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Abstract

We consider the case of a test sphere (ball) of radius a1 rotating at constant angular
velocity ω in an otherwise quiescent unbounded suspension of uniformly sized spheres
of radii a2 dispersed in a Newtonian fluid of viscosity µ. To the first order in the volume
fraction c of suspended spheres it is shown that when the ball is small compared with
the suspended spheres the suspension does not behave as regards the hydrodynamic
torque L exerted on the ball like a homogeneous Newtonian fluid characterized by the
usual Einstein viscosity coefficient µs = µ(1 + 5/2c). Explicitly, the torque on the
rotating sphere does not obey Kirchoff’s law, L = 8πµsa

3
1ω for no slip. Rather, a

modified form of Kirchoff’s law is obtained in which the Einstein coefficient of 5/2 is
multiplied by a coefficient which is less than unity in magnitude and is functionally
dependent only upon the suspended-sphere/test-sphere size ratio, λ = a2/a1. In the
’continuum limit,’ where λ tends to zero, one recovers Kirchoff’s law. Accordingly,
the deviation from Kirchoff’s law is interpreted in terms of an apparent Knudsen-
like ’slip’ at the rotating ball surface since this slip vanishes in the continuum limit.
The existence of an apparent slip is consistent with recent experiments performed on
small rotating spheres, albeit in concentrated suspensions, in which the ’viscosity’ of
the suspension – defined via Kirchoff’s law in terms of the experimentally measured
torque L as L/8πa31ω – was observed to be less than the viscosity of the suspension as
measured by standard viscometric methods. Similar, although quantitatively different
O(c) theoretical Knudsen-like slip results were also obtained for the ’inverse’ case,
where the torque L on the rotating ball is held constant for all time and its mean
angular velocity calculated.
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It is well known ever since the work of Einstein 1 that when the length scale on which

the ambient velocity field varies is much larger than the size of the suspended particles,

a suspension of neutrally buoyant spherical particles may be replaced by a homogeneous

medium with an increased viscosity .2,3 Such is not the case when the ambient velocity

field varies on a length scale which is comparable in magnitude to the size of the suspended

particles – as would occur, for example, during the motion through the suspension of a body

of size comparable to that of the suspended particles. Two examples of such flows are:

I. A non-neutrally buoyant sphere settling in an unbounded suspension;

II. A sphere rotating at a constant rate in an unbounded suspension.

Case I has already been extensively studied: Batchelor 4 and Batchelor & Wen 5 calculated

the average velocity of a sphere settling through a quiescent suspension under the influence of

gravity; subsequently, Davis & Hill 6 further calculated the mean-squared fluctuation of the

sedimenting sphere about its average path. Almog & Brenner 7 compared the force/velocity

relation for case of a test sphere sedimenting at a given velocity through a quiescent suspen-

sion of spheres of comparable size with the more usual case of a test sphere on which the

force is prescribed.

In the present work we calculate the torque on a test sphere which is rotating at a given

rate and find that the torque on the test sphere and its angular velocity are not related by

the Kirchoff’s law linear factor of 8πµsa
3
1, with µs the Einstein viscosity of the suspension.

Rather, the effective viscosity µs calculated by assuming the applicability of Kirchoff’s law,

albeit with a viscosity other than Einstein’s, is found to be less than the Einstein value by an

amount that depends only upon the ratio of suspended to test sphere radii. This deviation

from the Einstein relation is interpreted in terms of slip occurring at the ball surface. This
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torque calculation is motivated in part by an attempt to confirm the experimentally observed

(cf. Mondy et al. 8) presence of ’Kirchoff-law slip’ in concentrated, monodisperse, sphere

suspensions animated by the rotation of a ball comparable in size to that of the suspended

spheres. A comparable calculation for circumstances in which the torque on the test sphere is

held fixed and its mean angular velocity calculated also reveals the presence of slip, although

to a slightly different extent than that for the preceding, fixed rotation rate case!

Calculation of the ’apparent viscosity’

Consider a dilute suspension of identical, freely-suspended spherical particles of radii a2

dispersed in a homogeneous Newtonian fluid of viscosity µ in which a test sphere of radius

a1 rotates. If the size of the container is much larger than the sizes of both the suspended

and test spheres, it is reasonable to approximate results by those obtained for an unbounded

domain.

Suppose that the test sphere is rotating at a given, fixed rate ω. Due to hydrodynamic

interactions with the freely suspended particles, the torque, exerted on the rotating sphere

by the suspension will be greater than if the freely suspended particles were absent. We

define the extra-torque on the test sphere by the difference between the actual torque L and

8πµa31ω, the latter being the torque on the test sphere in the absence of the freely suspended

particles.

Obviously, the extra-torque depends upon the manner in which the suspended particles

are distributed in space. We shall be interested, therefore, in its average over all possible

multisphere locations. Since the suspension is supposed dilute, this multisphere average can

be approximated by a two-sphere average (Batchelor ,4 Almog & Brenner 7), given by

∆Li = ωj

∫

|x1|≥a1+a2

Bij(x1)P (x1/x0)dx1. (1)
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The function P (x1/x0) denotes the long-time conditional probability density for finding a

freely-suspended particle at x1 when the test sphere center is located at x0; (notice that the

coordinate system chosen is such that the origin coincides with x0.) The tensor B may be

obtained using the two-sphere numerics of Jeffrey & Onishi 9 as

Bij = 8πµa31
[

b‖eiej + b⊥(δij − eiej)− δij
]

, (2a)

b‖ =
1

x11
c

, (2b)

b⊥ =

[

y11c − 3
(y11b )2

y11a

]−1

, (2c)

in which e is a unit vector parallel to x1 − x0, and the various mobility functions x11
c , etc.

are defined in the work of Jeffrey & Onishi .9

If, instead, the angular velocity ω is unknown and the torque L exerted on the sphere is

prescribed, one may derive the reduction in angular velocity due to hydrodynamic interac-

tions in a similar manner to (1) as

∆ωi = Lj

∫

|x1|≥a1+a2

Cij(x1)P (x1/x0)dx1, (3)

wherein

Cij =
1

8πµa31
[xc

11eiej + yc11(δij − eiej)− δij] . (4)

The long-time probability density P (x1/x0) cannot be determined solely by consider-

ing convection alone. If we neglect diffusive effects (due to weak Brownian motion or hy-

drodynamic interactions), the time-dependent probability density P (x1, t/x0) satisfies the
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following conservation problem:

∂P (x1, t/x0)

∂t
+∇x1

· [U(x
1
)P (x1, t/x0)] = 0, (5a)

U(x
1
) = D(|x1|)ω × x1, (5b)

P (x1, t/x0) ∼ n(x1) for |x1| ≫ a1. (5c)

The characteristic length scale quantifying the number density n(x1) is much larger than a1.

Consequently, in order to obtain the behavior of P (x1, t/x0) for |x1| ∼ O(a) it suffices to

assume that n(x1) = n(0), where n(0) is the mean number density of suspended particles,

namely n(0) = c/vp, with vp = 4πa32/3 the volume of a suspended sphere. The function

D(|x1|) can be obtained using Jeffrey & Onishi’s 9 results, but is not of explicit interest

here.

The solution of (2.5) is of a time-periodic nature:

P (x1, t/x0) = P (x1, t+
2π

D(|x1|)ω
/x0).

Thus, P (x1, t/x0) depends upon the initial condition for all t; hence, no long-time asymptotic

behavior is expected, in contrast to the sedimenting sphere case.7 However, if we add the

effect of weak Brownian motion to (2.5) it is easy to show that P (x1, t/x0) → n(0) in the

long-time limit. Furthermore, were we to add any other diffusive effect which vanishes for

constant P (x1, t/x0), the quantity n(0) would still be a solution since ∇x1
·U(x

1
) = 0.

In view of the above discussion it seems reasonable to assume that P (x1/x0) = n(0) in

the equilibrium state. Such an assumption, usually referred to as the ’Eisenschitz hypothesis’

(cf. Batchelor & Green 10), leads generally to incorrect results (cf. Leal & Hinch 11) since for
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non-solenoidal velocity fields a non-uniform distribution is expected in the long-time limit.

Figure 1 displays the dependence on λ = a2/a1, the ratio between the respective radii of

the freely-suspended spheres and the rotating sphere, of: (i) the dimensionless extra-torque,

defined as ∆L′ = |∆L|/8πµa31cω; and (ii) the dimensionless reduction in angular velocity,

defined as ∆ω′ = 8πµa31|∆ω|c/L. Both represent the additional ’apparent viscosity’ experi-

enced by the test sphere normalized by the volume fraction c. The various mobility functions

were calculated up to O(|x1|
−100). Owing to near-field inaccuracies, the error is expected

to be approximately 0.1 percent for λ ∼ O(1) .12 The solid and dashed curves respectively

denote the dimensionless extra-torque ∆L′ and the dimensionless angular velocity reduction

∆ω′.

For λ ≪ 1 both functions attain the asymptotic value of 5/2, in agreement with theory.

For λ ≫ 1 both ∆L′ and ∆ω′ diminish monotonically with λ. The decrease of these quan-

tities may be intuitively understood from the fact that the rotating sphere remains almost

unaffected when the freely-suspended sphere is located at |x1| ≫ a1 (but not necessarily at

|x1| ≫ a1 + a2). It is expected therefore that ∆L′ and ∆ω′ will decay at least like O(1/λ).

This behavior contrasts with the case of a non-neutrally buoyant particle settling in an

unbounded suspension, in which the apparent viscosity experienced by a small (relative to

the suspended particles) falling ball is very large .6,7 The difference arises from the very

different modes of behavior displayed by the respective probability density functions for the

cases of sedimenting vs rotating spheres when the test and suspended spheres nearly touch.

While for the case of a rotating sphere P (x1/x0) is constant, independent of λ, in the case

of a sedimenting sphere it exhibits large gradients near x0 for λ ≫ 1, rendering the near-

field contribution dominant (cf. Davis & Hill ,6 Batchelor & Wen 5). Since the settling

velocity decreases significantly when the settling and freely-suspended spheres nearly touch,
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Figure 1: Variation with the suspended/test sphere radius ratio, λ of: (i) the dimensionless
extra-torque ∆L′, denoted by the full curve; and (ii) the dimensionless angular velocity
reduction ∆ω′, denoted by the dashed curve.
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the apparent viscosity in the sedimentation case increases proportionally.

Experimental results 8 reveal the existence of apparent suspension-scale slip at the surface

of a small test sphere rotating in a highly concentrated suspension. Explicitly, the suspension

viscosity µs calculated on the basis of the supposed applicability of Kirchoff’s law in the

absence of slip, namely L = 8πµsa
3
1ω, in conjunction with the experimentally measured

torque L at the given rotation rate ω is observed to be less than the µs value measured

experimentally for the given suspension by standard Couette viscometric methods .13 It

seems reasonable to assume that the origin of this apparent slip lies is the decay of the

hydrodynamic interactions, since both theory and experiment predict maximal slip for large

values of λ.

The nonequality of the solid and the dashed curves of Fig.1 points up the existence

of yet another anomalous non-continuum phenomenon arising from the discrete nature of

suspensions, a phenomenon which has also been demonstrated for the falling-ball case.7 In

particular, for λ ≪ 1 both curves coincide, as expected, due to the weakness of the singularity.

Moreover, for λ → ∞, both the extra-torque and angular velocity reduction vanish due to

the decay of the overall effect of hydrodynamic interactions. However, for λ ∼ O(1) a small

but significant difference is observed between the solid and dashed curves. (Figure 2 displays,

on a highly magnified scale, the variation with λ of the difference ∆L′ − ∆ω′ between the

two curves.) For some values of λ the dimensionless extra-torque is seen to be almost 25 per

cent larger than the comparable angular velocity reduction. This phenomenon cannot occur

in a homogeneous medium, for which the constitutive stress/rate-of-strain relationship is an

intrinsic material property of the system.
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Figure 2: The dependence on the size ratio λ of the difference ∆L′−∆ω′ in the dimensionless
extra-torque/angular velocity reduction.
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