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The macroscale rheological properties of a dilute suspension exposed to a uniform external field and
composed of identical, rigid, inhomogeneous, dipolar, spherical particles dispersed in an
incompressible Newtonian fluid and possessing the same mean density as the latter fluid are derived
from knowledge of its microscale properties by applying a global ensemble-averaging technique.
Each dipole, which is permanently embedded in the particle, is assumed to be generated by the
presence of an inhomogeneous external body-force field in the particle interior resulting from the
action of the uniform external field on an inhomogeneous distribution of interior matter. It is shown
that although the ensemble-average stress tensor is symmetric, the suspension nevertheless behaves
macroscopically as if it possessed an asymmetric stress tensor. This seeming contradiction can be
traced to the fact that the average body force acting on the contents of any arbitrarily drawn volume
lying in the interior of the suspension does not vanish despite the fact that each particle is “neutrally
buoyant.” That this force is not zero stems from the fact that some particles necessarily straddle the
closed surface bounding that volume, and that the distribution of external body forces over the
interiors of these particles is nonuniform. As such, that portion of the spherical particle lying outside
of the surface enclosing the domain exerts a force on the remaining portion of the sphere lying
within that domain. We then demonstrate that the natural macroscopic model, which is derived by
equating the divergence of the suspension-scale stress appearing in that model to the
ensemble-average external body-force field, and which predictgnametricstress tensor, is
macroscopically deficient with respect to the more intuits®ymmetricstress model usually
proposed by continuum mechanicians for such a suspension. It is shown that the latter,
continuum-mechanical model recovers all the physically interesting properties of the suspension.
© 1999 American Institute of Physids$1070-663199)02602-1

I. INTRODUCTION fields (and under the same parenthetic circumstances de-

scribed in the preceding sentejceontinuum-mechanical

While the present contribution nominally addresses itselfy, e require the existence of an asymmetric stress tensor.
to the somewhat arcane subject of the rheological propertieg . continua are termed polar. The necessity for an anti-

of polar and dipolar suspensions, it actually goes beyond th mmetric stress arises from the fact that the couple gener-

topic in raising fundamental questions about the definition oL ted by a symmetric stress tensor acting ovénet force-

the suspension-scale stress tensor. In particular, it questions : . .
ffee) surface bounding an arbitrary volume vanishes

whether the macroscopic stress tensor proposed for such Suaéntically Consequently, in the absence of an inhomoge-

pensions by adopting a continuum-mechanical point of view

should be identical to the ensemble-average stress tensorn€ous external body-force density field, any body-couple

the former specifying the contact force acting across an ari€ld present must be balanced by an antisymmetric stress
bitrarily drawn surface in the “continuous suspension.” This [€Nsor contribution. _ _ .
issue arises in the context of asymmetric states of stress in One of the rheologically interesting systems for which
heterogeneous continua, such as are encountered in ferrofl@dy couples and asymmetric stresses are assumed to exist
suspensions. macroscopically is posed by a dilute suspension composed of
It is well known in continuum mechanits that in ab- identical, density-matched, rigid, dipolar particles dispersed
sence of an external body-couple density field, angular moin @& homogeneous incompressible Newtonian fluid in the
mentum is conserved if and only if the stress tensor is sympresence of a uniform external field. In continuum
metric (provided that rotational inertia and couple-stressmechanickit is usually assumed priori that since the par-
fields are also absentSuch materials are termed nonpolar. ticle size and average distance between proximate particles
Conversely, in the presence of such external body-couplare each small relative to the macroscopic length scale on

1070-6631/99/11(2)/268/6/$15.00 268 © 1999 American Institute of Physics

Downloaded 10 Sep 2008 to 130.39.168.164. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 11, No. 2, February 1999 Y. Almog and H. Brenner 269

which the mean velocity field varies, that the suspension casxists in the literature as to the choice of terminology used to
be viewed macroscopically as consisting of polar matterdistinguish between “dipolar” and “polar” suspensions; in
thereby enabling the discrete system of particles to be rethe present contribution we adopt the historical, chronologi-
placed by a continuous distribution of infinitesimal dipoles—cal definitions of these ternts,which differ from those used
manifesting itself at the suspension scale as a body-couplater by Batcheldt and Rosensweil). We calculate, using
field when subjected to an external field. formal ensemble averaging, the average stress and body-
Batchelof and Brennet® present formal rheological cal- force fields. We then derive a macroscopic model which re-
culations justifying the above assumption. Both works dem-<covers these average fields, and subsequently compare it
onstrate(Batchelof by ensemble averaging the stress over awith the more traditional approach, in which the macroscopic
suspension-scale continuum element, and Brérfrisy av-  asymmetric stress tensoraspriori assumed asymmetric.
eraging over a suspension gdlie existence of an asymmet- Explicitly, in Sec. Il which follows, we derive both the
ric bulk stress tensor in cases where the microscale stressisemble-average stress, and body-force fields, @(&),
inside the particles is itself asymmetric due to the presence being the particle volume fraction. Next, in Sec. Il we
there of an external body-couple figlahd the external body- quantify the macroscopic model satisfied by the hypothetical
force field, if any, is homogeneous throughout both the fluidhomogeneous medium which can reproduce the gross,
and particles While the couple on the particle in that case is ensemble-average properties of the suspension, subsequently
generated by the existence of a body-couple field, a coupleomparing it with the more “traditional” approach? in
can also be generated even in the absence of such bodyhich an asymmetric macroscopic stress tensor is intro-
couple fields by the existence of athomogeneousxternal  duced. Concluding remarks in Sec. IV provide some further
body-force distribution within the particle, such as arisesinsights into the macroscopic model presented in Sec. IlI.
from an inhomogeneous mass distribution in the presence of
gravity—the so-called “loaded-sphere” casé&:°® (A loaded
sphere is di_stinguished_ by the fact that its center of MaS§ THE ENSEMBLE-AVERAGE FIELDS
does not coincide with its center of volume, through which
the buoyant force exerted by the fluid acts, resulting in the  ConsiderN identical rigid dipolar spherical particles of
creation of a mass dipoleln the loaded-sphere case the radii a, each containing an embedded dipole, dispersed in a
stress inside the particles is symmetric, whence the symméromogeneous Newtonian fluid of viscosjiy Each such per-
try of the stress tensor both inside and outside of the particlesianently embedded dipole is regarded as arising from an
necessitates that the ensemble-average stress tensor be syitomogeneous external body-force field within the particle.
metric as well! Another case in which a couple on a sus-The centers of spheres 1,2, ,N are, respectively, situated
pended particle can be sustained arises when the couple as the points X;,...,xy) and the dipole moments of the
equilibrated by couple stresses existing in the particlespheres are, respectively, oriented in the directions
interior!® In that case the source of the resulting ensemblete, ,... ), the latter set representing unit vectors embedded
average asymmetric stress is different from that ofalong the dipole axes of the spheres. Such a set of locations
Batchelof and Brenner;? although the effect is the same. and orientations will be termed a “configuration.”
We will not further discuss that case. Denote by() the domain of the suspension, and boyg)
Despite the above arguments regarding the symmetry ahe ambient flow which satisfies the prescribed microscale
the ensemble-average stress tensor in the loaded-sphere cdsgundary conditions on the external boundarék of the
we nevertheless expect the suspension-scale stress tensoktgpension. The domain, ambient flow, and particle number
be asymmetri¢see the first paragraph of Sec)I\Wnlike the  densityn(x) are all characterized by a macroscopic length
ensemble-average stress, which depends upon the details¢aleR’, say, which is much larger than both the particle
manner in which the stresses within the particles are distribsize and average distantdetween the particles. It is con-
uted, the ensemble-average velocity field as well as thgenient to non-dimensionalize the spatial coordinate With
ensemble-average surface traction on the external boundariBenote the dimensionless radius of the suspended spheres by
of the suspension are independent of this internal stress dig-(e<1), supposed small compared with unity since the sus-
tribution. Rather, they are completely determined, both inpension is dilute. The dimensionless macroscopic length
side and outside of the particles by the resultant net couplscaleR’/l will be denoted byR(R>1).
exerted on each particle by the external field, and not by the  When inertial effects are negligible it can be shdn
explicit manner via which this couple arises from the internalthat the ensemble-average stress is give®to) by
constitution of the particle. The formal derivation of the vari-
ous suspension-scale mean properties proposed by (o)(X)=3({u))+cpl
Batchelof and Brennet® is therefore in need of generaliza-

tion since it is based upon the local stress field existing inside + J (P (x,x+ &) Pn(x+ &) dé+O(c?).
of the particles. i<e
In the present work we formally demonstrate that the (2.1

dipolar suspension may indeed be regarded as macroscopi-

cally composed of polar matter, and that the asymmetridn the above the angular brackets denote averaging over
suspension-scale stress mddeindeed recovers the physi- all possibleN-sphere locations and orientations; that is, for
cally interesting properties of the suspensi@yio consensus any tensor fieldA(X,Xq,... XN ,€1,--,EN)»
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ticles) over the configuration space must be symmetric too.

(@(x)= f AGN(X,- - XN, €L - 8N OXg - Xydey ey, However, as stated in Sec. |, intuition rather suggests that the
suspension-scale stress tensor should be asymmetric as a

whereqy denotes the multiparticle probability density. Simi- consequence of the couples experienced by the particles,

larly, the bracketed superscript operatoj™) denotes aver- sjmilar to the asymmetry observed by Batch&land

aging over all possibléN-sphere locations and orientations grennef® (see the arguments in the first paragraph of Sec.

while excluding the locatioribut including the orientation IV). Of course, their calculations assumb@nogeneousx-

of one of the particles(Clearly, since all the particles are ternal body-force field inside the particles, considering in-

identical, the explicit choice of which particle is to be ex- gtead the polar case in which the couple is exerted by an

cluded is arbitrary. Thus, (o) denotes the average stress external body-couple field inside the particles. In that case

field, whereas>.((u)) denotes the stress due to the averagene angular momentum equation requires the stress field

velocity field: within the particles to be asymmetriat least in the absence
ou)  au) of couple stresses and rotary inertia effgctwhence the
E”«u)):’“(a_ler ax] )—(p)&ij , (2.2 ensemble-average stress tensor too must be asymmetric.
j i

The second interesting consequencég2b) is the exis-
where (p) denotes the average pressure field. Finallytence of an additional symmetric contribution to the
o(P)(x,x,) is the stress at the poimtwhich lies inside of the ensemble-average stress arising from the external body
particle whose center is situatedxat forces. This term is, in general, absent when the body forces

Assuming thato® (x,x+ £ = 0P (x— £ x) + O(e/R),}*  are either homogeneously distributed or else entirely
we obtain the following relation upon utilizing the slow absent®However, a similar term appears in the expression
variation ofn, i.e., n(x+ &=n(x)+ O(e/R) together with  for the average stress tensor in a polymeric liquid composed
the divergence theorem: of a Newtonian fluid in which Hookian dumbbell-like bead-

_ spring particles are suspendedits presence there arises
{oij) =Zij({u)) +cpd; from the recognition that internal forces acting within their
particles (namely the tensile force acting along the spring
_[f B <fi>(1)§jd5§_f (b)) Mg dEn(x). connecting a pair of beafimust have an effect on the aver-
te f=e age stress.
(2.3 We now calculate the ensemble-average external force

In the latter,f denotes the surface traction exerted by theexerted on a macroscopic volume situated within the interior
body on the,fluid {=¢- A, with A the inward unit norma of 1, away from the boundaries. To this end we first calcu-

andb denotes the external body force density field, which islate the external _force acting on such a macroscopic domain
generated by external means. For the polar case, discuss&?nc’teq byB W|th_boundar!esaB, a_nd Of_O(R)]_ of the

by Batchelof and Brennef, b=const. Consequently, since suspension fqr a giveN-particle cpnf|gu_rat|on. Since each
the antisymmetric portion of the first integral on the right- particle experiences neetforce owing (o its “neutral buoy-
hand side, representing the torque exerted by the fluid on tHRANCY.” such a force may be exerted &honly by those

particle, does not vanish, the average stress must be asymarticles intersected bij.e., straddlingthe surface/B. Con-

metric, reflecting the asymmetry a#P. For the dipolar Seduently,

case, however, the torques exerted by the body force and the k

fluid on the particle must balance each other. We now F=E Fn(Xn,€), (2.6)

approximaté® (f)(!) by the surface traction on a neutrally n=1

buoyant spherical particle on which a cougle)) is ex-  whereinF is the resultant dimensionless external force acting

erted by external means, and which is subjected to a homan B, k is the number of particles intersecting its boundaries,

geneous shear flow. Explicitly, in the absence of boundariesand F, is the dimensionless external force acting on that
portion of thenth particle which lies inside oB. The latter

3 — ; Qo
(fy V= mEijkﬁj<Lk><1>+(5ME” —-pspn;, (24 IS expressible in the form

in which E denotes the local ambient rate of strain. Substi- Fn:J é<e b(£)dé. 2.7
. . . &+xpeB
tuting in (2.3) we obtain
Averaging(2.6) over configuration space yields
(ry=n| 1 2e [ B2 20 )5
ij/— B} - ij
’ 27\ ax; o ox ’ (F)= f f eee (D)(BEN(x7)dxy, 2.9
B &+x,eB

L (D) (1) . .
v | _IoIgb) Va0, 25 in whicn
Examination of(2.5) leads immediately to two interest- 9B=1{x1:d(x,9B) <€}
ing observations: The first is that the ensemble-average streissa layer of width 2 surrounding the boundarig8 of B. If
is symmetric! Trivially, the average of a symmetric figtle  the radius of curvature ofB is of O(R) at all points we may
stress field is symmetric both inside and outside of the parapproximate the integral oveiB,, thereby generating an
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The natural way to derive this macroscopic continuum-
mechanical model is to require that the sum of the diver-
gence of the suspension-scale stress fieJdsay, and the
ensemble-average external body-force field, given by the di-
vergence of (2.12, would vanish. Then, withv the
suspension-scale velocity field, the pertinent continuum-
mechanical equations governing the unknown fietdsxdv
to be determined are as follows:

V.v=0, (3.139
FIG. 1. Description of the various coordinates appearin(?if). V. -17+V.78=0, (3.1b
. L , V], =Ulsn,, (3.10
error of O(e/R), by integrating first with respect to the co-
ordinate normal to the boundaries, and then a¥M@rto ob- 7.ﬁ|mf:f_+ ,-e.ﬁ|mf, (3.10

tain
in which 7 is related tov by the constitutive relation

(F)= LBdst;n(xl)dxlnf_Xlnd§nf ¢=e (D)dsg.

—€ g.ﬁ:gn TEM

(2.9
?ereg,ﬁAis(t;l_e out\/\ia(;dfnormarll toB, _\/vhereas%r]:);l« fi and + &by (x,£)]dén(x)+0O(c?), (3.18
n= & A. (Figure 1 defines the various coordinates. P
It is easy to show by changing the order of integrationand whereins” is given by (2.12).

that the above ensemble-average external force possesses the The.velocny f|el_d must agreéand_ can.be shown_to
alternative form agre@ with that obtained for the case in which the particles

are composed of polar matt& for which circumstances an

_ o asymmetri¢ suspension-scale, macroscopic stress tensor is
(F)= LB[ Lsé<b>§d§ An(x)ds. (210 obtained. In that case, ©(c) the macroscopic velocity and
stress fields satisfy the following equations:

1+ >
EC

(VV+VVT)—p|+%J [(b)M(x,&)&
é<e

Suppose now that a portion @B coincides withd(}, the
solid boundaries of the suspension as a whole. Designate by V-v=0, (3.23
B the remainder o#B. In this case the average external

force on the contents @ is given by v.r=0, (3.2h
accompanied by the constitutive relation

<F>:_Lsim Lse<b>§d§ An()dsy. 219 7=wp(1+ 3¢)(Vv+Vvh+72—pl, (3.20
since particles cannot intersect the solid boundaries of the V]0 =Ul0 (3.20
suspension. Hence, a discontinuity is predicted to exist in the ! !
average external force near the boundaries. This discontinu- . Al 0 :f_|aQ , (3.20
ity may be represented by the additional surface tradtion ' '
=7.-A, wherer, is given by in which the antisymmetric stress is given by the expression

P=e %H<L>(1). (3.2f)
Te=—f (b)&dénx) (2.12
f<e Note that both(3.1) and (3.2) lead to the same boundary-

on the boundaries. The need for introducing such an addi\-'alue proplem for. . .
For this polar particle case, no force distribution needs to

tional force distribution clearly arises as a consequence of . duced he boundaries b d the fluid
the fact that suspended particles cannot penetrate the sol Intro uced on the oundaries beyont the fluid contact
orces, as is clearly seen i8.28. Thus, in that case, to

boundaries surrounding the suspension. )
g P calculate the average force exerted by the fluid on a surface
SCdQ, we may write
. THE HYPOTHETICAL HOMOGENEOUS MEDIUM
To complete the process of homogenization it is neces- sz 7 Ads.
sary to formulate a boundary-value problem for a hypotheti- S
cal homogeneous medium which is kinematically and dy-n contrast, for the dipolar case treated in this paper, where
namically “equivalent” in its macroscopic, suspension-scalethe couple arises from an inhomogeneous external body-

consequences to that predicted by its ensemble-averaggrce distribution within the particles, the force s of the
counterpart. In particular, the velocity and stress fields obfgrm

tained from the solution of this continuum-mechanical
boundary-value problem must be asymptotically identical to ~ g_ (7+°)-Ads.
the respective ensemble-average velocity and stress fields. s
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Sincer+ 7€ is identical to the polar matter stress tensor, thepensions. And this is true whether the external couples acting
force distribution on the boundaries is identical in the twoon the suspended particles arise from body-couple fields ex-
cases. isting within the(“polar” ) particles or from inhomogeneous

Despite this equality, the ensemble-average force anfody-force fields present within the otherwise neutrally
couple exerted by the external field on a macroscopic domaibuoyant (“dipolar” ) particles. That the ensemble-average
which lies entirely in the interior of) depends upon the stress distinguishes sharply between these two cases is a
internal constitution of the suspended particles. For dipolamanifestation of the fundamental conflict as to which of the
matter the force is given b§2.10, whereas for polar matter two stress fields, namely the ensemble-average stress or the
it must vanish. Moreover, the external couple exerted on th€auchy continuum-mechanical stress, properly represents
material contained in a domal which lies entirely in the the appropriate suspension-scale stress!

interior of Q) is The fundamental issue in the dipolar case is, however, to
some extent semantic rather than substantiative phiysical
f rxXV-+8dy = f rx +&. Ads— f e 7°%dv, definition of the suspension-scale stress tensor is that its dot
B JB B

product with a directed surface element gives the contact

in which we have employed thémacroscalg divergence force exerted by the material lying on one side of the surface
theorem to obtain the right-hand side of the latter equationyPon the material lying on the other side. Choosing this sur-
In this equatior denotes the position vector. While the sec- face to lie in the interior of the suspension allows particles to
ond term on the right represents the macroscopic externgfraddle that surface, whence the appropriate stress tensor
body_couple density in the po'ar matter Caagain assuming consistent with this def|r'1|t|0n IS thésymmetl’lt) ensemble-

the absence of couple stresses and rotary inertia eff¢oes ~ average stress tensor, given by E2}16. On the other hand,
first term is nonexistent for that case. It results from theif the surface is chosen to lie on the rigid boundaries of the
forces exerted by the external field on those particles whicf@Pparatus housing the suspension, then no particles can
straddle the boundaryB, and no such forces exist in the straddle that surface. In such circumstances the appropriate
polar matter case. Though many more particles lie in thetress tensor consistent with the continuum-mechanical defi-
interior of B than on its boundaryB, the couple which is nition of stress given above is the asymmetric stress tensor
exerted on each interior particle is much smaller than thdiven by Eq.(3.29. The discontinuous transition from one
couple exerted by the forces on the boundaries. As sucfiorm to the other at the boundaries thus mirrors the corre-
both terms are generally of comparable order. Of courseSPonding discontinuity in the spatial distribution of particles
both models predict the same overall external couple on thihere. These two disparate views are physically reconciled by

solid surface() bounding the suspension, since both predictthe “additional surface traction” defined following Eg.
the same force distribution oft. (2.11), or equivalently by the “external stress tensor” de-

fined in Eq.(2.12. Since it is unlikely that one would be
physically interested in knowing the force on any surface
other than that bounding the suspension, the most natural
From a continuum-mechanical, Cauchy stress point ofhoice of the stress tensor is likely to b&29. And that
view the source of the asymmetric stressbith polar and ~ stress is asymmetric!
dipolar suspensions is patently obvious. Inasmuch as each of From a microscale point of view the hypothetical homo-
the suspended particles experiences an external couple—bggneous medium, continuum-mechanical md8el) (which
no net force, so that the torque exerted on each particle igredicts asymmetricstate of stregss more accurate than the
represented by an origin-independent couple—a macroscaf®lar, asymmetric stress mod8l2), since it correctly repro-
domain(of volumeV, say, centered at a poirtof the sus- duces the ensemble-average stress and body-force fields.
pension and containindN particles will experience an exter- Nevertheless, the model is macroscopically deficient in fail-
nal couple=N_,L™, whereL(™ is the external couple on ing to faithfully mirror all the key attributes that one would
the nth particle inV (all variables in this paragraph being expect of an appropriate physical model of the phenomena.

IV. CONCLUDING REMARKS

dimensional. The quantityL defined as Despite the greater accuracy of E§.1), in the sense of the
N (asymptoti¢ agreement of its predictions with formal
= lim 1 S Lm ensemble-average results, .2 nevertheless possesses
vooV =1 important conceptual advantages in applications. Explicitly:
thus represents the volumetric suspension-scale externg) It provides a macroscopic description which can be in-
body-couple density field at the poirt According to angu- tuitively realized from a continuum-mechanical point of

lar momentum principles applied to the suspension-scale view. N o .
Continuum, as a consequence of the existence of this bod)§(2) No additional force distribution on the boundaries needs

couple field the suspension must experience an antisymmet- 0 be introduced.

ric stress,r2, say, whose vector invariant, = — €: 72 satis-

fi_es th_e C_auc_:hy_ moment_-of-r_nomentum equatien;-L =0 ACKNOWLEDGMENTS
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