

|∇ζk|2|f |2 dx ,

hence, by (2.9),

γ

∫

Rn

ζ2
k |f |2 dx ≤

∫

Rn

|∇ζk|2|f |2 dx .

Using this and the definition of ζk , and taking the limit k → ∞ , we obtain

γ‖f‖2
L2(Rn) = γ lim

k→∞
‖ζkf‖2 ≤ lim sup

k→∞

∫

Rn

|∇ζk|2|f |2 dx = 0 ,

furnishing, thereby, the density of the range of PA,V + γ in L2(Rn,Rn).

Theorem 2.1 permits us to apply some results of semi-group theory and of the theory of
maximally accretive operators. We refer to [8] for a recent presentation of the first theory
(and particularly Theorem 8.3.5) and to [18, Theorem 5.4] for the second. The following
proposition gives a simple description of the domain D(P) of P (see the definition of
D(P) given at the beginning of Section 2).

Proposition 2.3. Let P be the operator defined in (2.2) and D(P) be the domain of P.
Then,

D(P) = {u ∈ L2(Rn,C) : PA,V u ∈ L2(Rn,C)}. (2.13)

We now observe that (2.6) implies by Hille-Yosida Theorem (or Theorem 12.8 in [2])
that, for λ such that Reλ > −E∗, the operator P + λ : D(P) → L2(Rn,C) is an
isomorphism and

‖(P + λ)−1‖ ≤ (Reλ+ E∗)−1. (2.14)
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2.3. Compactness of the resolvent. Although more general results have been obtained
for example in [17] for the selfadjoint case, in [19] for the polynomial case, or in [18] for
the case of Fokker-Planck operators, the next criterion is sufficient for all purpose we have
in mind.

Proposition 2.4. Let A ∈ C∞(Rn,Rn) and let V ∈ C∞(Rn,C) satisfy (2.9). Let B =
curlA and

mB,V (x) :=
√
|B(x)|2 + |V (x)|2 + 1. (2.15)

Suppose that

lim
|x|→∞

mB,V (x) = +∞, (2.16)

and that either
(i) ImV , and Bkℓ do not change sign in R

n for all 1 ≤ k, ℓ ≤ n.
or
(ii) there exists a constant C0 such that for all x ∈ R

n

|∇V (x)| +
∑

i,k,ℓ

|∂iBkℓ(x)| ≤ C0mB,V (x) . (2.17)

Then, P has a compact resolvent.

Proof. It is enough to show the existence of a constant C such that, for all u ∈ C∞
0 (Rn,C),

∫

Rn

mB,V (x)|u(x)|2dx ≤ C{‖PA,V u‖2
L2(Rn) + ‖u‖2

L2(Rn)}. (2.18)

In the following we write m(x) for mB,V (x) and write ReV = V1, ImV = V2 in order to
simplify the notation. Using the condition (2.9) we have, for all u ∈ C∞

0 (Rn,C),
∫

Rn

{|∇Au|2 + |V1||u|2}dx = Re 〈PA,V u , u〉 ≤
1

2
{‖PA,V u‖2

L2(Rn) + ‖u‖2
L2(Rn)}. (2.19)

In the following we estimate the integrals
∫

Rn

|V2||u|2dx and

∫

Rn

|Bkℓ||u|2dx , ∀(k, ℓ) ∈ {1, . . . , n} × {1, . . . , n} .

Suppose first that V2 has constant sign. In this case we immediately have, for all
u ∈ C∞

0 (Rn,C),
∫

Rn

|V2||u|2dx ≤
∣∣〈PA,V u , u〉

∣∣ ≤ 1

2
{‖PA,V u‖2

L2(Rn) + ‖u‖2
L2(Rn)}. (2.20)

Without this sign assumption, we use integration by parts to obtain

Im 〈PA,V u , m
−1V2u〉 = Im

∫

Rn

(∇− iA)u · ∇(m−1V2)ū dx+

∫

Rn

m−1V 2
2 |u|2dx,

and hence

Im 〈PA,V u , m
−1V2u〉

≥
∫

Rn

m−1V 2
2 |u|2dx− sup

x∈Rn

|∇(m−1V2)|‖u‖L2(Rn)‖∇Au‖L2(Rn) .
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Using (2.17) and (2.19), we then obtain, for all u ∈ C∞
0 (Rn,C),

∫

Rn

|V2||u|2dx ≤
∫

Rn

m−1V 2
2 |u|2dx ≤ C{‖PA,V u‖2

L2(Rn) + ‖u‖2
L2(Rn)}, (2.21)

where C depends on the constant C0 in (2.17).
To control the magnetic field part, suppose again first that a component Bkℓ has a

constant sign. In this case we use the operator identity ([·, ·] being the Poisson bracket)

Bkℓ = i[∂xk
− iAk, ∂xℓ

− iAℓ] , (2.22)

to obtain that∫

Rn

∣∣Bkℓ

∣∣|u|2 dx ≤2‖(∂xℓ
− iAℓ)u‖L2(Rn) · ‖(∂xk

− iAk)u‖L2(Rn)

≤| 〈PA,V u , u〉 | ≤
1

2
(‖PA,V u‖2

L2(Rn) + ‖u‖2
L2(Rn)).

(2.23)

In case (ii), we use (2.22) once again to obtain
∫

Rn

m−1B2
kℓ|u|2 dx = i

∫

Rn

{[∂xk
− iAk, ∂xℓ

− iAℓ]u} · (m−1Bkℓū) dx

=i

∫

Rn

m−1Bkl{[(∂xl
− iAl)u][(∂xk

− iAk)u] − [(∂xk
− iAk)u][(∂xl

− iAl)u]}dx

+ i

∫

Rn

ū{[(∂xl
− iAl)u]∂xk

(m−1Bkl) − [(∂xk
− iAk)u]∂xl

(m−1Bkl)}dx

≤ C
{
‖(∂xℓ

− iAℓ)u‖L2(Rn)‖(∂xk
− iAk)u‖L2(Rn)

+ (‖(∂xℓ
− iAℓ)u‖L2(Rn) + ‖(∂xk

− iAk)u‖L2(Rn))‖u‖L2(Rn) sup
x∈Rn

|∇(m−1Bkℓ)|
}
.

As before this and the condition (2.17) lead to
∫

Rn

|Bkℓ||u|2 dx ≤
∫

Rn

m−1B2
kℓ|u|2 dx ≤ C{‖PA,V u‖2

L2(Rn) + ‖u‖2
L2(Rn)) , (2.24)

for all u ∈ C∞
0 (Rn). Combining (2.19), (2.20), (2.21), (2.23), (2.24), we get (2.18).

Note that the same proof gives

Proposition 2.5. Assume A ∈ C∞(Rn,Rn) and V ∈ C∞(Rn,C) and the conditions (2.9)
and (2.17) hold. Let P = PA,V . Then we have

D(P) ⊂ H1
A,V (Rn,C) := {u ∈ L2(Rn,C) , ∇Au ∈ L2(Rn,Cn) , |V |1/2u ∈ L2(Rn,C)} ,

(2.25)
and there exists a constant C depending on the constant C0 in (2.17) such that

‖∇Au‖2
L2(Rn)+

∫

Rn

|V (x)||u(x)|2 dx ≤ C{‖PA,V u‖2
L2(Rn)+‖u‖2

L2(Rn)}, ∀u ∈ D(P) . (2.26)

Corollary 2.6. Let A = A0,c be the operator on R
2 defined in (2.4) where c 6= 0. Then

σ(A) = ∅.
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Proof. From Proposition 2.4 we see that A has a compact resolvent. Hence it has a
discrete spectrum. For some a ∈ R, we now introduce the translation operator Ta defined
by

(Tau)(x, y) = u(x, y − a),

to obtain :

TaA = (A + ia)Ta. (2.27)

Consequently, if σ(A) 6= ∅ then σ(A) is not discrete.

Note that the same result holds for the complex Airy operator D2
x + ix on R, for which

the emptiness of the spectrum has been established, using various techniques, in several
other contributions including [3, 8, 21].

2.4. L∞(Rn) spectral pairs. We now move to consider bounded generalized eigenfunc-
tions of the operator PA,V . We say that (ψ, λ) is an L∞-spectral pair for the operator
PA,V if λ ∈ C and ψ ∈ L∞(Rn,C) \ {0} is a solution, in the sense of distributions, of

(PA,V − λ)ψ = 0 . (2.28)

Theorem 2.7. Assume A ∈ C∞(Rn,Rn) and V ∈ C∞(Rn,C) and the conditions (2.9)
and (2.17) hold. If (ψ, λ) is an L∞-spectral pair of the operator PA,V , then λ ∈ σ(P),
where P = PA,V .

Proof. Let (ψ, λ) denote an L∞-spectral pair of the operator PA,V , and suppose λ 6∈ σ(P).
We shall derive a contradiction.

As the operator PA,V is elliptic and A and V are of class of C∞, it is clear that ψ is
a C∞-function. The proof is reminiscent of the so-called Schnol’s theorem [7]. Consider,
for R ≥ 1, a family of cut-off functions

χR = χ(
x

R
) ,

with χ being a non-negative smooth function satisfying χ = 1 on the ball of radius 1,
and with compact support in a ball of radius 2. Set ψR := χRψ. It is clear from the
assumption that ψR belongs to L2(Rn,C), with

‖ψR‖L2(Rn) ≤ C Rn/2 ‖ψ‖L∞(Rn). (2.29)

We shall now show that if λ 6∈ σ(P), then there exist k > 0 and Ck > 0 depending on λ
such that, for all R ≥ 1, we have

‖ψR‖L2(Rn) ≤ C R−k . (2.30)

Once the above inequality is proved, letting R → +∞ will lead to a contradiction.

Proof of (2.30). From (2.29) we see that there exist k0 ∈ R and C0 > 0 such that (2.30)
holds for k = k0 and C = C0. We now show that there exists C1 such that (2.30) holds
for k = k0 + 1 and C = C1. To this end we first observe that χRψ satisfies the following
equation in the sense of distributions

(PA,V − λ)(χRψ) = −2(∇χR) · (∇Aψ) − (∆χR)ψ . (2.31)
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It is immediately seen (using the local regularity of PA,V ) that the right hand side is
in L2(Rn,C) and consequently that ψR ∈ D(P). To obtain an effective estimate for the
L2-norm of this right hand side we take the scalar product of (2.31) with χRψ, integrating
by parts, and then taking real part, to obtain

Re 〈(PA,V − λ)(χRψ), χRψ〉 = ‖(∇χR)ψ‖2
L2(Rn). (2.32)

Using the assumption that ReV ≥ 0, and the fact that ∇χR is supported in a ball with
radius 2R, we have

∫

Rn

|∇AψR|2dx ≤ ‖(∇χR)ψ‖2
L2(Rn) + |Reλ|‖ψR‖2

L2(Rn)

≤C ′R−2‖ψ2R‖2
L2(Rn) + |Reλ|‖ψR‖2

L2(Rn) ≤ C ′R−2C0(2R)−2k0 + |Reλ|C2
0R

−2k0 .

Hence we can find positive constants C and Ĉ depending on λ, such that for any R ≥ 1

‖∇A(χRψ)‖L2(Rn) ≤ C0CR
−(k0+1) + |Reλ|C0R

−k0 ≤ Ĉ R−k0 . (2.33)

Then, we have from (2.31) and (2.33) (with R replaced by 3R)

‖(P − λ)(χRψ)‖L2(Rn) ≤ CR−(k0+1) . (2.34)

By the assumption λ is not in the spectrum of P , so there exists C1 > 0 depending on λ
such that (2.30) is satisfied for k = k0 + 1 and C = C1.

Thus, we can repeat the above argument to show that there exists a constant C2 de-
pending on λ such that (2.30) holds for k = k0 + 2 and C = C2. After a finite number of
iterations we reach the conclusion that (2.30) holds form some k > 0.

Corollary 2.8. For any c 6= 0, there is no L∞ spectral pair (ψ, λ) for A0,c.

Proof. We have indeed σ(A) = ∅ for A = A0,c as proven in Corollary 2.6. Combining this
with Theorem 2.7 we see that no L∞ spectral pair for A0,c exists.

3. The Anharmonic Oscillator

In this section we consider the operator

Lβ = − d2

dx2
+

(1

2
x2 + β

)2
, (3.1)

which is the well-known anharmonic oscillator [22, 26]. We consider its selfadjoint real-
ization on L2(R). It is well known that this operator has a compact resolvent, and we are
particularly interested in the limiting behaviour as β → ±∞ of its discrete spectrum.
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3.1. Large |β| asymptotics of the first eigenvalues. The next proposition lists a few
properties of the eigenvalues and the eigenfunctions of Lβ in L2(R) in the limit β → −∞.

Proposition 3.1. Let {E(1)
k (β)}∞k=0 (respectively {E(2)

k (β)}∞k=0) denote the eigenvalues of

Lβ corresponding to the even (respectively odd) spectrum and {φ(1)
k (x, β)}∞k=0 (respectively

{φ(2)
k (x, β)}∞k=0) denote their corresponding eigenmodes in L2(R), i.e.,

Lβφ
(ℓ)
k = E

(ℓ)
k φ

(ℓ)
k in R , (3.2)

with ‖φ(ℓ)
k ‖L2(R) = 1, ℓ = 1, 2. Then we have the following conclusions.

(i) For all S ∈ (0, 4
√

2
3

) and k ≥ 0, there exist Ck > 0 and βk < 0 such that, for β ≤ βk

it holds that

0 ≤ E
(2)
k (β) − E

(1)
k (β) ≤ Cke

−S|β|3/2

.

(ii) For any k ≥ 0, we have, for sufficiently large −β and for ℓ = 1, 2,

|E(ℓ)
k (β) − (2k + 1)

√
−2β| ≤ Ck

|β| , (3.3)

and
∣∣(E(ℓ)

k )′(β)
∣∣ ≤ Ck√−β . (3.4)

(iii) For sufficiently large −β and for all k ≥ 0, ℓ = 1, 2, we can choose the φ
(ℓ)
k such

that

∥∥φ(ℓ)
k (x, β) − 1√

2

[
|2β|1/8hk

(
|2β|1/4(x−

√
−2β)

)]∥∥
L2(R)

≤ Ĉk

|β|3/4
, (3.5)

where

hk(x) = Hk(x)e
−x2/2,

and Hk is the k’th Hermite polynomial, normalized by the condition ‖hk‖L2(R) = 1,

and Ĉk depends only on k.

Proof. We omit from now on the superscript (ℓ) to simplify the notation. The statements
in the sequel (in this specific limit) are equally true for both the even and the odd cases.

Except for (3.4) all the statements of the proposition have been proved in [13, 14, 26]
(sometimes in a refined way, see [16, Chapters 2-4]).

Note that after an appropriate dilation we arrive at a standard semi-classical problem
with the semiclassical parameter

~ = |β|−3/2.

More precisely, by introducing the new coordinate

x̃ = β−1/2x,

we obtain the operator

β2(−~
2 d

2

dx̃2
+W (x̃)), with W (x̃) = (

1

2
x̃2 − 1)2.
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To prove (3.4), we take the derivative of (3.2) with respect to β and obtain

(Lβ − Ek)
∂φk

∂β
=

(
−(x2 + 2β) + E ′

k(β)
)
φk.

Taking inner product with φk yields the following Feynman-Hellmann formula [11]:

E ′
k(β) =

∫

R

(x2 + 2β)|φk(x, β)|2 dx.

Then, (3.4) is readily verified with the aid of (3.5) and the decay properties of φk far from
x = ±√−2β.

Similar approximations are valid in the limit β → +∞.

Proposition 3.2. For the above-defined {E(ℓ)
k (β)}∞k=0 and {φ(ℓ)

k (x, β)}∞k=0 we have, as
β → +∞, the asymptotics

∣∣E(ℓ)
k (β) − β2 − [2(2k + ℓ) − 1]β1/2

∣∣ ≤ Ck

β
, (3.6a)

and

‖φ(ℓ)
k (x, β) − |β|1/8h2k+ℓ−1(|β|1/4x)‖L2(R) ≤

Ĉk

|β|3/2
. (3.6b)

In contrast with the case β → −∞, the Schrödinger operator (3.1) with β > 0 has a
single well potential. The proof is again a standard application of semi-classical analysis
(see [16, Section 3.4] for instance).

In the following we denote

E0(β) = E
(1)
0 (β),

which is the lowest eigenvalue of Lβ. By (3.3) and (3.6), and since Lβ is positive-definite,
it is clear that E0(β) has a strictly positive infimum E∗,

E∗ = inf
β∈R

E0(β), (3.7)

and that there exists at least one β∗ < 0 such that

E∗ = E0(β
∗) .

In [22] the values of E∗ and β∗ have been numerically computed. In [24] Pan and Kwek
stated that β∗ is unique. In a recent contribution Helffer [15] proved, using a different
approach, that β∗ is indeed unique and that in addition the minimum is non degenerate.

3.2. Auxiliary functions of E0. For later use, we define some auxiliary quantities de-
pending on the behavior of E0(β) as |β| → ∞. For sufficiently large ρ the equation

E0(β) = ρ, (3.8)

has exactly two distinct solutions β−(ρ) and β+(ρ) satisfying

β−(ρ) < 0 < β+(ρ).
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Moreover, we have the following asymptotics by (3.3) and (3.6)

β−(ρ) ∼ −ρ
2

2
+ O(ρ−1), β+(ρ) ∼ √

ρ+ O(ρ−1/4) as ρ→ +∞. (3.9)

We then define the natural quantity

Ψ(ρ) =

∫ β+(ρ)

β−(ρ)

E0(β) dβ . (3.10)

By (3.3), (3.6), and (3.9) we have (cf. [23, section 1.2] or [5, section 3.8]), as ρ→ +∞

Ψ(ρ) =
1

3

(
ρ3 + ρ3/2

)
+ O(ln ρ) . (3.11)

We further define the quantity ρ(τ) as the solution of

β+(ρ(τ)) − β−(ρ(τ)) = τ , (3.12)

which has the asymptotics (by (3.9))

ρ(τ) ∼
√

2τ + O(τ−1/4) as τ → +∞. (3.13)

Then we set

Ψ̂(τ) = Ψ(ρ(τ)). (3.14)

We observe from (3.11) and (3.13) that

Ψ̂(τ) =
2
√

2

3
τ 3/2 + O(τ 3/4) as τ → +∞. (3.15)

Finally, we define the function

L(Ψ̂, c, µ) = sup
t∈R

(
µt− 1

c
Ψ̂(ct)

)
. (3.16)

Observe first that

L(Ψ̂, c, µ) =
1

c
L(Ψ̂, 1, µ). (3.17)

Hence, in order to compute (3.16) as µ → ∞, we need to approximate only L(Ψ̂, 1, µ),

which is called the Legendre transform of Ψ̂ (see [25, chapter 11]).
Using (3.10) and (3.14), together with a short computation, gives that for sufficiently

large µ, when c = 1, the supremum in (3.16) is attained at t = t(µ) which is defined by

t(µ) = β+(µ) − β−(µ),

and that

L(Ψ̂, c, µ) =
1

c

∫ β+(µ)

β−(µ)

(µ− E0(β)) dβ . (3.18)

The asymptotics of L(Ψ̂, c, µ) for large µ can be derived by using (3.9), (3.10) and (3.11):

L(Ψ̂, c, µ) =
µ3

6c
+ O(µ3/2) as µ→ +∞. (3.19)
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4. Analysis on Time-Dependent Problems

4.1. Long time decay. We start this section by considering the long time behaviour
of the solutions of (1.9). Using the properties of the operator A0,c that were derived in
section 2, we can apply semigroup theory to prove the global existence of solutions [8]. Our
goal here is to improve the general results of semi-group theory using the more particular
structure of the operator A in (2.4).

Let u(x, y, t) be a solution of (1.9) in R
2. We denote by u(t) the one-parameter family

of functions (x, y) → u(x, y, t). Their norm is given by

‖u(t)‖L2(R2) =

(∫

R2

|u(x, y, t)|2dxdy
)1/2

.

Proposition 4.1. Let u(x, y, t) be a solution of (1.9) defined for all t ≥ 0 such that

u(x, y, 0) = u0(x, y) ∈ L2(R2,C).

Then there exists T0 > 0 such that, for any t ≥ T0 and any u0 ∈ L2(R2),

‖u(t)‖L2(R2) ≤ exp
(
−1

c
Ψ̂(ct) + λt

)
‖u0‖L2(R2), (4.1)

with Ψ̂ introduced in (3.10) and (3.14). As a consequence there exists a constant C > 0
such that for t ≥ T0 and any u0 ∈ L2(R2,C),

‖u(t)‖L2(R2) ≤ exp(−2
√

2c

3
t3/2 + λt+ Ct3/4)‖u0‖L2(R2). (4.2)

Proof. We prove (4.1) first for u0 ∈ S(R2) (where S(R2) denotes the Schwartz space of
the rapidly decreasing functions in x, y). The extension to all u0 ∈ L2(R2,C) then follows
by density. Thus, it is sufficient to prove (4.1) for the partial Fourier transform of u with
respect to y which is denoted by

(x, ω, t) 7→ û(x, ω, t).

For given ω, we multiply (1.11) by ¯̂u(x, ω, t) (the complex conjugate of û), and integrate
the resulting equality over R with respect to x to obtain

1

2

d

dt
‖û(·, ω, t)‖2

L2(Rx) = −〈û(·, ω, t) , Lct−ωû(·, ω, t)〉 + λ‖û(·, ω, t)‖2
L2(Rx),

where Lβ is defined by (3.1), and 〈·, ·〉 denotes the L2(Rx) inner product. Clearly,

〈û(·, ω, t),Lct−ωû(·, ω, t)〉 ≥ E0(ct− ω)‖û(·, ω, t)‖2
L2(Rx),

where E0(β) = E
(1)
0 (β) is defined in section 2. Consequently, we have

d

dt
‖û(·, ω, t)‖2

L2(Rx) ≤ 2(λ− E0(ct− ω))‖û(·, ω, t)‖2
L2(Rx).

Hence, it readily follows that, for any t > t0 ≥ 0,

‖û(·, ω, t)‖2
L2(Rx) ≤ ‖û(·, ω, t0)‖2

L2(Rx) exp
(
2
[
λ(t− t0) −

∫ t

t0

E0(cs− ω)ds
])
. (4.3)
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Setting t0 = 0, integrating over ω, and making use of the Plancherel formula, we obtain

‖u(t)‖L2(R2) ≤ exp
(
λt− inf

ω∈R

Φ(ω, t)
)
‖u0‖L2(R2), (4.4)

with

Φ(ω, t) :=

∫ t−ω/c

−ω/c

E0(cs) ds =
1

c

∫ ct−ω

−ω

E0(β) dβ. (4.5)

Hence, it remains necessary to estimate the quantity

inf
ω∈R

Φ(ω, t). (4.6)

In view of the asymptotic behaviour, as |β| → ∞, of E0(β) it follows that, for any given
t, the infimum (4.6) exists and must be attained at a point ω = ω1(t) ∈ R such that

∂

∂ω
Φ(ω, t)

∣∣∣
ω=ω1(t)

= 0,

implying that

E0(−ω1) = E0(ct− ω1).

Then we may use (3.8) to obtain for sufficiently large t that, the number ρ = E0(−ω1)
satisfies

β−(ρ) = −ω1, β+(ρ) = ct− ω1 .

By these equalities, (4.5) and (3.10) we then have

Φ(ω1, t) =
1

c

∫ β+(ρ)

β−(ρ)

E0(β)dβ =
Ψ(ρ)

c
, ρ = E0(−ω1). (4.7)

However, as

β+(ρ) − β−(ρ) = ct ,

ρ = E0(−ω1) is the solution of (3.12) for τ = ct, so

E0(−ω1) = ρ = ρ(ct).

So we obtain from (4.7) and (3.14) that

Φ(ω1, t) =
Ψ(ρ(ct))

c
=

Ψ̂(ct)

c
,

which, together with (4.4), establishes (4.1).
Using (3.15), we obtain (4.2) as well.

Coming back to (4.3), one can define a one-parameter semigroup

St = exp(−tA) (4.8)

on L2(R2,C) associated to the operator A = A0,c introduced in (2.4), such that the
solution of (1.9) with initial data is given by

u(x, y, t) = Stu(x, y, 0). (4.9)

As a direct consequence of Proposition 4.1 with λ = 0 we have:
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Theorem 4.2. Let A be the operator defined in (2.4). Then there exists T0 > 0 such that
for any t ≥ T0 we have

‖ exp(−tA)‖ ≤ exp
(
−Ψ̂(ct)

c

)
. (4.10)

In particular, there exists a constant C > 0 such that, for t ≥ T0,

‖ exp(−tA)‖ ≤ exp
(
−2

√
2c

3
t3/2 + Ct3/4

)
. (4.11)

Remark 4.3. It follows from Theorem 4.2 and [8, Theorem 8.2.1] that A has an empty
spectrum. We provide another proof of this fact in section 2.

4.2. Upper bounds of the resolvent with large |λ|. We look for a bound for the
norm of the resolvent (A− λ)−1 with large |λ| for the operator A defined in (2.4), where
λ is a complex number. Let

λ = µ+ iν, (4.12)

with both µ and ν being real. Without loss of generality we can set ν = 0, otherwise we
translate y by ν/c (that is, mapping y → y + ν/c). For A0,c with real constant c we have
E∗ ≥ 0 (see the definition of E∗ for A0,c in (2.6)). So from (2.14) we see that for λ < 0,

‖(A− λ)−1‖ ≤ 1

|λ| . (4.13)

On the other hand, as λ→ +∞ we have the following estimate.

Lemma 4.4. For the operator A defined in (2.4), there exist positive constants λ0 and C
such that, for all λ > λ0,

‖(A− λ)−1‖ ≤ exp
( 1

6c
λ3 + Cλ3/2

)
. (4.14)

Proof. We use the formula relating the semi-group and the resolvent given in the book
[8] :

(A− λ)−1 =

∫ +∞

0

exp(λt)St dt, (4.15)

with
St = exp(−tA). (4.16)

Using (4.10), we get the universal upper bound

‖(A− λ)−1‖ ≤
∫ +∞

0

exp
(
λt− Ψ̂(ct)

c

)
dt. (4.17)

Using (4.11) and the substitution
t = λ2τ

we obtain

‖(A− λ)−1‖ ≤ λ2

∫ +∞

0

exp
(
λ3

(
τ − 2

√
2c

3
τ 3/2 + Cλ−3/2τ 3/4

))
dτ . (4.18)

The integral on the right hand side can be estimated using Laplace method (see [23,
chapter 2] for instance) to obtain (4.14).
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Remark 4.5. One can improve the upper bound of the norm of the resolvent in (4.14) by
using (3.15)-(3.19) and using an estimate with greater accuracy the Legendre transform

of Ψ̂(ct). The Laplace integral method can then provide better estimates for the right hand
side of (4.18).

5. Long Time Asymptotics for the Fourier Transform and Applications

5.1. Technical preliminaries. In this section we look for a finer estimate of the norm
of the resolvent of A. We shall work on the equation (1.15) which is obtained first making
Fourier transform to the equation (1.9) and then making translation after fixing ω as a
parameter. To obtain with greater accuracy the asymptotics of solutions for (1.15), we
need to obtain some additional spectral properties of the anharmonic oscillator (1.13).
We use semi-classical analysis to obtain these properties, which all involve asymptotics in
the limit |β| → ∞.

Let E
(ℓ)
k (β), ℓ = 1, 2, k = 0, 1, 2, · · · be the eigenvalues of the operator Lβ introduced in

section 3, and φ
(ℓ)
k be the associated eigenfunctions of unit L2 norm. Since the following

discussion is valid for both ℓ = 1 and 2, and we omit the superscript ℓ in the sequel,

namely, we replace E
(ℓ)
k (β) and φ

(ℓ)
k by Ek(β) and φk. Then, we set

∆̂k(β) = Ek(β) − E0(β) . (5.1)

We have seen from Proposition 3.1 that

∆̂1(β) = 2
√
−2β + O(|β|−1) as β → −∞. (5.2)

We further introduce

gk(β) =

[ ∞∑

m=2

∣∣∣∣
1

Em(β) − Ek(β)

∫

R

x2φk(x, β)φm(x, β)dx

∣∣∣∣
2
]1/2

, k = 0, 1 , (5.3)

and

f(β) =
1

∆̂1(β)

∫

R

x2φ1(x, β)φ0(x, β)dx . (5.4)

Finally, let

g(β) = [g2
0(β) + f 2(β)]1/2 . (5.5)

The following result will be useful in the next subsection.

Lemma 5.1. There exist α 6= 0, C > 0 and β0 > 0 such that
∣∣∣f(β) − α|β|−1/4

∣∣∣ ≤ C|β|−1, ∀β < −β0, (5.6a)

|f ′(β)| ≤ C |β|−5/4, ∀β < −β0, (5.6b)

|g0(β)| ≤ C |β|−1, ∀β < −β0, (5.6c)

|g1(β)| ≤ C |β|−1/4, ∀β < −β0. (5.6d)

g(β) < Cβ−3/2 ∀β > β0, (5.6e)
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Note that (5.6e) is related to the asymptotic behaviour of the anharmonic oscillator in
the limit β → +∞, in contrast with the rest of the statements that deal with the limit
β → −∞.

Proof. Proof of (5.6a). We observe that, since {φk(·, β)}∞k=0 are orthogonal to each other,
∫

R

x2φj(x, β)φk(x, β)dx =

∫

R

(x2 + 2β)φj(x, β)φk(x, β)dx, j 6= k. (5.7)

By (3.5), and the exponential rate of decay of φ0 and φ1 away from x = ±√−2β (see for
instance in [16, chapter 3]) we have

‖(x2 + 2β)φk‖L2(R) = ‖(x+
√
−2β)(x−

√
−2β)φk‖L2(R) ≤ Cβ1/4, for k = 0, 1. (5.8)

(5.6a) is easily verified using (3.5) and (5.2).

Proof of (5.6b). We first write, for i = 0, 1,

〈
x2φi,

∂φ1−i

∂β

〉
=

∞∑

k=0

〈x2φi, φk〉
〈∂φ1−i

∂β
, φk

〉
. (5.9)

Here 〈·, ·〉 denotes the inner product in L2(R). We then use the fact that ‖φj‖L2(R) = 1
and differentiate (3.2) with k = j in β to obtain

〈∂φj

∂β
, φk

〉
=

{
− 1

Ek−Ej
〈x2φj, φk〉 if k 6= j,

0 if k = j.
(5.10)

Substituting (5.10) with j = 1 − i into (5.9) yields

f ′(β) = −∆̂′
1(β)

∆̂2
1(β)

f(β) − 1

∆̂1(β)

∞∑

k=2

( 1

Ek − E0

+
1

Ek − E1

)
〈x2φ0, φk〉〈x2φ1, φk〉. (5.11)

The first term in the right side of (5.11) can be easily estimated. To control the second
term we recall that the sequence {Ek} is monotonically increasing, and hence for any
k ≥ 2,

1

∆̂1(β)

( 1

Ek − E0

+
1

Ek − E1

)
≤ 1

∆̂1

2

E2 − E1

.

Using (3.3) we see that the right hand side of the above inequality is controlled by C/|β|
as β → −∞. Hence the second term in the right side of (5.11) is bounded by

C

|β|
[ ∞∑

k=2

|〈x2φ0, φk〉|2
]1/2[ ∞∑

k=2

|〈x2φ1, φk〉|2
]1/2

.

Using (5.7) with β replaced by 2β and then using Parseval equality we have, for k ≥ 2,
∞∑

k=2

|〈x2φ0, φk〉|2 =
∞∑

k=2

|〈(x2 + 2β)φ0, φk〉|2

=
∞∑

k=0

|〈x2φ0, φk〉|2 − |〈(x2 + 2β)φ0, φ0〉|2 − |〈(x2 + 2β)φ0, φ1〉|2

=‖(x2 + 2β)φ0‖2
L2(R) − |〈(x2 + 2β)φ0, φ0〉|2 − |〈(x2 + 2β)φ0, φ1〉|2.
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Now we claim that,

‖(x2 + 2β)φ0‖2
L2(R) − |〈(x2 + 2β)φ0, φ0〉|2 − |〈(x2 + 2β)φ1, φ0〉|2 ≤

C

|β| . (5.12)

This is true due to the orthogonality of all Hermite functions hk for k ≥ 2 with xh0. The
complete proof of (5.12) is given in appendix A. Using (5.12) we get

∞∑

k=2

|〈x2φ0, φk〉|2 ≤
C

|β| . (5.13)

Similarly we have
∞∑

k=2

|〈x2φ1, φk〉|2 =
∞∑

k=2

|〈(x2 + 2β)φ1, φk〉|2 ≤ ‖(x2 + 2β)φ1‖2
L2(R) ≤ C|β|1/2. (5.14)

Here we have used the inequality (5.8). Combining (5.11), (5.13) and (5.14) yields (5.6b).

The proof of (5.6c) and (5.6d) follows in exactly the same manner from (5.8) and (5.12).
Finally we prove (5.6e) by first observing that

g(β) ≤ 1

∆̂1

‖x2φ0‖2
L2(R) .

From (3.6b) we now obtain (5.6e).

5.2. An evolution problem. More detailed information on the solutions u of (1.7) can
be obtained by deriving the large t asymptotic behavior of their (partial) Fourier transform
which satisfies (1.11) or the large τ asymptotic behavior of the solutions of (1.15), with
the relationship between t and τ given by (1.14). Note that in (1.15) the initial value
corresponding to t = 0 is τ = −ω/c, and that −τ might be very large. Hence we need to
separately consider two different regions of the variable τ :

Case 1. 1 ≪ −τ ≤ ω
c
;

Case 2. 1 ≪ τ .
The next proposition deals with the first case. We assume the initial data to be either

even or odd, thus saving the need for marking each eigenvalue and eigenfunction by an
appropriate superscript as in section 3. For a given

T =
ω

c
> 0 (5.15)

and some even L2-normalized function v0 ∈ L2(R), we analyze the properties of the unique
solution v of (1.15) in the region −T < τ < +∞ such that

v(x,−T ) = v0(x), ‖v0‖L2(R) = 1 . (5.16)

We denote by C(T ) the union set of all such solutions with initial data v0 satisfying (5.16).

Remark 5.2. We note that this problem is an evolution problem attached to a τ -dependent
problem. We can no more use the semi-group theory but fortunately our case enters in the
theory developed by Kato for extending Hille-Yosida theorem to time-dependent problems.
We refer to [30, chapter XIV] for a presentation of the theory. We observe that the
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domain of Lcτ is independent of τ and contains C∞
0 (R) as a dense subspace. Moreover if

the initial condition at τ = −T is in S(R) then the solution is in C∞([−T,+∞),S(R)).

Proposition 5.3. For every 0 < δ < 1/2, there exist T0 ≥ 1, T1 ≥ 1, Cδ > 0, Ĉδ > 0 and

T (δ) = T − Cδ

2
T−δ, (5.17)

such that, if
T > T0, −T (δ) ≤ τ ≤ −T1, (5.18)

and if v ∈ C(T ), then there exists C1 such that

∥∥v(·, τ) exp
(
−λ(τ + T ) +

∫ τ

−T

E0(cs) ds
)
− C1

∣∣∣
τ

T

∣∣∣
γ

φ0(·, cτ)
∥∥

L2(R)
≤ Ĉδ |τ |−3/4, (5.19)

and ∣∣C1 − 〈v0, φ0(·,−cT )〉
∣∣ ≤ Ĉδ T

−1/2, (5.20)

where

γ =
|α|2c
2
√

2
, (5.21)

and α is the positive number given in Lemma 5.1.

Proof. We shall use (4.3) to derive the estimates for v(x, τ).

Step 1. We first transform (1.15) into an equivalent equation whose solution is both
bounded and independent of λ. From (1.14), (5.15), (5.16), and using (4.3) (with t0 = 0)
we find that, for −T < τ < −T1,

‖v(·, τ)‖L2(R) ≤ exp
(
λ(τ + T ) −

∫ τ

−T

E0(cs) ds
)
. (5.22)

Set then

w(x, τ) = v(x, τ) exp
(
−λ(τ + T ) +

∫ τ

−T

E0(cs) ds
)
. (5.23)

Clearly, by (5.22) we have
‖w(·, τ)‖L2(R) ≤ 1 . (5.24)

Substituting (5.23) into (1.15), we obtain




∂τw(x, τ) = ∂xxw(x, τ) −

[(1

2
x2 + cτ

)2 − E0(cτ)
]
w(x, τ),

w(x,−T ) = v0(x).
(5.25)

Step 2. We now define an expansion using the eigenfunctions {φk(x, cτ)} of Lcτ , and
derive the equations for the first two coefficients and the remainder.

Set then
ak(τ) = 〈w(·, τ), φk(·, cτ)〉, k ∈ N, (5.26)

where 〈·, ·〉 is the inner product in L2(R,C). Taking the inner product of (5.25) with
φk(x, cτ) and integrating over Rx , we obtain

dak

dτ
(τ) + ∆k(τ)ak(τ) =

〈
w(·, τ), ∂φk

∂τ
(·, cτ)

〉
, (5.27)
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in which
∆k(τ) ≡ ∆̂k(cτ) = Ek(cτ) − E0(cτ) . (5.28)

Since

w(·, τ) =
∞∑

m=0

am(τ)φm(·, cτ),

we have 〈
w(·, τ), ∂φk

∂τ
(·, cτ)

〉
=

∞∑

m=0

am

∫

R

∂φk

∂τ
(x, cτ)φm(x, cτ) dx.

From (5.10) it now follows that

〈
w(·, τ), ∂φk

∂τ
(·, cτ)

〉
= −c

∞∑

m=0
m6=k

am

Em(cτ) − Ek(cτ)

∫

R

x2φk(x, cτ)φm(x, cτ) dx . (5.29)

Next we set

w̌(x, τ) = w(x, τ) − a0(τ)φ0(x, cτ) − a1(τ)φ1(x, cτ) . (5.30)

From (5.26) and (5.30) we have

‖w̌(·, τ)‖2
L2(R) =

∞∑

m=2

|am|2 . (5.31)

By (5.27) and (5.29) we have

da0(τ)

dτ
= −c

∞∑

m=1

am(τ)

Em(cτ) − E0(cτ)

∫

R

x2φ0(x, cτ)φm(x, cτ) dx

= −ca1(τ)f(cτ) − c
∞∑

m=2

am(τ)

Em(cτ) − E0(cτ)

∫

R

x2φ0(x, cτ)φm(x, cτ) dx.

The second term can be controlled by

c
[ ∞∑

m=2

a2
m

]1/2[ ∞∑

m=2

∣∣∣
1

Em(cτ) − E0(cτ)

∫

R

x2φ0(x, cτ)φm(x, cτ) dx
∣∣∣
2]1/2

=cg0(cτ)‖w̌(·, cτ)‖L2(R) ,

where g0(cτ) and f(cτ) are given in (5.3) and (5.4). Hence
∣∣∣
da0

dτ
(τ) + cf(cτ)a1(τ)

∣∣∣ ≤ Cg0(cτ)‖w̌(·, τ)‖L2(R). (5.32)

Similarly we have
∣∣∣
da1

dτ
(τ) + ∆1(τ)a1(τ) + cf(cτ)a0(τ)

∣∣∣ ≤ Cg1(cτ)‖w̌(·, τ)‖L2(R), (5.33)

where g1(cτ) is given by (5.3).
Note for later use that, since ak(τ) is bounded in τ ≪ −1 for each k, (5.32) together

with (5.6a) and (5.6c) imply that
∣∣∣
da0

dτ
(τ)

∣∣∣ ≤ C|τ |−1/4. (5.34)
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From the definition of w̌ it follows that

∂w̌(·, τ)
∂τ

+
(
Lcτ − E0(cτ)

)
w̌(·, τ) = −∆1(τ)a1(τ)φ1(·, cτ) − ∂τ

1∑

k=0

ak(τ)φk(·, cτ). (5.35)

Recall that w̌(·, τ) is orthogonal to φi(·, cτ) for i = 0, 1. Taking inner product of (5.35)
with w̌(·, τ) and using this orthogonality yield that

1

2

d

dτ
‖w̌(·, τ)‖2

L2(R) +
〈
w̌(·, τ),

(
Lcτ − E0(cτ)

)
w̌(·, τ)

〉

= − c

1∑

k=0

ak(τ)
〈
w̌(·, τ), ∂φk

∂τ
(·, cτ)

〉
.

(5.36)

Using (5.36) it is easy to show that

d

dτ
‖w̌(·, τ)‖L2(R) + ∆2(τ)‖w̌(·, τ)‖L2(R) ≤ c

1∑

k=0

|ak(τ)| gk(cτ) . (5.37)

Step 3. Now we establish a preliminary upper bound estimate of a1(τ). Set

r̂1(τ) =
da1

dτ
(τ) + ∆1(τ)a1(τ). (5.38)

By (5.33) we have

|r̂1(τ)| ≤ Cg1(cτ)‖w̌(·, τ)‖L2(Rn) + c|f(cτ)| |a0(τ)| . (5.39)

Since
d

dτ

[
exp

( ∫ τ

−T

∆1(s)ds
)
a1(τ)

]
= exp

( ∫ τ

−T

∆1(s)ds
)
r̂1(τ) ,

we have

exp
( ∫ τ

−T

∆1(s)ds
)
a1(τ) = a1(−T ) +

∫ τ

−T

exp
( ∫ s

−T

∆1(η)dη
)
r̂1(s) ds .

Hence, by (5.39)
∣∣∣a1(τ) − a1(−T ) exp

(
−

∫ τ

−T

∆1(s)ds
)∣∣∣

≤
∫ τ

−T

exp
(
−

∫ τ

s

∆1(η) dη
)[
Cg1(cs)‖w̌(·, s)‖L2(R) + c|f(cs)||a0(s)|

]
ds .

(5.40)

In view of (5.24) we have that

a2
0(τ) + a2

1(τ) + ‖w̌(·, τ)‖2
L2(R) ≤ 1 . (5.41)

Hence, by (5.6) and (5.40),

|a1(τ)| ≤ |a1(−T )| exp
(
−

∫ τ

−T

∆1(s)ds
)

+ C

∫ τ

−T

exp
(
−

∫ τ

s

∆1(η)dη
)
|s|−1/4ds. (5.42)

By (3.3) we have that

∆1(s) > C∆1(τ) for s < τ < 0.
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Therefore,

|a1(τ)| ≤|a1(−T )| exp
(
−

∫ τ

−T

∆1(s)ds
)

+
C

|τ |1/4∆1(τ)

∫ τ

−T

exp
(
−

∫ τ

s

∆1(η)dη
)
∆1(s) ds .

(5.43)

We now estimate the right hand side of (5.43). From (5.2) and (5.28), there exists
C > 0 such that for all τ < 0

∣∣∆1(τ) − 2
√

2c|τ |
∣∣ ≤ C

|τ | . (5.44)

Consequently, we obtain, for −T < τ ≤ −1,

exp
(
−

∫ τ

−T

∆1(s)ds
)
≤

∣∣∣
T

τ

∣∣∣
C

exp
(
− 2

√
2c|τ |(τ + T )

)
. (5.45)

From the above inequality and the fact that |a1(−T )| ≤ 1 it is readily verified that the
first term on the right hand side of (5.43) is bounded from above by the right side of
(5.45). The second term on the right-hand-side of (5.43) can be immediately integrated.
So we obtain, for −T < τ ≤ −1,

|a1(τ)| ≤ Cmax
{
|τ |−3/4,

∣∣∣
T

τ

∣∣∣
C

exp
(
− 2

√
2c|τ |(τ + T )

)}
. (5.46)

Let now 0 < δ < 1/2. Then for sufficiently large T0, there exists Cδ > 0 such that

T − T1 > τ + T >
Cδ

2
T−δ and T ≥ T0

=⇒
∣∣∣
T

τ

∣∣∣
C

exp
(
− 2

√
2c|τ |(τ + T )

)
≤ |τ |−5/2 .

(5.47)

Let T (δ) be given by (5.17). For fixed δ, if T is large then T (δ) > T/2 > 0, and

τ ∈ [−T (δ),−T1] =⇒ |a1(τ)| ≤ C |τ |−3/4 . (5.48)

Step 4. Now we establish some differential inequalities for ‖w̌(·, τ)‖L2(R), a0(τ) and
a1(τ).

We deduce from (5.37), (5.41), (5.46), (5.6c) and (5.6d) that there exists C > 0 such
that

‖w̌(·, τ)‖L2(R) ≤Cmax
{
|τ |−3/2, |τ |−3/4

∣∣∣
T

τ

∣∣∣
C

exp
(
− 2

√
2c|τ |(τ + T )

)}
. (5.49)

From the above and (5.47), for τ ∈ [−T (δ),−T1] we have

‖w̌(·, τ)‖L2(R) ≤ C|τ |−3/2 . (5.50)

By(5.32), (5.6a), (5.6c), (5.46) and (5.49) we now have for −T ≤ τ ≤ −T1

∣∣∣
da0

dτ
(τ)

∣∣∣ ≤ C max
{
|τ |−1, |τ |−1/4

∣∣∣
T

τ

∣∣∣
C

exp
(
− 2

√
2c|τ |(τ + T )

)}
. (5.51)
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We now derive a differential inequality for a1(τ). To this end we use (5.33), (5.49) and
(5.6d) to obtain for τ ∈ [−T (δ),−T1] that

∣∣∣
da1

dτ
(τ) + ∆1(τ)a1(τ) + cf(cτ)a0(τ)

∣∣∣ ≤ C|τ |−7/4. (5.52)

Step 5. Now we establish an asymptotic expansion for a1(τ) for τ ∈ [−T (δ),−T1].
Integrating (5.52) from −T (δ) to τ we obtain

∣∣∣∣a1(τ) − a1(−T (δ)) exp
(
−

∫ τ

−T (δ)

∆1(s)ds
)

+ c

∫ τ

−T (δ)

exp
(
−

∫ τ

s

∆1(η)dη
)
f(cs)a0(s) ds

∣∣∣∣ ≤ C|τ |−9/4 .

(5.53)

In the following we obtain the asymptotic expansion, in the large T1 limit, for the second
and the third terms on the left-hand-side of (5.53). The second term can be easily
estimated. In fact, from (5.41) we see that |a1(−T (δ))| ≤ 1, and using (5.47) we obtain
that, for τ ∈ [−T (δ),−T1],

∣∣∣∣a1(−T (δ)) exp
(
−

∫ τ

−T (δ)

∆1(s)ds
)∣∣∣∣ ≤ C|τ |−5/2 . (5.54)

To approximate the third term on the left-hand-side of (5.53) we represent it in the
form

ca0(τ)f(cτ)

∆1(τ)

∫ τ

−T (δ)

exp
(
−

∫ τ

s

∆1(η) dη
)

∆1(s)ds

+ c

∫ τ

−T (δ)

exp
(
−

∫ τ

s

∆1(η)dη
)[a0(s)f(cs)

∆1(s)
− a0(τ)f(cτ)

∆1(τ)

]
∆1(s) ds .

(5.55)

The first term in (5.55) can be readily integrated, to obtain for large T (δ) + τ :

ca0(τ)f(cτ)

∆1(τ)

∫ τ

−T (δ)

exp
(
−

∫ τ

s

∆1(η) dη
)
∆1(s)ds

=
ca0(τ)f(cτ)

∆1(τ)
+ O

(
exp

{
− β̂

√
|τ |(T (δ) + τ)

}}
,

(5.56)

for some 0 < β̂ ≤
√

2c.
To estimate the second term in (5.55), we observe that, for −T (δ) ≤ s ≤ τ

∣∣∣∣
a0(s)f(cs)

∆1(s)
− a0(τ)f(cτ)

∆1(τ)

∣∣∣∣ ≤ sup
ξ∈(s,τ)

∣∣∣∣
d

dξ

[a0(ξ)f(cξ)

∆1(ξ)

]∣∣∣∣(τ − s).

In view of (5.6a), (5.6b), (3.4), (5.41) and (5.51), for

−T (δ) ≤ s ≤ ξ < τ ≤ −T1,

we also have ∣∣∣∣
d

dξ

[a0(ξ)f(cξ)

∆1(ξ)

]∣∣∣∣ ≤ C|ξ|−7/4 ≤ C|τ |−7/4.
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Hence,
∣∣∣∣
∫ τ

−T (δ)

exp
(
−

∫ τ

s

∆1(η)dη
)[a0(s)f(cs)

∆1(s)
− a0(τ)f(cτ)

∆1(τ)

]
∆1(s) ds

∣∣∣∣

≤C|τ |−7/4

∫ τ

−T (δ)

exp
(
−

∫ τ

s

∆1(η) dη
)
(τ − s)∆1(s)ds.

(5.57)

Integration by parts then yields for τ ∈ [−T (δ),−T1],

0 ≤
∫ τ

−T (δ)

exp
(
−

∫ τ

s

∆1(η) dη
)
(τ − s)∆1(s)ds

=

∫ τ

−T (δ)

exp
(
−

∫ τ

s

∆1(η) dη
)
ds− (τ + T (δ)) exp

(
−

∫ τ

−T (δ)

∆1(η) dη
)

≤ C

∆1(τ)

∫ τ

−T (δ)

exp
(
−

∫ τ

s

∆1(η) dη
)
∆1(s)ds ≤ C|τ |−1/2 ,

which together with (5.57) yields
∣∣∣∣
∫ τ

−T (δ)

exp
(
−

∫ τ

s

∆1(η)dη
)[a0(s)f(cs)

∆1(s)
− a0(τ)f(cτ)

∆1(τ)

]
∆1(s) ds

∣∣∣∣

≤C|τ |−7/4|τ |−1/2 = C|τ |−9/4.

(5.58)

Substituting (5.56) and (5.58) into (5.55) we obtain that the third term on the left-
hand-side of (5.53) admits the expansion

ca0(τ)f(cτ)

∆1(τ)
+ O(1) exp

(
− β̂

√
|τ |(T (δ) + τ)

)
+ O(|τ |−9/4)

=
ca0(τ)f(cτ)

∆1(τ)
+ O(|τ |−9/4).

Inserting the above and (5.54) into (5.53) yields, for τ ∈ [−T (δ),−T1] with T1 large,

a1(τ) =
ca0(τ)f(cτ)

∆1(τ)
+ O(|τ |−9/4). (5.59)

Step 6. We now estimate a0(τ).
We substitute (5.59) into (5.32), and use (5.6c), (5.47) and (5.49) to obtain that for all

τ ∈ [−T (δ),−T1] we have
∣∣∣∣
da0

dτ
(τ) +

c2|f(cτ)|2
∆1(τ)

a0(τ)

∣∣∣∣ ≤ C|τ |−9/4

From (5.6a) and (5.44) it follows that for τ ∈ [−T (δ),−T1] we have
∣∣∣
da0

dτ
(τ) +

γ

|τ |a0(τ)
∣∣∣ ≤ C|τ |−7/4 ,

where γ is given in (5.21). Consequently,

a0(τ) = a0(−T (δ))
∣∣∣
τ

T (δ)

∣∣∣
γ

+ O(|τ |−3/4) . (5.60)
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Step 7. Denote C1 = a0(−T (δ)). From (5.30), (5.48), (5.50) and (5.60) we have, for
τ ∈ [−T (δ),−T1],∥∥∥w(·, τ) − C1

∣∣∣
τ

T (δ)

∣∣∣
γ

φ0(·, cτ)
∥∥∥

L2(R)

≤‖w̌(·, τ)‖L2(R) + ‖a1φ1(·, cτ)‖L2(R) + ‖(a0(τ) − a0(−T (δ)))φ0(·, cτ)‖L2(R)

≤C|τ |−3/2 + C|τ |−3/4 + C|τ |−3/4 ≤ C|τ |−3/4.

(5.61)

Thus (5.19) is proved.
To obtain (5.20) we use (5.34), which is valid also for −T ≤ τ ≤ −T (δ) = −T +CδT

−δ,
to obtain ∣∣a0(−T + CδT

−δ) − a0(−T )
∣∣ ≤ C T−δ−1/4 .

Hence, (5.20) follows for δ ≥ 1/4. Note that the theorem follows for all δ < 1/2, since by
decreasing δ we impose a weaker constraint on the τ domain where (5.19) is valid.

We conclude this subsection by stating the asymptotic behaviour of u in the limit
τ → +∞.

Proposition 5.4. Given T > 0 there exist positive numbers T2 and C such that, for any
v ∈ C(T ) and τ > T2, there exists C0 such that

∥∥∥v exp
(
− λ(τ + T ) +

∫ τ

−T

E0(cs) ds
)
− C0φ0(·, cτ)

∥∥∥
L2(R)

≤ C|T2|−5/2 . (5.62)

Proof. We define w once again according to (5.23) to obtain (5.25). Set again

a0(τ) = 〈φ0(·, cτ), w(·, τ)〉 .
Then, following the steps of the proof of Proposition 5.3 we obtain the inequality

∣∣∣∣
da0

dτ
(τ)

∣∣∣∣ ≤ c‖w̃(·, τ)‖L2(R) g(cτ) i = 1, 2 , (5.63)

where
w̃(x, τ) = w(x, τ) − a0(τ)φ0(x, cτ) ,

and g is given by (5.5). Furthermore, we obtain that

d

dτ
‖w̃(·, τ)‖L2(R) + ∆1‖w̃(·, τ)‖L2(R) ≤ g(cτ) . (5.64)

By (5.64) and (5.6e) we obtain that

‖w̃(·, τ)‖L2(R) ≤
C

τ 2
.

Hence, by (5.63) we obtain that

|a0(τ) − a0(T2)| ≤ C T
−5/2
2 .

Let C0 = a0(T2) and write

w(x, τ) = w̃(x, τ) + C0φ0(x, cτ) + (a0(τ) − a0(T2))φ0(x, cτ).

An integration yields (5.62).
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5.3. Lower bounds for the resolvent. We now provide a lower bound for the norm of
the resolvent of the operator A defined in (2.4).

Proposition 5.5. Let

θ =
4γ

4γ + 3
, (5.65)

where γ is given by (5.21). Then there exists a positive constant µ1 such that, for all

µ > µ1 and θ̃ > θ

‖(A− µ)−1‖ ≥ exp
(µ3

3c
− 2µ1+2θ̃

)
, (5.66)

where c is the constant appearing in the definition of A0,c.

Proof. To prove (5.66) we will construct a pair (u, f) with u ∈ D(A) such that

(A− µ)u = f, (5.67)

where

‖f‖L2(R2) = 1, (5.68)

and the norm of u will be estimated from below. To simplify notation we set

c = 1.

For general values of c the proof is almost identical.

Step 1. We continue by applying a partial Fourier transform

u(x, y) 7→ û(x, ω)

to (5.67) to obtain,

(Â − µ)û = f̂ , (5.69)

in which û and f̂ are the respective partial Fourier transforms of u and f and

Â = ∂ω + Lω, (5.70)

where Lω is the operator in (3.1) with β replaced by ω.
Choose f such that

f̂(x, ω) = µ1/41I(ω)φ
(1)
0 (x, ω), (5.71)

where I is the interval

I =

[
−µ

2

2
− 1

2
√
µ
,−µ

2

2
+

1

2
√
µ

]
, (5.72)

1I(ω) is the characteristic function of the interval I, and φ
(1)
0 (·, ω) is the eigenfunction of

the operator Lω associated to E
(1)
0 (ω). It is immediately seen, using the Fubini Theorem,

that the condition (5.68) is satisfied. Since A has empty spectrum in L2(R2,C) (see

Corollary 2.6), Â cannot have a non-empty spectrum in L2(R2,C), and hence (Â − µ) is
invertible. Therefore (5.69) has a unique solution û.

Step 2. We next consider (5.69) locally as an evolution equation associated to the ω-
dependent unbounded operator (Lω −µ), where the time is the parameter ω. To find the
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solution we follow the Duhamel’s principle for solving non-homogeneous equations. We
thus introduce an additional parameter ξ ∈ I and consider the following problem:





∂ωvξ(·, ω) = −

[
(Lω − µ)vξ

]
(·, ω) for ω ≥ ξ ,

vξ(·, ξ) = φ
(1)
0 (·, ξ) .

(5.73)

This problem has a unique solution vξ which is well defined for ω > ξ using Kato’s theorem
(as recalled in Remark 5.2). We extend vξ into the region ω < ξ by letting

vξ(·, ω) = 0 for ω < ξ .

Once vξ is obtained, we claim that the following equality holds:

û(x, ω) = µ1/4

∫

I

vξ(x, ω) dξ . (5.74)

We can indeed verify that the function in the right side of (5.74) belongs to L2(R2), and
is a distribution solution of (5.69).

Step 3. We now estimate the L2(R2,C)-norm of û. For simplicity we denote the
L2(R,C) norm by ‖ · ‖2. We set µ to be so large that we can make use of Proposition 5.3
for any ξ ∈ I. We first state the obvious identity (recall that we have taken c = 1)

vξ(x, ω) =µ1/4
∣∣∣
ω

ξ

∣∣∣
γ

φ
(1)
0 (x, ξ)eµ(ω−ξ) e−

R ω
ξ E

(1)
0 (τ) dτ

+
[
vξ(x, ω)e−µ(ω−ξ) e

R ω
ξ E

(1)
0 (τ) dτ − µ1/4

∣∣∣
ω

ξ

∣∣∣
γ

φ
(1)
0 (x, ξ)

]
eµ(ω−ξ) e−

R ω
ξ E

(1)
0 (τ) dτ .

(5.75)

Hence
∥∥

∫

I

vξ(·, ω) dξ
∥∥

2

≥µ1/4
∥∥∥

∫

I

∣∣∣
ω

ξ

∣∣∣
γ

φ
(1)
0 (·, ξ)eµ(ω−ξ) e−

R ω
ξ E

(1)
0 (τ) dτ dξ

∥∥∥
2

−
∥∥

∫

I

[
vξ(·, ω)e−µ(ω−ξ) e

R ω
ξ E

(1)
0 (τ) dτ − µ1/4

∣∣∣
ω

ξ

∣∣∣
γ

φ
(1)
0 (·, ξ)

]
eµ(ω−ξ) e−

R ω
ξ E

(1)
0 (τ) dτ dξ

∥∥
2
.

(5.76)

Using (5.76) and (5.19) we obtain that, if µ ≥ 1, then for all ω > −µ2/2 + 1 (hence
ω ≥ ξ for all ξ ∈ I), we have

∥∥∥∥
∫

I

vξ(·, ω) dξ

∥∥∥∥
2

≥
∥∥∥∥
∫

I

∣∣∣
ω

ξ

∣∣∣
γ

φ
(1)
0 (·, ξ)eµ(ω−ξ) e−

R ω
ξ E

(1)
0 (τ) dτ dξ

∥∥∥∥
2

− C2

|ω|3/4

∫

I

eµ(ω−ξ) e−
R ω

ξ E
(1)
0 (τ) dτ dξ.

We now observe that by (3.5) and the expression of hk(x) that

inf
(ξ1,ξ2)∈I×I

∫

R

φ
(1)
0 (x, ξ1)φ

(1)
0 (x, ξ2) dx ≥ C3 > 0 , (5.77)

where C3 is independent of µ. Consequently, for all ω > −µ2/2 + 1 we have
∥∥∥

∫

I

vξ(·, ω) dξ
∥∥∥

2
≥ C4

∫

I

[∣∣∣
ω

ξ

∣∣∣
γ

− 1

|ω|3/4

]
eµ(ω−ξ) e−

R ω
ξ E

(1)
0 (τ) dτ dξ . (5.78)
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Step 4. This step involves an estimate of the right hand side in (5.78). Let θ be the
number defined in (5.65), and define

Ĩ =
[
−µ

2

2
+ 1,−µ2θ

]
.

If µ > 2 and ξ ∈ I, then

|ξ| ≤ µ2

2
+

1

2
√
µ
≤ 2µ2

3
.

Hence for all ω ∈ Ĩ we have
∣∣∣
ω

ξ

∣∣∣
γ

≥
(

3

2

)γ

µ−2γ(1−θ),
1

|ω|3/4
≤ µ−3θ/2.

By our choice of θ we have

2γ(1 − θ) =
3θ

2
=

6γ

4γ + 3
≤ 3

2
.

Hence for µ > 2, ξ ∈ I and ω ∈ Ĩ we have
∣∣∣
ω

ξ

∣∣∣
γ

− 1

|ω|3/4
≥ d

µ3/2
, (5.79)

where

d =

(
3

2

)γ

− 1 > 0.

Consequently for µ > 2 and ω ∈ Ĩ we have by (5.78) and (5.79) that
∥∥∥

∫

I

vξ(·, ω) dξ
∥∥∥

2
≥ C5

µ3/2

∫

I

eµ(ω−ξ) e−
R ω

ξ E
(1)
0 (τ) dτ dξ

=
C5

µ3/2

∫

I

exp
(∫ ω

ξ

[µ− E
(1)
0 (τ)] dτ

)
dξ ,

(5.80)

where C5 = C4d.
Note that by (3.3) and (3.4)

sup
ξ∈I

∣∣E(1)
0 (ξ) − µ

∣∣ ≤ C6

µ3/2
.

Set

z(µ) = −µ
2

2
+

1

2
√
µ
.

Then ∫ ω

ξ

[µ− E
(1)
0 (τ)] dτ ≥ −C6µ

−2 + µω +
µ3

2
−

√
µ

2
−

∫ ω

z(µ)

E
(1)
0 (τ) dτ.

In view of (3.3) we have
∫ ω

z(µ)

E
(1)
0 (τ) dτ =

∫ ω

z(µ)

[√
−2τ +O(

1

|τ |)
]
dτ

=
2
√

2

3
(|z(µ)|3/2 − |ω|3/2) + O

(
log

∣∣z(µ)

ω

∣∣).
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Hence
∫

I

exp
{∫ ω

ξ

[µ− E
(1)
0 (τ)] dτ

}
dξ

≥ 1

µ1/2
exp

{
−C6µ

−2 + µω +
µ3

2
−

√
µ

2
− 2

√
2

3
(|z(µ)|3/2 − |ω|3/2) −O

(
log

∣∣z(µ)

ω

∣∣)
}
.

(5.81)
Note that for ω ∈ Ĩ we have ∣∣∣

z(µ)

ω

∣∣∣ ≤ µ2(1−θ).

Therefore we plug (5.81) into (5.80) and find that there exists a positive constant C7 such
that, for sufficiently large µ and for all ω ∈ Ĩ

∥∥∥
∫

I

vξ(·, ω) dξ
∥∥∥

2
≥ C7

µ2
exp

{µ3

6
+

2
√

2

3
|ω|3/2 + µω

}
. (5.82)

Step 5. Now we recall (see (5.74)) that

‖u‖2
L2(R2) =‖û‖2

L2(R2
x,ω) = µ1/2

∫

R

∥∥∥
∫

I

vξ(·, ω) dξ
∥∥∥

2

2
dω

≥µ1/2

∫

ω∈Ĩ

∥∥∥
∫

I

vξ(·, ω) dξ
∥∥∥

2

2
dω.

(5.83)

It follows from (5.82) and (5.83) that

‖u‖2
L2(R2,C) ≥

C2
7

µ7/2

∫ −µ2θ

−µ2

2
+1

exp
{µ3

3
+

4
√

2

3
|ω|3/2 + 2µω

}
dω

=
C2

7

µ7/2

∫ µ2

2
−1

µ2θ

exp
{µ3

3
+

4
√

2

3
s3/2 − 2µs

}
ds.

If µ is sufficiently large (for instance µ ≥ 23/(2(1−θ))), then for any s ∈ [µ2θ, µ2

2
− 1], we

have µ−
√

2s > 0, and

1 =
µ−

√
2s

µ−
√

2s
≥ µ−

√
2s

µ−
√

2µ2θ
≥ 2µ− 2

√
2s

2µ
.

Hence for large µ we have

‖u‖2
L2(R2,C) ≥

C2
7

µ9/2

∫ µ2

2
−1

µ2θ

exp
{µ3

3
+

4
√

2

3
s3/2 − 2µs

}
(2µ− 2

√
2s)ds

≥ exp
(µ3

3
− 2µ1+2θ̃

)
,

for all θ̃ > θ. Hence (5.66) is true for sufficiently large µ.
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5.4. Estimates for dense subspaces. Let A be the operator defined in (2.4). In view
of the different asymptotic behaviors (3.3) for β → −∞ and (3.6) for β → +∞, one may
expect the asymptotic dependence on µ of the norm

‖(A− λ)−1f‖L2(R2)

for fixed f to be different with that of the norm of the resolvent

‖(A− λ)−1‖.
This is indeed true. We now derive this different dependence if some additional conditions
on the support of f̂ are assumed. As an example consider, for a ≥ 0, the space

L2
a(R

2,C) =
{
u ∈ L2(R2,C) : Supp û ⊂ {(x, ω) : ω ≤ a}

}
, (5.84)

where, as above, we denote by û the partial Fourier with respect to the y variable of u.
Denote by Πa the orthogonal projector

Πa : L2(R2,C) → L2
a(R

2,C).

The next theorem shows that exp(−tA)◦Πa and (A−λ)−1◦Πa have a different respective
behavior as t→ +∞ or λ→ +∞, than that of exp(−tA) and (A− λ)−1.

Theorem 5.6. For any a ≥ 0, there exists a constant T0(a) such that, for any t ≥ T0(a)
we have

‖ exp(−tA) ◦ Πa‖ ≤ exp
(
−Ψa(ct)

c

)
, (5.85)

where
Ψa(t) = inf

ω≤a
Φ(ω, t) , (5.86)

where Φ is given by (4.5). In particular, for any a ≥ 0, there exists C(a) > 0, such that
for t ≥ T0(a) we have

‖ exp(−tA) ◦ Πa‖ ≤ C(a) exp

(
−c

2

3
t3 + C(a)t3/2

)
, (5.87)

The proof is the same as that for Theorem 4.2 and Lemma 4.4 except that now we take
in consideration the information on Supp û. Clearly, (4.3) is still valid, but as û ≡ 0 for

ω ≥ a we obtain an estimate similar to (4.10) but with Ψa(ct) instead of Ψ̂(ct). To prove
(5.87) we note that, for sufficiently large t we have

Ψa(t) = Φ(a, t),

and hence (5.87) easily follows from (3.3).
As in Subsection 4.1, Theorem 5.6 implies :

Corollary 5.7. For any a ≥ 0, there exists λ0(a) and C(a), such that, for λ ≥ λ0(a),

‖(A− λ)−1 ◦ Πa‖ ≤ exp
( 2

3c
λ3/2 + C(a)λ3/4

)
. (5.88)

Observing, that the subspace

V =
⋃

a≥0

L2
a(R

2,C)

is dense in L2(R2,C), we also obtain
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Corollary 5.8. There exists a dense set V in L2(R2,C), such that for each f ∈ V there
exist positive constants α = α(f) and µ0 = µ0(f) such that for all λ with Reλ = µ > µ0(f)
it holds that

‖(A− λ)−1f‖L2(R2) ≤ exp(αµ3/2)‖f‖L2(R2). (5.89)
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vecteur, Birkhäuser, 1985.
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Appendix A. Proof of (5.12)

By (3.5) we may write

φk = φk,0 + |β|−3/4φk,1 k = 1, 2 ,

in which ‖φk,1‖2 ≤ C where C is independent of β. Note that since ‖φk‖2 = 1 and
‖φk,0‖2 = 1 + O(e−Sβ) for some S > 0, we have

1 = ‖φk,0 + |β|−3/4φk,1‖2
2 = 1 + 2|β|−3/4〈φk,0, φk,1〉 + |β|−3/2‖φk,1‖2

2 + O(e−Sβ) ,

which leads to

|〈φk,0, φk,1〉| ≤
C

|β|3/4
k = 1, 2 . (A.1)

Furthermore, by (3.5) and (5.8) we have that

‖(x2 + 2β)φk‖2 ≤ C|β|1/4 k = 1, 2 . (A.2)

We can then write

‖(x2 + 2β)φ0‖2
2

=‖(x2 + 2β)φ0,0‖2
2 + 2|β|−3/4〈(x2 + 2β)φ0,0, (x

2 + 2β)φ0,1〉 + O(|β|−1) ,
(A.3a)

|〈(x2 + 2β)φ0, φ0〉|2

=|〈(x2 + 2β)φ0,0, φ0,0〉|2 + 4|β|−3/4〈(x2 + 2β)φ0,0, φ0,0〉〈(x2 + 2β)φ0,0, φ0,1〉 + O(|β|−1) ,
(A.3b)

and

|〈(x2 + 2β)φ0, φ1〉|2 = |〈(x2 + 2β)φ0,0, φ1,0〉|2

+2|β|−3/4
[
〈(x2 + 2β)φ0,0, φ1,1〉 + 〈(x2 + 2β)φ1,0, φ0,1〉

]
〈(x2 + 2β)φ0,0, φ1,0〉 + O(|β|−1) .

(A.3c)
Furthermore, orthogonality properties of Hermite functions yield

∣∣∣‖(x2 + 2β)φ0,0‖2
2 − |〈(x2 + 2β)φ0,0, φ0,0〉|2 − |〈(x2 + 2β)φ1,0, φ0,0〉|2

∣∣∣ ≤ C

β
.

We thus obtain from (A.3) that

‖(x2 + 2β)φ0‖2
2 − |〈(x2 + 2β)φ0, φ0〉|2 − |〈(x2 + 2β)φ1, φ0〉|2

=|β|−3/4
{
2〈(x2 + 2β)φ0,0, (x

2 + 2β)φ0,1〉 − 4〈(x2 + 2β)φ0,0, φ0,0〉〈(x2 + 2β)φ0,0, φ0,1〉
− 2

[
〈(x2 + 2β)φ0,0, φ1,1〉 + 〈(x2 + 2β)φ1,0, φ0,1〉

]}
〈(x2 + 2β)φ0,0, φ1,0〉 + O(|β|−1) .

(A.4)
By the standard theory of orthogonal polynomials and Hermite functions in particular

(see [1] for instance) we have that
∣∣〈(x2 + 2β)φ0,0, φ0,0〉

∣∣ ≤ C|β|−1/2 . (A.5)
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Furthermore,
∣∣〈(x2 + 2β)φ0,0, φ1,1〉

∣∣ ≤ |2β|1/4
∣∣〈φ1,0, φ1,1〉

∣∣ + ‖(x2 + 2β)φ0,0 − |2β|1/4φ1,0‖2‖φ1,1‖2 .

By (A.1) and by evaluating the integral of Hermite functions on the right-hand-side of
the above inequality we obtain

∣∣〈(x2 + 2β)φ0,0, φ1,1〉
∣∣ ≤ C|β|−1/2 .

Substituting the above together with (A.5) into (A.4) yields

‖(x2 + 2β)φ0‖2
2 − |〈(x2 + 2β)φ0, φ0〉|2 − |〈(x2 + 2β)φ1, φ0〉|2

=|β|−3/4
{
2〈(x2 + 2β)φ0,0, (x

2 + 2β)φ0,1〉 − 2〈(x2 + 2β)φ1,0, φ0,1〉〈(x2 + 2β)φ0,0, φ1,0〉
}

+ O(|β|−1) .
(A.6)

To complete the proof we expand (x2 + 2β)φ0,0 into a series of Hermite functions to
obtain

〈(x2 + 2β)φ0,0, (x
2 + 2β)φ0,1〉

=〈(x2 + 2β)φ0,0, φ0,0〉〈(x2 + 2β)φ0,0, (x
2 + 2β)φ0,1〉

+ 〈(x2 + 2β)φ0,0, φ1,0〉〈(x2 + 2β)φ0,0, (x
2 + 2β)φ0,1〉 + O(β−1/4) .

Substituting into (A.6) we obtain (5.12) with the aid of (A.5).
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