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Ensemble-average versus suspension-scale Cauchy continuum-mechanical
definitions of stress in polarized suspensions: Global homogenization
of a dilute suspension of dipolar spherical particles
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Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge,
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The macroscale rheological properties of a dilute suspension exposed to a uniform external field and
composed of identical, rigid, inhomogeneous, dipolar, spherical particles dispersed in an
incompressible Newtonian fluid and possessing the same mean density as the latter fluid are derived
from knowledge of its microscale properties by applying a global ensemble-averaging technique.
Each dipole, which is permanently embedded in the particle, is assumed to be generated by the
presence of an inhomogeneous external body-force field in the particle interior resulting from the
action of the uniform external field on an inhomogeneous distribution of interior matter. It is shown
that although the ensemble-average stress tensor is symmetric, the suspension nevertheless behaves
macroscopically as if it possessed an asymmetric stress tensor. This seeming contradiction can be
traced to the fact that the average body force acting on the contents of any arbitrarily drawn volume
lying in the interior of the suspension does not vanish despite the fact that each particle is ‘‘neutrally
buoyant.’’ That this force is not zero stems from the fact that some particles necessarily straddle the
closed surface bounding that volume, and that the distribution of external body forces over the
interiors of these particles is nonuniform. As such, that portion of the spherical particle lying outside
of the surface enclosing the domain exerts a force on the remaining portion of the sphere lying
within that domain. We then demonstrate that the natural macroscopic model, which is derived by
equating the divergence of the suspension-scale stress appearing in that model to the
ensemble-average external body-force field, and which predicts asymmetricstress tensor, is
macroscopically deficient with respect to the more intuitiveasymmetricstress model usually
proposed by continuum mechanicians for such a suspension. It is shown that the latter,
continuum-mechanical model recovers all the physically interesting properties of the suspension.
© 1999 American Institute of Physics.@S1070-6631~99!02602-1#
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I. INTRODUCTION

While the present contribution nominally addresses its
to the somewhat arcane subject of the rheological prope
of polar and dipolar suspensions, it actually goes beyond
topic in raising fundamental questions about the definition
the suspension-scale stress tensor. In particular, it ques
whether the macroscopic stress tensor proposed for such
pensions by adopting a continuum-mechanical point of v
should be identical to the ensemble-average stress tens
the former specifying the contact force acting across an
bitrarily drawn surface in the ‘‘continuous suspension.’’ Th
issue arises in the context of asymmetric states of stres
heterogeneous continua, such as are encountered in ferro
suspensions.1

It is well known in continuum mechanics2,3 that in ab-
sence of an external body-couple density field, angular m
mentum is conserved if and only if the stress tensor is s
metric ~provided that rotational inertia and couple-stre
fields are also absent!. Such materials are termed nonpola
Conversely, in the presence of such external body-cou
2681070-6631/99/11(2)/268/6/$15.00
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fields ~and under the same parenthetic circumstances
scribed in the preceding sentence!, continuum-mechanica
models require the existence of an asymmetric stress ten
Such continua are termed polar. The necessity for an a
symmetric stress arises from the fact that the couple ge
ated by a symmetric stress tensor acting over a~net force-
free! surface bounding an arbitrary volume vanish
identically. Consequently, in the absence of an inhomo
neous external body-force density field, any body-cou
field present must be balanced by an antisymmetric st
tensor contribution.

One of the rheologically interesting systems for whi
body couples and asymmetric stresses are assumed to
macroscopically is posed by a dilute suspension compose
identical, density-matched, rigid, dipolar particles dispers
in a homogeneous incompressible Newtonian fluid in
presence of a uniform external field. In continuu
mechanics1 it is usually assumeda priori that since the par-
ticle size and average distance between proximate part
are each small relative to the macroscopic length scale
© 1999 American Institute of Physics
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which the mean velocity field varies, that the suspension
be viewed macroscopically as consisting of polar mat
thereby enabling the discrete system of particles to be
placed by a continuous distribution of infinitesimal dipoles
manifesting itself at the suspension scale as a body-co
field when subjected to an external field.

Batchelor4 and Brenner5,6 present formal rheological cal
culations justifying the above assumption. Both works de
onstrate~Batchelor4 by ensemble averaging the stress ove
suspension-scale continuum element, and Brenner5,6 by av-
eraging over a suspension cell! the existence of an asymme
ric bulk stress tensor in cases where the microscale s
inside the particles is itself asymmetric due to the prese
there of an external body-couple field~and the external body
force field, if any, is homogeneous throughout both the fl
and particles!. While the couple on the particle in that case
generated by the existence of a body-couple field, a cou
can also be generated even in the absence of such b
couple fields by the existence of aninhomogeneousexternal
body-force distribution within the particle, such as aris
from an inhomogeneous mass distribution in the presenc
gravity—the so-called ‘‘loaded-sphere’’ case.5,7–9 ~A loaded
sphere is distinguished by the fact that its center of m
does not coincide with its center of volume, through whi
the buoyant force exerted by the fluid acts, resulting in
creation of a mass dipole.! In the loaded-sphere case th
stress inside the particles is symmetric, whence the sym
try of the stress tensor both inside and outside of the parti
necessitates that the ensemble-average stress tensor be
metric as well! Another case in which a couple on a s
pended particle can be sustained arises when the coup
equilibrated by couple stresses existing in the part
interior.10 In that case the source of the resulting ensemb
average asymmetric stress is different from that
Batchelor4 and Brenner,5,6 although the effect is the same
We will not further discuss that case.

Despite the above arguments regarding the symmetr
the ensemble-average stress tensor in the loaded-sphere
we nevertheless expect the suspension-scale stress ten
be asymmetric~see the first paragraph of Sec. IV!. Unlike the
ensemble-average stress, which depends upon the de
manner in which the stresses within the particles are dist
uted, the ensemble-average velocity field as well as
ensemble-average surface traction on the external bound
of the suspension are independent of this internal stress
tribution. Rather, they are completely determined, both
side and outside of the particles by the resultant net cou
exerted on each particle by the external field, and not by
explicit manner via which this couple arises from the inter
constitution of the particle. The formal derivation of the va
ous suspension-scale mean properties proposed
Batchelor4 and Brenner5,6 is therefore in need of generaliza
tion since it is based upon the local stress field existing ins
of the particles.

In the present work we formally demonstrate that t
dipolar suspension may indeed be regarded as macros
cally composed of polar matter, and that the asymme
suspension-scale stress model4–6 indeed recovers the phys
cally interesting properties of the suspension.~No consensus
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exists in the literature as to the choice of terminology used
distinguish between ‘‘dipolar’’ and ‘‘polar’’ suspensions; i
the present contribution we adopt the historical, chronolo
cal definitions of these terms,2,7 which differ from those used
later by Batchelor4 and Rosensweig.1! We calculate, using
formal ensemble averaging, the average stress and b
force fields. We then derive a macroscopic model which
covers these average fields, and subsequently compa
with the more traditional approach, in which the macrosco
asymmetric stress tensor isa priori assumed asymmetric.

Explicitly, in Sec. II which follows, we derive both the
ensemble-average stress, and body-force fields, up toO(c),
c being the particle volume fraction. Next, in Sec. III w
quantify the macroscopic model satisfied by the hypothet
homogeneous medium which can reproduce the gr
ensemble-average properties of the suspension, subsequ
comparing it with the more ‘‘traditional’’ approach,4–6 in
which an asymmetric macroscopic stress tensor is in
duced. Concluding remarks in Sec. IV provide some furt
insights into the macroscopic model presented in Sec. II

II. THE ENSEMBLE-AVERAGE FIELDS

ConsiderN identical rigid dipolar spherical particles o
radii a, each containing an embedded dipole, dispersed
homogeneous Newtonian fluid of viscositym. Each such per-
manently embedded dipole is regarded as arising from
inhomogeneous external body-force field within the partic
The centers of spheres 1,2,. . . ,N are, respectively, situate
at the points (x1 ,...,xN) and the dipole moments of th
spheres are, respectively, oriented in the directio
(e1 ,...,eN), the latter set representing unit vectors embedd
along the dipole axes of the spheres. Such a set of locat
and orientations will be termed a ‘‘configuration.’’

Denote byV the domain of the suspension, and by (ū,p̄)
the ambient flow which satisfies the prescribed microsc
boundary conditions on the external boundaries]V of the
suspension. The domain, ambient flow, and particle num
densityn(x) are all characterized by a macroscopic leng
scaleR8, say, which is much larger than both the partic
size and average distancel between the particles. It is con
venient to non-dimensionalize the spatial coordinate withl .
Denote the dimensionless radius of the suspended spher
e (e!1), supposed small compared with unity since the s
pension is dilute. The dimensionless macroscopic len
scaleR8/ l will be denoted byR (R@1).

When inertial effects are negligible it can be shown11

that the ensemble-average stress is given toO(c) by

^s&~x!>S~^u&!1cp̄I

1E
j<e

^s~p!~x,x1j!&~1!n~x1j!dj1O~c2!.

~2.1!

In the above the angular brackets^•& denote averaging ove
all possibleN-sphere locations and orientations; that is, f
any tensor fieldA(x,x1 ,...,xN ,e1 ,...,eN),
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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^a&~x!5E AqN~x1 ,...,xN ,e1 ,...,eN!dx1¯xNde1¯eN ,

whereqN denotes the multiparticle probability density. Sim
larly, the bracketed superscript operator^•& (1) denotes aver-
aging over all possibleN-sphere locations and orientation
while excluding the location~but including the orientation!
of one of the particles.~Clearly, since all the particles ar
identical, the explicit choice of which particle is to be e
cluded is arbitrary.! Thus, ^s& denotes the average stre
field, whereasS~^u&! denotes the stress due to the avera
velocity field:

S i j ~^u&!5mS ]^ui&
]xj

1
]^uj&
]xi

D2^p&d i j , ~2.2!

where ^p& denotes the average pressure field. Fina
s(p)(x,x1) is the stress at the pointx which lies inside of the
particle whose center is situated atx1 .

Assuming thats(p)(x,x1j)>s(p)(x2j,x)1O(e/R),11

we obtain the following relation upon utilizing the slo
variation of n, i.e., n(x1j)>n(x)1O(e/R) together with
the divergence theorem:

^s i j &5S i j ~^u&!1cp̄d i j

2F E
j5e

^ f i&
~1!j jdsj2E

j<e
^bi&

~1!j jdjGn~x!.

~2.3!

In the latter, f denotes the surface traction exerted by
body on the fluid (f5s•n̂, with n̂ the inward unit normal!,
andb denotes the external body force density field, which
generated by external means. For the polar case, discu
by Batchelor4 and Brenner,5 b[const. Consequently, sinc
the antisymmetric portion of the first integral on the righ
hand side, representing the torque exerted by the fluid on
particle, does not vanish, the average stress must be a
metric, reflecting the asymmetry ofs(p). For the dipolar
case, however, the torques exerted by the body force and
fluid on the particle must balance each other. We n
approximate11 ^f& (1) by the surface traction on a neutral
buoyant spherical particle on which a couple^L & (1) is ex-
erted by external means, and which is subjected to a ho
geneous shear flow. Explicitly, in the absence of boundar

^ f i&
~1!>

3

8pe3 e i jk n̂ j^Lk&
~1!1~5mĒi j 2 p̄d i j !n̂ j , ~2.4!

in which Ē denotes the local ambient rate of strain. Sub
tuting in ~2.3! we obtain

^s i j &5mS 11
5

2
cD S ]^ui&

]xj
1

]^uj&
]xi

D2^p&d i j

1
1

2 Ej<e
@^bi&

~1!j j1^bj&
~1!j i #djn~x!. ~2.5!

Examination of~2.5! leads immediately to two interes
ing observations: The first is that the ensemble-average s
is symmetric! Trivially, the average of a symmetric field~the
stress field is symmetric both inside and outside of the p
Downloaded 10 Sep 2008 to 130.39.168.164. Redistribution subject to AI
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ticles! over the configuration space must be symmetric t
However, as stated in Sec. I, intuition rather suggests tha
suspension-scale stress tensor should be asymmetric
consequence of the couples experienced by the partic
similar to the asymmetry observed by Batchelor4 and
Brenner5,6 ~see the arguments in the first paragraph of S
IV !. Of course, their calculations assume ahomogeneousex-
ternal body-force field inside the particles, considering
stead the polar case in which the couple is exerted by
external body-couple field inside the particles. In that ca
the angular momentum equation requires the stress
within the particles to be asymmetric~at least in the absenc
of couple stresses and rotary inertia effects!, whence the
ensemble-average stress tensor too must be asymmetric

The second interesting consequence of~2.5! is the exis-
tence of an additional symmetric contribution to th
ensemble-average stress arising from the external b
forces. This term is, in general, absent when the body for
are either homogeneously distributed or else entir
absent.4–6 However, a similar term appears in the express
for the average stress tensor in a polymeric liquid compo
of a Newtonian fluid in which Hookian dumbbell-like bead
spring particles are suspended.12 Its presence there arise
from the recognition that internal forces acting within the
particles ~namely the tensile force acting along the spri
connecting a pair of beads! must have an effect on the ave
age stress.

We now calculate the ensemble-average external fo
exerted on a macroscopic volume situated within the inte
of V, away from the boundaries. To this end we first calc
late the external force acting on such a macroscopic dom
@denoted byB with boundaries]B, and of O(R)# of the
suspension for a givenN-particle configuration. Since eac
particle experiences nonet force owing to its ‘‘neutral buoy-
ancy,’’ such a force may be exerted onB only by those
particles intersected by~i.e., straddling! the surface]B. Con-
sequently,

F5 (
n51

k

Fn~xn ,en!, ~2.6!

whereinF is the resultant dimensionless external force act
on B, k is the number of particles intersecting its boundari
and Fn is the dimensionless external force acting on th
portion of thenth particle which lies inside ofB. The latter
is expressible in the form

Fn5E j<e
j1xnPB

b~j!dj. ~2.7!

Averaging~2.6! over configuration space yields

^F&5E
]Be

E j<e
j1xnPB

^b&~j!djn~x1!dx1 , ~2.8!

in which

]Be5$x1 :d~x1 ,]B!<e%

is a layer of width 2e surrounding the boundaries]B of B. If
the radius of curvature of]B is of O(R) at all points we may
approximate the integral over]Be , thereby generating an
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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error of O(e/R), by integrating first with respect to the co
ordinate normal to the boundaries, and then over]B to ob-
tain

^F&5E
]B

dsx1
E

2e

e

n~x1!dx1nE
2e

2x1n
djnE j<e

j•n̂5jn

^b&dsj .

~2.9!

Here,n̂ is the outward normal to]B, whereasx1n5x1•n̂ and
jn5j•n̂. ~Figure 1 defines the various coordinates.!

It is easy to show by changing the order of integrati
that the above ensemble-average external force possess
alternative form

^F&52E
]B

F E
j<e

^b&jdjG•n̂n~x!dsx . ~2.10!

Suppose now that a portion of]B coincides with]V, the
solid boundaries of the suspension as a whole. Designat
]Bint the remainder of]B. In this case the average extern
force on the contents ofB is given by

^F&52E
]Bint

F E
j<e

^b&jdjG•n̂n~x!dsx , ~2.11!

since particles cannot intersect the solid boundaries of
suspension. Hence, a discontinuity is predicted to exist in
average external force near the boundaries. This discon
ity may be represented by the additional surface tractionfe

5te•n̂, wherete is given by

te52E
j<e

^b&jdjnx) ~2.12!

on the boundaries. The need for introducing such an a
tional force distribution clearly arises as a consequence
the fact that suspended particles cannot penetrate the
boundaries surrounding the suspension.

III. THE HYPOTHETICAL HOMOGENEOUS MEDIUM

To complete the process of homogenization it is nec
sary to formulate a boundary-value problem for a hypoth
cal homogeneous medium which is kinematically and
namically ‘‘equivalent’’ in its macroscopic, suspension-sca
consequences to that predicted by its ensemble-ave
counterpart. In particular, the velocity and stress fields
tained from the solution of this continuum-mechanic
boundary-value problem must be asymptotically identica
the respective ensemble-average velocity and stress fiel

FIG. 1. Description of the various coordinates appearing in~2.9!.
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The natural way to derive this macroscopic continuu
mechanical model is to require that the sum of the div
gence of the suspension-scale stress field,t, say, and the
ensemble-average external body-force field, given by the
vergence of ~2.12!, would vanish. Then, withv the
suspension-scale velocity field, the pertinent continuu
mechanical equations governing the unknown fieldst andv
to be determined are as follows:

“•v50, ~3.1a!

“•t1“•t e50, ~3.1b!

vu]Vu
5ūu]Vu

, ~3.1c!

t•n̂u]V f
5 f̄1t e

•n̂u]V f
, ~3.1d!

in which t is related tov by the constitutive relation

t >mS 11
5

2
cD ~“v1“v†!2pI1

1

2 Ej<e
@^b&~1!~x,j!j

1j^b&~1!~x,j!#djn~x!1O~c2!, ~3.1e!

and whereinte is given by~2.12!.
The velocity field must agree~and can be shown to

agree! with that obtained for the case in which the particl
are composed of polar matter,4–6 for which circumstances an
asymmetric, suspension-scale, macroscopic stress tenso
obtained. In that case, toO(c) the macroscopic velocity and
stress fields satisfy the following equations:

“•v50, ~3.2a!

“•t 50, ~3.2b!

accompanied by the constitutive relation

t 5m~11 5
2 c!~“v1“v†!1t a2pI , ~3.2c!

vu]Vu
5ūu]Vu

, ~3.2d!

t•n̂u]V f
5 f̄u]V f

, ~3.2e!

in which the antisymmetric stress is given by the express

ta5e• 1
2n^L &~1!. ~3.2f!

Note that both~3.1! and ~3.2! lead to the same boundary
value problem forv.

For this polar particle case, no force distribution needs
be introduced on the boundaries beyond the fluid con
forces, as is clearly seen in~3.2e!. Thus, in that case, to
calculate the average force exerted by the fluid on a sur
S,]V, we may write

F5E
S
t•n̂ ds.

In contrast, for the dipolar case treated in this paper, wh
the couple arises from an inhomogeneous external bo
force distribution within the particles, the force onS is of the
form

F5E
S
~t1te!•n̂ ds.
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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Sincet1t e is identical to the polar matter stress tensor,
force distribution on the boundaries is identical in the tw
cases.

Despite this equality, the ensemble-average force
couple exerted by the external field on a macroscopic dom
which lies entirely in the interior ofV depends upon the
internal constitution of the suspended particles. For dipo
matter the force is given by~2.10!, whereas for polar matte
it must vanish. Moreover, the external couple exerted on
material contained in a domainB which lies entirely in the
interior of V is

E
B
r3“•t edv5E

]B
r3t e

•n̂ ds2E
B

e:t e dv,

in which we have employed the~macroscale! divergence
theorem to obtain the right-hand side of the latter equat
In this equationr denotes the position vector. While the se
ond term on the right represents the macroscopic exte
body-couple density in the polar matter case~again assuming
the absence of couple stresses and rotary inertia effects!, the
first term is nonexistent for that case. It results from t
forces exerted by the external field on those particles wh
straddle the boundary]B, and no such forces exist in th
polar matter case. Though many more particles lie in
interior of B than on its boundary]B, the couple which is
exerted on each interior particle is much smaller than
couple exerted by the forces on the boundaries. As s
both terms are generally of comparable order. Of cou
both models predict the same overall external couple on
solid surfaceV bounding the suspension, since both pred
the same force distribution onV.

IV. CONCLUDING REMARKS

From a continuum-mechanical, Cauchy stress point
view the source of the asymmetric stress inboth polar and
dipolar suspensions is patently obvious. Inasmuch as eac
the suspended particles experiences an external couple—
no net force, so that the torque exerted on each particl
represented by an origin-independent couple—a macros
domain~of volumeV, say, centered at a pointx of the sus-
pension! and containingN particles will experience an exter
nal couple(n51

N L (n), whereL (n) is the external couple on
the nth particle inV ~all variables in this paragraph bein
dimensional!. The quantityL̄ defined as

L̄5 lim
V→0

1

V (
n51

N

L ~n!

thus represents the volumetric suspension-scale exte
body-couple density field at the pointx. According to angu-
lar momentum principles applied to the suspension-sc
continuum, as a consequence of the existence of this b
couple field the suspension must experience an antisym
ric stress,t̄ a, say, whose vector invariantt̄3[2e: t̄ a satis-
fies the Cauchy moment-of-momentum equation,t̄31L̄50
~in which intrinsic rotary inertia and couple stresses are b
assumed absent!.2 Consequently, the Cauchy principle r
quires that antisymmetric stresses exist in all polarized s
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pensions. And this is true whether the external couples ac
on the suspended particles arise from body-couple fields
isting within the~‘‘polar’’ ! particles or from inhomogeneou
body-force fields present within the otherwise neutra
buoyant ~‘‘dipolar’’ ! particles. That the ensemble-avera
stress distinguishes sharply between these two cases
manifestation of the fundamental conflict as to which of t
two stress fields, namely the ensemble-average stress o
Cauchy continuum-mechanical stress, properly repres
the appropriate suspension-scale stress!

The fundamental issue in the dipolar case is, however
some extent semantic rather than substantiative. Thephysical
definition of the suspension-scale stress tensor is that its
product with a directed surface element gives the con
force exerted by the material lying on one side of the surf
upon the material lying on the other side. Choosing this s
face to lie in the interior of the suspension allows particles
straddle that surface, whence the appropriate stress te
consistent with this definition is the~symmetric! ensemble-
average stress tensor, given by Eq.~3.1e!. On the other hand
if the surface is chosen to lie on the rigid boundaries of
apparatus housing the suspension, then no particles
straddle that surface. In such circumstances the approp
stress tensor consistent with the continuum-mechanical d
nition of stress given above is the asymmetric stress ten
given by Eq.~3.2c!. The discontinuous transition from on
form to the other at the boundaries thus mirrors the co
sponding discontinuity in the spatial distribution of particl
there. These two disparate views are physically reconciled
the ‘‘additional surface traction’’ defined following Eq
~2.11!, or equivalently by the ‘‘external stress tensor’’ d
fined in Eq. ~2.12!. Since it is unlikely that one would be
physically interested in knowing the force on any surfa
other than that bounding the suspension, the most nat
choice of the stress tensor is likely to be~3.2c!. And that
stress is asymmetric!

From a microscale point of view the hypothetical hom
geneous medium, continuum-mechanical model~3.1! ~which
predicts asymmetricstate of stress! is more accurate than th
polar, asymmetric stress model~3.2!, since it correctly repro-
duces the ensemble-average stress and body-force fi
Nevertheless, the model is macroscopically deficient in f
ing to faithfully mirror all the key attributes that one woul
expect of an appropriate physical model of the phenome
Despite the greater accuracy of Eq.~3.1!, in the sense of the
~asymptotic! agreement of its predictions with forma
ensemble-average results, Eq.~3.2! nevertheless possess
important conceptual advantages in applications. Explicit

~1! It provides a macroscopic description which can be
tuitively realized from a continuum-mechanical point
view.

~2! No additional force distribution on the boundaries nee
to be introduced.
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