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The mechanism of surface-charge convection, quantified by the electric Reynolds number
Re, renders the Melcher–Taylor electrohydrodynamic model inherently nonlinear, with
the electrostatic problem coupled to the flow. Because of this nonlinear coupling, the set-
tling speed of a drop under a uniform electric field differs from that in its absence. This
difference was calculated by Xu & Homsy (J. Fluid Mech., vol. 564, 2006, pp. 395–414)
assuming small Re. We here address the same problem using a different route, consid-
ering the case where the applied electric field is weak, in the sense that the magnitude
of the associated electrohydrodynamic velocity is small compared with the settling ve-
locity. As convection is determined at leading order by the well-known flow associated
with pure settling, the electrostatic problem becomes linear for arbitrary value of Re.
The electrohydrodynamic correction to the settling speed is then provided as a linear
functional of the electric-stress distribution associated with that problem. Calculation of
the settling speed eventually amounts to the solution of a difference equation governing
the respective coefficients in a spherical-harmonics expansion of the electric potential.
It is shown that, despite the present weak-field assumption, our model reproduces the
small-Re approximation of Xu & Homsy as a particular case. For finite Re, inspection of
the difference equation reveals a singularity at the critical value

Re =
4S(1 +R)(1 +M)

(1 + S)M
,

wherein R, S and M respectively denote the ratios of resistivity, permittivity and viscos-
ity values in the suspending- and drop phases, as defined by Melcher & Taylor (Ann. Rev.
Fluid Mech., vol. 1, 1969, pp. 111–146). Straightforward numerical solutions of this equa-
tion for electric Reynolds numbers smaller than the critical value reveal a non-monotonic
dependence of the settling speed upon the electric-field magnitude, including a transition
from velocity enhancement to velocity decrement.

1. Introduction

While surface-charge convection (SCC) explicitly appears in the leaky-dielectric model
of Melcher & Taylor (1969), this mechanism is neglected in the three steady-state illus-
trations provided in that review, the third being Taylor’s classical analysis of the elec-
trohydrodynamic flow about a drop in a uniform electric field (Taylor 1966). It appears
that this neglect has been motivated, at least partially, by its mere convenience. Indeed,
in the absence of of SCC the electrostatic problem becomes linear, allowing for simple
analytic solutions.

The nonlinear SCC mechanism is quantified by the electric Reynolds number Re,
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representing the ratio of charge convection to Ohmic conduction. The classical analysis
of Taylor (1966) thus applies for Re = 0. It appears that the first attempt to analyse the
role of SCC in Taylor’s problem was by Feng (1999), using both a perturbative analysis
for Re � 1 and a numerical finite-element scheme for finite Re. More recently, the finite-
Re problem was revisited by Lanauze, Walker & Khair (2015) using a boundary-integral
method, allowing to reach larger values of Re. Both papers have also considered the effect
of deformations from a spherical shape, another feature absent in Taylor’s analysis.

Due to their inherent fore–aft symmetry, electrohydrodynamic flows about spherical
drops cannot be naturally described using any single scalar property. (When deformation
is allowed, one may employ the deviation from sphericity as the requisite scalar measure.)
This has motivated the analysis of Xu & Homsy (2006) who considered a drop under both
gravity and applied field. In the absence of SCC, the electrostatic problem is decoupled
from the hydrodynamic one, which accordingly represents a simple superposition of the
familiar flow associated with a settling drop (under an imposed external force) and the
‘pure’ electrohydrodynamic flow of Taylor (1966). Due to the fore–aft symmetry of the
latter, the settling velocity of the drop is unaffected by the applied field. In the presence
of SCC, however, the electrostatic and hydrodynamic problems are mutually (and nonlin-
early) coupled. The settling velocity then depends upon the applied-field magnitude, and
may therefore constitute a scalar measure of the intensity of the electrohydrodynamic
flow.

Xu & Homsy (2006) implicitly considered the general case where the settling velocity is
comparable with the electrohydrodynamic scale. To facilitate analytic progress, they as-
sumed that the electric Reynolds number is small. This allows for a regular-perturbation
analysis, where the perturbation due to SCC gives rise to velocity correction proportional
to Re. We propose here a different route. Consider the case where the applied field is
weak, in the sense that the electrohydrodynamic velocity scale is small compared with
the settling speed. Surface convection is then dominated by the velocity field associated
with a settling drop, in the absence of electrohydrodynamic effects. The electrostatic
problem is then linear at leading order for arbitrary values of Re. Once it is solved, the
resulting electric shear stresses may be readily utilised to calculate the electrohydrody-
namic correction to the settling velocity. To focus upon the SCC mechanism we assume
that surface tension is strong enough to retain an approximately spherical shape.

The paper is arranged as follows. In the next section we formulate the exact nonlin-
ear problem governing the electric and flow fields. In §3 we then derive several general
properties of this problem, valid for arbitrary values of the applied fields. Our solution
scheme for weak applied field is outlined in §4, and the associated linear electrostatic
problem is analysed in §5. The limit of small Re is discussed in §6, showing — perhaps
counter-intuitively — that the drop velocity calculated by Xu & Homsy (2006) is re-
produced within the present scheme. The calculation of the drop velocity for arbitrary
values of Re is discussed in §7, where we show that solutions exists only below a critical
value of Re. The respective assumptions and approximation underlying our analysis are
scrutinised in §8. We conclude in §9, pointing out a range of open problems.

2. Problem formulation

A leaky-dielectric Drop (permittivity ε̄∗, conductivity σ̄∗, viscosity µ̄∗) is suspended
in another leaky-dielectric liquid (permittivity ε∗, conductivity σ∗, viscosity µ∗) of an
unbounded extent. (Hereafter an asterisk is used to decorate dimensional quantities; the
bar decoration is employed for drop-phase variables.) The drop settles due to gravity
in a direction specified by the unit-vector ı̂. (When the drop density ρ̄∗ is larger than
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the density ρ∗ of the suspending liquid, this is the gravity direction; if ρ̄∗ < ρ∗ ı̂ is in
the opposite direction.) In addition, it is exposed to a uniformly applied electric field
of magnitude E∗ in that direction. We assume that capillarity is sufficiently strong to
maintain an approximately spherical drop, say of radius a∗. Our interest is in the steady-
state solution, and in particular in the settling speed.

The problem is characterised by two velocity scales. The first is the settling velocity
in the absence of an applied field, namely

U∗ =
1

3

M + 1

M + 3/2

|ρ̄∗ − ρ∗|g∗a∗2

µ∗
, (2.1)

where M = µ∗/µ̄∗ and g∗ is the acceleration due to gravity. The second is the electrohy-
drodynamic velocity

ε∗a∗E∗2

µ∗
. (2.2)

We employ a dimensionless notation, where length variables are normalised by a∗, velocity
variables by U∗ and electric fields by E∗. The electric potentials (normalised by a∗E∗)
in the medium and drop phases are respectively denoted by ϕ and ϕ̄; the corresponding
velocity fields are denoted by u and ū. The dimensionless problem governing these fields
depends upon: (i) the ratio of the two velocity scales,

W =
ε∗a∗E∗2

µ∗U∗
; (2.3)

(ii) the material ratios R = σ̄∗/σ∗, S = ε∗/ε̄∗ and M = µ∗/µ̄∗; and (iii) the electric
Reynolds number, provided by the ratio of the charge relaxation time ε∗/σ∗ to the con-
vective time a∗/U∗:

Re =
ε∗U∗

a∗σ∗
. (2.4)

The problem is formulated in a drop-fixed reference system, using spherical coordinates
(r, θ,$) with the radial coordinate r measured from the drop centre and the latitudinal
angle θ measured from the direction specified by ı̂. The corresponding unit vectors are
denoted (êr, êθ, ê$). Because of axial symmetry, the azimuthal angle $ is degenerate.
The velocity fields in the suspending and drops phases are accordingly written u =
êru+ êθv and ū = êrū+ êθv̄.

The electrostatic problem consists of: (i) Laplace’s equation outside and inside the
drop; (ii) electric-potential continuity

ϕ = ϕ̄ at r = 1; (2.5)

(iii) regularity inside the drop; and (iv) the far-field condition

ϕ ∼ −r cos θ as r →∞, (2.6)

corresponding to a unit field in the ı̂-direction. In addition, it also consists of the charging
condition

∂ϕ

∂r
−R∂ϕ̄

∂r
=

Re

sin θ

∂

∂θ
(qv sin θ) at r = 1, (2.7)

wherein

q = S−1
∂ϕ̄

∂r
− ∂ϕ

∂r
(2.8)

is the surface-charge density (normalised by ε∗E∗).
The SCC term in the right-hand side of (2.7) introduces a coupling to the velocity
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field. The flow is governed by the continuity and Stokes equations in the two phases. At
the drop boundary r = 1 it satisfies the kinematic condition of vanishing radial velocities,

u = ū = 0, (2.9)

the dynamic condition of tangential-velocity continuity,

v = v̄ (2.10)

(already tacitly used in (2.7)) and the shear-stress condition, balancing hydrodynamic
viscous stresses with electric shear stresses,

êr · (S − S̄) · êθ = Wq
∂ϕ

∂θ
, (2.11)

wherein S and S̄ respectively denote the hydrodynamic stresses at the two phases. At
large distances the velocity approaches a uniform velocity,

u→ −U ı̂ as r →∞. (2.12)

The settling velocity U is determined by the condition that the sum of external and
hydrodynamic forces on the drop vanishes, resulting in a nonlinear ‘mobility’ problem.
In general, then, the settling velocity is a function of both W and Re, as well as the
ratios R, S and M .

3. General properties

Due to the SCC term in (2.7) the problem is inherently nonlinear. No closed-form
analytic solution is accordingly expected. (Note that no analytic solution is known even
in the absence of gravity.) Nonetheless, there are three general observations which can
be made immediately (cf. Yariv & Frankel 2016).

The first is that the net surface charge must vanish,∮
r=1

q dA = 0 (3.1)

(wherein the areal element dA is normalised by a∗2). Indeed, by Gauss law a net in-
terfacial charge must be accompanied by a net electric flux through any closed surface
which encloses the drop. Because of the Ohmic nature of the leaky-dielectric liquid, such
a flux would be equivalent to a net electric current emanating from the drop, in contra-
diction to the assumed steady state. Mathematically, Laplace’s equation inside the drop
implies that the integral of ∂ϕ̄/∂r over the unit sphere r = 1 must vanish. The charging
condition (2.7) then necessitates the same for ∂ϕ/∂r. Using (2.8), (3.1) readily follows.
The absence of charge in conjunction with Laplace’s equation and the approach (2.6) to
a uniform field implies that the drop does not experience any electric force (Rivette &
Baygents 1996; Yariv 2006). It follows that the external force on the drop is only due to
gravity.

The second observation is that in the absence of such an external force, the problem
retains the familiar symmetry about the mid-plane θ = π/2, implicit in the original
problem of Taylor (1966). Thus, under the reflection θ → π − θ the pertinent fields
transform as

(ϕ, ϕ̄)→ (−ϕ,−ϕ̄), q → −q, (u, ū)→ (u, ū), (v, v̄)→ (−v,−v̄). (3.2)

Indeed, it may be readily verified that this symmetry in unaffected by nonlinear SCC
term. (We do not consider here large electric Reynolds numbers, where this nonlinear
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term may result in a spontaneous symmetry breaking, see Yariv & Frankel 2016.) It
follows that the drop does not move, U = 0. (This, of course, is the motivation for
incorporating gravity effects in the first place.)

The third observation is that nonlinearities are introduced into the problem only
through the boundary conditions, namely the charging condition governing the electro-
statics and the shear-stress condition governing the flow. Since the governing differential
equations are linear, the electric potentials and fluid velocities may be represented via
appropriate eigenfunction expansions. In particular, the harmonic electric potential out-
side the drop may be written as a sum of spherical harmonics. Thus, using (2.6) and the
axial symmetry we write

ϕ = −rP1(η) +

∞∑
n=1

An
Pn(η)

rn+1
, (3.3)

wherein η = cos θ and Pn(η) are the Legendre polynomials of degree n. (Note that absence
of a monopole term, in accordance with (3.1).) Because of (2.5) and the requirement of
regularity within the drop, the potential there is

ϕ̄ = −rP1(η) +

∞∑
n=1

Anr
nPn(η). (3.4)

In the absence of SCC (i.e. for Re = 0) the solution of the electrostatic problem is trivial,
involving only the Legendre polynomial of the first degree (Melcher & Taylor 1969)

ϕ = −
(
r +

1−R
2 +R

r−2
)

cos θ, ϕ̄ = − 3

2 +R
r cos θ. (3.5)

In the presence of SCC, expansions (3.3)–(3.4) generally consist of an infinite number of
terms.

4. Weak fields

We focus here upon the case where the applied field is weak, in the sense that the
electrohydrodynamic scale (2.2) is small compared with the characteristic settling velocity
U∗:

W � 1. (4.1)

The leading-order flow field is therefore that associated with drop settling in the absence
of any electrohydrodynamic effects due to a prescribed external force. Since this field
may be considered as known, the SCC term in (2.7) becomes linear in the field, as is
then the entire leading-order electrostatic problem.

Given definition (2.1) of the velocity scale, the drop settles at leading order with a
unit speed (i.e. U = 1 in (2.12)). Within approximation (4.1) the leading-order ‘electro-
hydrodynamic’ correction to the velocity field is animated by the electrical shear stresses
associated with the leading-order electric-field distribution. Since the hydrodynamic force
associated with the leading-order flow already balances the external force due to gravity,
the electrohydrodynamic correction must result in a nil hydrodynamic force. Defining

U = 1 +WŨ + · · · . (4.2)

The correction Ũ to the settling velocity is set by this force-free condition. Our goal is
the calculation of this correction. Note that Ũ represents a normalization by the electro-
hydrodynamic velocity scale (2.2).
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The O(W ) electrohydrodynamic flow is governed by the continuity and Stokes equa-
tions, impermeability and velocity-continuity conditions at r = 1 (cf. (2.9)–(2.10)),
far-field approach to −Ũ ı̂ (cf. (2.12)), and the force-free condition. It is driven by
an inhomogeneous shear-stress condition (see (2.11)) associated with the distribution
−q (∂ϕ/∂θ)r=1 of electric shear stresses. (Hereafter q and ϕ refer to the respective leading-
order quantities.)

Our interest lies in the electrohydrodynamic correction to the settling speed, rather
than the detailed flow field associated with it. Using the reciprocal theorem of Stokes flow
(Happel & Brenner 1965), this correction may be obtained as a linear functional of the
electric-stress distribution. Thus, making use of the general result obtained by Nadim,
Haj-Hariri & Borhan (1990) we obtain here

Ũ =
1

8π

M

M + 3/2
ı̂ ·
∮
r=1

dA êθq
∂ϕ

∂θ
. (4.3)

Upon substituting (2.8) and reverting to η as the integration variable,

Ũ = −1

4

M

M + 3/2

∫ 1

−1
(1− η2)

(
∂ϕ

∂r
− S−1 ∂ϕ̄

∂r

)
∂ϕ

∂η

∣∣∣∣
r=1

dη. (4.4)

Substituting (3.3)–(3.4) and making use of (5.4) and (5.6) in conjunction with the or-
thogonality of the Legendre polynomials eventually furnishes the desirable formula

M + 3/2

M
Ũ =

6− S−1

15
A2

+

∞∑
n=1

n+ 1 + nS−1

2(2n+ 1)
An

[
(n+ 1)(n+ 2)

2n+ 3
An+1 −

n(n− 1)

2n− 1
An−1

]
. (4.5)

It is worth emphasising that, in the limit (4.1), the electric potential satisfies a linear
problem while the drop velocity is quadratic in that potential. The assumption, made in
the problem formulation, that the applied field points in the settling-direction ı̂ (parallel
to gravity for ρ̄∗ > ρ∗, anti-parallel to it for ρ̄∗ < ρ∗) is accordingly non-restrictive.
Indeed, an applied field in the opposite direction would simply reverse the electric-field
distribution, resulting in an identical value of Ũ .

5. Electrostatic problem

In the drop-fixed reference system, where at large r the velocity tends to −ı̂, the
interfacial velocity is (Happel & Brenner 1965)

v =
M

2(1 +M)
sin θ. (5.1)

We accordingly consider the electrostatic problem resulting from substitution of the
leading-order distribution (5.1) into the SCC term. Thus, substitution of (3.3)–(3.4) and
(5.1) into the respective left- and right-hand sides of (2.7) followed by integration readily
yields ∫ η

−1

[
(1−R)P1(t) +

∞∑
n=1

(n+ 1 + nR)AnPn(t)

]
dt =

R

2
(1− η2)q, (5.2)

wherein the electric Reynolds number and viscosity ratio appear through the single group

R =
M

1 +M
Re. (5.3)
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Use of the following form of the Legendre equation

n(n+ 1)

∫ η

−1
Pn(t) dt = −(1− η2)P ′n(η) (5.4)

(wherein the prime denote differentiation) and substitution of (2.8) gives

1−R
2

P ′1(η) +

∞∑
n=1

n+ 1 + nR

n(n+ 1)
AnP

′
n(η) =

R

2

(
∂ϕ

∂r
− S−1 ∂ϕ̄

∂r

)
. (5.5)

Substitution of (3.3)–(3.4) into the right-hand side and making use of the identity

Pn(η) =
P ′n+1(η)− P ′n−1(η)

2n+ 1
, (5.6)

in conjunction with the orthogonality of the derivatives of the Legendre polynomials
(with respect to 1− η2), yields

An +
n(n+ 1)R

2(n+ 1 + nR)

{
n+ (n− 1)S−1

2n− 1
An−1 −

n+ 2 + (n+ 1)S−1

2n+ 3
An+1

}

=


R−1
R+2 , n = 1,

S−1−1
3+2R R, n = 2,

0, n > 2,

(5.7)

where we take A0 = 0. We have therefore obtained an infinite tridiagonal system govern-
ing the coefficients {An}∞n=1.

6. Small Re

For small Re an approximate solution is readily obtained by linearising about (3.5),
where all coefficients except A1 vanish. Thus, at O(Re) we find a nonzero A2. The O(Re)
excess velocity (4.5) is proportional to the product of these two coefficients, giving

Ũ = − 18M2(RS − 1)(RS + S − 1/3)

5(1 +M)(3 + 2M)(2 +R)2(3 + 2R)S2
Re, (6.1)

in agreement with equation (34) of Xu & Homsy (2006). For RS > 1 Ũ is negative, while
for 1/3 < RS < 1 it is positive. For RS < 1/3 Ũ is positive if RS > 1/3 − S (which
is always the case for S > 1/3) and negative otherwise (in which case S < 1/3). In the
limit of a gas bubble, where R = 0 and M =∞,

Ũ =
3(S − 1/3)

20S2
Re. (6.2)

For a gas bubble ε̄∗ is approximately that of vacuum meaning that S ≥ 1; Ũ is therefore
positive.

Since the present approximation scheme, where Re is arbitrary and W � 1, is ‘or-
thogonal’ to that made by Xu & Homsy (2006), where W is arbitrary and Re � 1, the
agreement with Xu & Homsy (2006) may appear surprising. To understand it, it is useful
to consider carefully the small-Re limit of Xu & Homsy, keeping in mind the physical
origin of the pertinent terms. The leading-order flow in that limit is a superposition of
two components. The first, associated with ‘pure settling,’ is independent of the elec-
tric field; it is therefore identical to the leading-order flow in the present approximation
scheme. The second ‘purely electrohydrodynamic’ component, is proportional to W (i.e.
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to the square of the applied-field magnitude). Since the leading-order surface-charge den-
sity is proportional to the applied field, the SCC term associated with the leading-order
product of tangential velocity surface-charge density also decomposes into two parts, one
proportional to the applied field, the other to its cube. The second part, however, simply
represents SCC in the absence of gravity; as such, it does not affect the drop velocity
(see (3.2) et seq.). The perturbation to the electric potential (and to the surface charge)
due to SCC is accordingly proportional to the field. The resulting modification to the
drop velocity is driven by quadratic interaction of that perturbation with the leading-
order electric potential, which is also proportional to the field. The velocity modification
is accordingly proportional to the field square, or, in dimensionless terms, to W — just
as though a perturbation in W was carried out from the outset.

7. Finite Re

Consider now the difference equation (5.7) for arbitrary Re. While no analytic solution
appears generally possible,† useful information may be extracted by considering the large-
n asymptotic limit, where this equation becomes

An =
n

2α

[
1 +O(n−1)

]
(An+1 −An−1) , (7.1)

in which

α =
2S(1 +R)

R(1 + S)
. (7.2)

This homogenous second-order equation possesses two solutions. To ensure convergence
of the original series (3.3), only the solution that decays at large n is admissible. It may
then be verified that

An ∼ constant× (−)n

nα
as n→∞, (7.3)

wherein the asymptotic correction is of relative order n−1. Considering the summation
in (4.5), the series converges if and only if α > 1/2, i.e. when

Re <
4S(1 +R)(1 +M)

M(1 + S)
. (7.4)

For an arbitrary Re satisfying (7.4) the system (5.7) is solved using controlled trun-
cation, where the infinite equation set is approximated by a a finite set of N equations.
Thus, making use of the leading-order approximation (7.3) we replace AN+1 in the N -th
equation by −AN/(1 + 1/N)α. In calculating the series (4.5) we estimate the ‘tail’ con-
tribution from {An}∞n=N+1 using the above leading-order approximation. This provides
a rapid convergence scheme even when Re is close to the critical value specified by (7.4).

Note that the value of M enters (5.7) only through the rescaled electric Reynolds
number R. Similarly, (4.5) provides the rescaled velocity (M + 3/2)Ũ/M as a series
which is independent of M . It follows that we may obtain results valid for all M using
a single calculation. Such a calculation is illustrated in figure 1 showing the rescaled
velocity as a function of R for R = 0 and S = 1, where the critical value of R is 2. Also
shown is the corresponding small-Re approximation,

Ũ =
M2

5(1 +M)(3 + 2M)
Re, (7.5)

† We have managed to obtain closed-form analytic solution for the case R = 0 and S = 1
when R = 1, 1/2, 1/3, . . .
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Figure 1. Rescaled velocity (M + 3/2)Ũ/M as a function of R for R = 0 and S = 1. The thin
line depicts the corresponding small-Re approximation (7.5) of slope 1/10. The critical value
R = 2 is indicated.

obtained from (6.1). Note the non-monotonic variation with the electric Reynolds number
and, in particular, the transition from a positive to negative Ũ .

8. Experimental relevance

The key assumption of the present approximation scheme is that the ratio W of electric
and gravity forces is small while the electric Reynolds number is O(1). It is also assumed
that the drop is approximately spherical and that inertia plays a negligible role. We
here illustrate that these assumptions are indeed compatible with realistic experimental
systems.

We first note that, while W is proportional to the square of the applied-field magni-
tude E∗, the electric Reynolds number is independent of it. Thus, provided the applied
field is sufficiently weak W can always be made sufficiently small without affecting Re.
It therefore remains to verify that Re can indeed reach O(1) values while the viscous
Reynolds number remains small.

Recall also that, in the absence of an electric field, a settling drop does not deform in
the Stokes-flow régime, regardless of the value of the Capillary number (Levich 1962).
Drop deformation thus occurs at leading-order due to the O(W ) stresses animated by the
electric field, and accordingly scales as the product of W and the appropriate Capillary
number Ca. The assumption of a nearly spherical drop is trivially satisfied even for O(1)
Capillary numbers.

An even stricter demand from that of approximate sphericity is that the SCC-induced
O(W ) perturbation to the settling speed, calculated herein, dominates the comparable
perturbation due to deviation from sphericity. This ensures that the velocity perturba-
tion calculated in the present approximation scheme could be directly compared to that
measured experimentally. Since drop deformation results in an O(WCa) correction to
the settling speed, this requires that the Capillary number itself be small.

Plugging the velocity scale (2.1) into (2.4) we see that the electric Reynolds number
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is of order
ε∗|ρ̄∗ − ρ∗|g∗a∗

µ∗σ∗
, (8.1)

linear in drop size. The capillary number Ca is µ∗U∗/γ∗, wherein γ∗ the interfacial-
tension coefficient. Since the velocity scale (2.1) is set by gravity, it coincides here with
the Bond number, namely

Ca =
|ρ̄∗ − ρ∗|g∗a∗2

γ∗
, (8.2)

and scales as the square of drop size. The viscous Reynolds number is

ρ∗|ρ̄∗ − ρ∗|g∗a∗3

µ∗2
, (8.3)

proportional to the cube of drop size.
To estimate the above three numbers consider the experiments of Xu & Homsy (2006),

where a millimetric-size PMM drop was suspended in castor oil. This choice of liquids
was motivated by the large density difference, ρ̄∗ − ρ∗ ≈ 40 kg m−3, which allows for a
significant settling speed. For castor oil Xu & Homsy (2006) provide the values ρ∗ ≈
960 kg m−3 and µ∗ ≈ 1.4 kg m−1 s−1, as well as a dielectric constant of about 5. There is
a significant uncertainty regarding the value of castor oil conductivity. We here use the
estimate σ∗ ≈ 10−11 S m−1 provided by Vizika & Saville (1992). (In their comparison with
theoretical predictions, Xu & Homsy postulate the even smaller value 2.4×10−12 S m−1.)

Taking a∗ = 10−3 m and making use of the above-mentioned values we find from (8.1)
that the electric Reynolds number is about unity. The Bond number, estimated using
(8.2) and the value γ∗ ≈ 5× 10−3 N m−1 provided by Xu & Homsy (2006), is about 0.1.
The Reynolds number (8.3) is of order 10−4. These values support our approximation
scheme. If silicone oil is used instead of castor oil as the suspending fluid, the conduc-
tivity reduces to about 10−12 S m−1. Since the density difference ρ̄∗ − ρ∗ ≈ 30 kg m−3 is
comparable to that above, this choice can lead to even larger values of Re.

9. Concluding remarks

We have considered the electrohydrodynamic problem of drop settling in the presence
of an electric field, accounting for SCC. By focusing upon weak fields we have obtained
a linear problem governing the electric potential, valid for all values of Re. Once the
electrostatic problem is solved, the excess drop velocity (relative to that in the absence
of a field) may be obtained as a linear functional of the associated electric shear stress.
Our approach provides a different perspective from that of Xu & Homsy (2006), who
considered small electric Reynolds numbers but fields which are not weak. Remarkably,
it turns out that despite the present weak-field assumption our scheme reproduces at
small Re the approximation obtained by Xu & Homsy (2006).

The linear electrostatic problem has been reduced to a difference equation governing
the respective coefficients in a spherical-harmonics expansion of the electric potential.
Using this expansion, the integral formula for the drop speed reduces to a single se-
ries, quadratic in these coefficients. Inspection reveals a singularity at a critical electric
Reynolds number whose value is explicitly obtained in terms of the material ratios R,
S and M . For electric Reynolds numbers smaller from the critical values we find a non-
monotonic variation of drop speed with the applied field-magnitude. In particular, we
observe a transition from velocity enhancement at small Re to velocity decrement at
larger Re values.
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The finite-Re singularity discovered herein and the trends observed in figure 1 illustrate
the limitation of the small-Re approximation and motivate the respective nonlinear anal-
ysis of the problem for arbitrary values of W and Re. Since nonlinearity enters the flow
problem only through the shear-stress condition (2.11), the velocity field may be conve-
niently expanded using the appropriate eigenfunction of the Stokes equations in spherical
coordinates (Happel & Brenner 1965). Conditions (2.7) and (2.11) would then involve
both the coefficients of such an expansion as well as those of expansion (3.3). This nonlin-
ear analysis, and in particular the behaviour near the critical electric Reynolds number
identified herein, is suggested as an open problem. An even more challenging problem
arises when when the electric field in not aligned with the direction of gravity. This prob-
lem was recently analysed assuming a small electric Reynolds number (Bandopadhyay
et al. 2016).

In both the pioneering paper of Xu & Homsy (2006) and the present contribution
the quantity of interest is the modification to the settling velocity due to electric-field
application. This concept can be easily generalised by considering the effect of ambient
flow rather than gravity. In the absence of an electric field the drop is entrained by the
flow, moving with a velocity given by Faxén’s law. In the presence of an external electric
field, the SCC-induced electric stresses result in a different drop velocity. The respective
velocity modification may be calculated in principle using an analog of the present weak-
field scheme, where appropriate use of the reciprocal theorem would provide it as a
linear functional of tho electric shear stresses. Since the electric stresses in the weak-field
scheme are quadratic in the leading-order electric-potential distribution, and given the
clear nonlinear dependence of that distribution upon Re (see (2.7)), it is evident that the
velocity modification is nonlinear in the magnitude of the ambient flow. The well-known
symmetry arguments of Stokes flow (Jeffrey 1996) are then inapplicable.

The simplest non-trivial scenario may be that of a drop in a simple shear flow (Vla-
hovska 2011). In the absence of an electric field, the symmetry arguments of Stokes flow
preclude drop migration across the streamlines; in fact, the drop simply moves with the
velocity of the ambient streamline passing through its centre (Kim & Karrila 2005). In the
presence of an electric field, however, the breakdown of these arguments imply the possi-
bility of migration across streamlines. This may be the case even when the field is applied
in the flow direction, because of the asymmetry introduced by the shear-direction. (This
asymmetry enters the problem through the counterpart of the interfacial-velocity profile
(5.1) which, for a drop suspended in a shear flow, lacks axial symmetry.) There is some
conceptual similarity of this field-induced nonlinear mechanism for cross-streamline mi-
gration and that due to Marangoni stresses (Pak, Feng & Stone 2014), where nonlinearity
stems from solute advection.

We are grateful to Ory Schnitzer for suggesting this problem. This work was supported
by the Israel Science Foundation (grant no. 184/12).
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