
Existence and non-existence of solutions to the

Ginzburg-Landau equations in a semi-infinite

superconducting film

Y. ALMOG ∗

Abstract

For the problem

ψ′′

κ2
= ψ3 − ψ +A2ψ

A′′ = ψ2A

ψ′(0) = ψ(∞) = 0

A′(0) = A′(∞) = h

It is proved, for type II superconductors (κ > 1/
√
2) that

1. No solutions can exist for h ≤ 1/
√
2 other than the normal state ψ ≡ 0, A =

hx+ C.

2. Positive solutions (ψ > 0) exist whenever 1/
√
2 < h < hc3 ≈ 1.7κ

3. As h ↓ 1/
√
2 the limit of any converging subsequence satisfies A = 0, ψ = 1 at

infinity.

1 Introduction

When a superconducting body is placed under the action of an applied magnetic field,
the material would revert to its normal state for sufficiently strong applied field. Linear
bifurcation analysis of the normal state [15, 5] discovers that if the applied magnetic field
h is lowered below a certain critical field, which has been termed hc3 or the onset field, the
material becomes superconducting once again. When h ≈ hc3 it is well known that the
superconducting region is concentrated in a narrow layer near the boundaries [15, 5]. If the
field is lowered further the supeconducting region is expected to spread from the boundaries
into the domain’s interior [8, 16].
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The first case in which the bifurcation from the normal state to the superconducting one,
in the presence of boundaries, was calculated is the case of a half-plane [15]. The significance
of Saint-James and de Gennes’ solution [15] extends far beyond the simple, one-dimensional
example of a half-plane. It was proved, first for films [7], then for disks [4], and finally for
general two-dimensional domains with smooth boundaries [14, 12], that as the domain’s scale
tends to infinity the onset field tends to de-Gennes’ value. Furthermore, the solution in the
boundary layer can be approximated by the solution to the one-dimensional problem.

Extrapolating into the non-linear regime, it appears reasonable to believe that the one-
dimensional non-linear solution can serve as a good approximation for the behaviour of the
solution near the boundaries, at least as long as h0 < h < hc3 for some positive h0. This,
among other things, has been the motivation for the careful and extensive numerical study
of the one-dimensional problem in [2] in finite intervals.

Consider then a semi-infinite film of superconducting material. The Ginzburg-Landau
equations may be written in their one-dimensional form [9].

ψ′′

κ2
= ψ3 − ψ + A2ψ (1.1a)

A′′ = ψ2A (1.1b)

where ψ is the superconducting order parameter (the gauge has been chosen so that ψ would
be real), A = Aŷ is the magnetic vector potential, the magnetic field is given by H = A′ŷ,
and κ is the Ginzburg-Landau parameter. The boundary conditions satisfied by ψ and A
are

ψ′(0) = lim
x→∞

ψ = 0 (1.1c,d)

A′(0) = lim
x→∞

A′ = h . (1.1e,f)

In the present contribution we focus on the above problem for type II superconductors
(κ > 1/

√
2). We prove the following results:

1. Positive solutions (ψ > 0) exist whenever 1/
√
2 < h < hc3 ≈ 1.7κ

2. No positive solutions can exist for h ≤ 1/
√
2. This does not mean that the normal state

would prevail, since it is unstable, but rather that the solution of the time dependent
Ginzburg-Landau equation satisfying (1.1d,f) must be time-dependent.

3. As h ↓ 1/
√
2 the limit of any converging subsequence satisfies A = 0, ψ = 1 at infinity.

We also discuss the behaviour of solutions in the case h− 1/
√
2 ≪ 1 The above results are

in agreement with conjecture 4.8 in [2].
In the next section we prove the existence result, in § 3 we prove their non-existence for

h ≤ 1/
√
2, and in § 4 we discuss the limit h ↓ 1/

√
2. In the last section we briefly summarize

the work and address some key points, insufficiently emphasized within the analysis.
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2 Existence

We define the onset field, hC3
in the following manner

hC3
= inf{h > 0 | ψ ≡ 0, A = hx+ C is the unique solution of (1.1)}

hC3
≈ 1.7κ is also known as DeGenne’s value [15].
In this section we prove the following result:

Theorem 2.1 Let 1√
2
< κ and let 1√

2
< h < hc3. Then there exists at least one solution

(ψ,A) to (1.1), for which 0 < ψ < 1.

To prove the above result we examine the initial value problem

ψ′′

κ2
= ψ3 − ψ + A2ψ (2.1a)

A′′ = ψ2A (2.1b)

ψ′(0) = 0 ; ψ(0) = ψ0 (2.1c,d)

A′(0) = h ; A(0) = −
√

1− 1

2
ψ2
0 , (2.1e,f)

whose solution must exist in the interval [0, x) for some x > 0. For fixed 1√
2
< κ and 1√

2
< h

we examine the solutions of (2.1) for 0 < ψ0 < 1, and show that at least one of them satisfy
(1.1) and 0 < ψ < 1 for all x > 0. Before proving theorem 2.1 we need, therefore, to prove
some general statements concerning any solution of (2.1).

Lemma 2.2 Let (ψ,A) be a solution of (2.1) with 0 < ψ0 ≤ 1 and h > 1/
√
2. If ∃x0 ≥ 0

such that ψ(x0) = 1 and ψ′(x0) ≥ 0, then ∃x1 > x0 such that limx↑x1 ψ = ∞.

Proof: Suppose first that ψ′(x0) > 0. Then, since by (2.1a) ψ cannot have a local maximum
where ψ > 1 [11], we have ψ′ > 0 for all x > x0. Multiplying (2.1a) by ψ′ and integrating
between x0 and x we obtain

[

(ψ′)2

κ2
− 1

2
ψ4 + ψ2

]∣

∣

∣

∣

∣

x

x0

≥ 0 =⇒ (ψ′)2

κ2
≥ 1

2

(

1− ψ2
)2 ∀x ≥ x0 , (2.2)

which yields
∣

∣

∣

∣

ψ − 1

ψ + 1

∣

∣

∣

∣

≥ Ce
√
2κx .

Consequently, when the right-hand-side of the above inequality becomes greater than unity,
ψ can no longer exist.

Let then ψ′(x0) = 0. If A2(x0) > 0 then ψ′′(x0) > 0 and hence ψ′ > 0 for all x > x0. We
can then obtain (2.2) by repeating the same steps as before. Finally, if A(x0) = 0 we obtain
from the Hamiltonian relation

(ψ′)2

κ2
+ (A′)2 − 1

2
ψ4 + ψ2 − ψ2A2 = h2 (2.3)
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that (A′)2(x0) = h2 − 1
2
> 0. Hence, ψ(3)(x0) = 0 but ψ(4)(x0) = 2h2 − 1 > 0, and therefore,

ψ′ > 0 for all x > x0 and we can proceed as before. �
We note that the same result holds for (−ψ,A), or equivalently, if ∃x0 ≥ 0 such that

ψ(x0) = −1, and ψ′(x0) ≤ 0, then ∃x1 > x0 such that limx↑x1 ψ = −∞.

Lemma 2.3 Any solution (ψ,A) of (2.1) which exists in [0,∞) with h > 1/
√
2 must satisfy:

lim
x→∞

A2 = ∞

Proof: By (2.1b) A can have neither a non-positive minimum or a non-negative maximum
(if at some point A = A′ = 0 then A ≡ 0). Hence, if ∃x0 > 0 such that A(x0) = 0, then
A′ > A′(x0) > 0 for all x > x0, and thus, A→ ∞ as x→ ∞. If, on the other hand, ∃x0 > 0
such that A′(x0) = 0 and A(x0) < 0, then both A′ and A′′ must be negative for all x < x0,
and hence A→ −∞ as x→ ∞.

Suppose now, for a contradiction, that A′ > 0 for all x > 0 and that A → A∞ ≤ 0 as
x → ∞. Since A′′ < 0 for all x, A′ → 0 as x → ∞, and hence A′′ = ψ2A → 0 as well. If

ψ → 0, then by (2.3) (ψ′)2

κ2
→ h2 - a contradiction. If A→ 0, then there exists xM such that

when x > xM (A′)2 < (h2 − 1/2) /2. Hence, for any x > xM

(ψ′)2

κ2
>

1

2
ψ4 − ψ2 + h2 − h2 − 1

2

2
≥ h2 − 1

2

2

and since h > 1√
2
we must have for some x0 ≥ 0 ψ(x0) = ±1 and ψψ′(x0) ≥ 0. By lemma

2.2 (ψ,A) cannot exist in that case for all x > 0. �

Lemma 2.4 Let (ψ,A) be any solution of (2.1), which exists in [0,∞) with h > 1/
√
2.

Then,
lim
x→∞

ψ = 0

Proof: By lemma 2.3 for sufficiently large x we have

ψ2 − 1 + A2 > 0 .

Hence, ψ must be either convex or concave, and thus, monotone for sufficiently large x. Since
ψ is bounded by lemma 2.2, we have ψ −−−→

x→∞
ψ∞. Hence, ψ′′ −−−→

x→∞
0, and therefore ψ∞ = 0.

�

Proof of theorem 2.1: We first define a pair of subsets, S1 and S2, of the interval (0, 1] in
the following manner

1. ψ0 ∈ S1 ⇒ any solution (ψ,A) of (2.1) must satisfy

(a) ∃x1 > 0 ; ψ −−→
x↑x1

∞

(b) ψ > 0 ∀0 ≤ x < x1.
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2. ψ0 ∈ S2 ⇒ Any solution (ψ,A) of (2.1) must satisfy ψ < 0 on some open subset of R+.

The sets S1 and S2 are clearly disjoint. They are also open in view of the continuity of the
solution of (2.1) in ψ0 and lemma 2.2. It is easy to show that S1 is non-empty: for ψ0 = 1
the solution must blow up for some finite x1 > 0 by lemma 2.2.

To show that S2 is non-empty we consider the limit ψ0 → 0. Denote by φ(x, h) the
solution of the linearized problem

φ′′

κ2
=

[

(hx− 1)2 − 1
]

φ (2.4a)

φ(0) = 1 ; φ′(0) = 0 (2.4b,c)

We claim that as ψ0 → 0, ψ ∼ ψ0φ[1 + O(ψ2
0)] on any finite interval [0, x). To prove this

statement we first note that for ψ0 = 0 the unique solution is ψ ≡ 0, A = hx − 1. Thus,
using, for instance, theorem V.2 in [6] we obtain for some positive constant C which may
depend on x that

‖ψ‖L∞[0,x] ≤ Cψ0

Consequently, by (2.1b), we have

‖A− (hx− 1)‖L∞[0,x] ≤ Cψ2
0

(C need not be the same constant as before although we keep the same notation). We can
now apply theorem V.3 in [6] to show that as ψ0 → 0

‖ψ − ψ0φ‖L∞[0,x] ≤ Cψ3
0.

Hence, if φ is negative in some open subset of R+, then, for sufficiently small ψ0, ψ must be
negative on some open subset of R+ as well.

Let h = κ. Then, the solution of (2.4) is given by

φ(x, κ) =

[

1− κ

e

∫ x

0

e(κt−1)2dt

]

e
1

2
[1−(κx−1)2] .

Obviously, φ→ −∞ as x → ∞, and hence, at least for h = κ S2 is not empty, and ∃x0 > 0
such that φ(x0, κ) = 0. Since φ(x, h) is continuously differentiable in h in view of (2.4a),
there exists a continuously differentiable function x̃(h), in some neighborhood of h = κ, such
that φ(x̃, h) = 0. This function would exist as long as φ′(x̃, h) 6= 0. Clearly, if φ′(x̃, h) = 0
for some finite x̃, then φ ≡ 0 for all x. Thus, S2 may become empty only if ∃h0 such that
x̃ −−−→

h→h0
∞. If such x̃ exists, then φ(x, h0) must decay exponentially fast as x → ∞ (cf.

theorem 36.1 in [17]).
It is well known [15] that when h = hC3

, a positive decaying solution of (2.4) exists. If
we prove that for no h < hC3

there is a positive solution of (2.4) which decays at infinity
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then S2 is not empty for any h < hC3
. Suppose then, for a contradiction that ∃0 < h1 < hC3

such that φ(x, h1) is a positive solution of (2.4) which decays at infinity. Let

φ0(ξ) = φ(
ξ

√

κhC3
, hC3

) ; φ1(ξ) = φ(
ξ√
κh1

, h1).

Then,

φ′′
0 =

[

ξ2 − 2α0ξ
]

φ0 α0 =

√

κ

hC3

(2.5a)

φ′′
1 =

[

ξ2 − 2α1ξ
]

φ1 α1 =

√

κ

h1
(2.5b)

φ0(0) = 1 ; φ′
0(0) = 0 (2.5c,d)

φ1(0) = 1 ; φ′
1(0) = 0. (2.5e,f)

We now subtract the product of (2.5b) by φ0 from the product of (2.5a) by φ1 and integrate
over R+ to obtain

(α0 − α1)

∫ ∞

0

φ0φ1ξdξ = 0,

and hence φ1 cannot be positive on R
+.

Thus S1 and S2 are disjoint, open and non-empty for 1√
2
< h < hc3 . Since (0, 1] is

connected, S1

⋃

S2 6= (0, 1]. Hence, there exists ψ0 ∈ (0, 1] whose corresponding solution
(ψ,A) of (2.1) in R

+, must satisfy by lemma 2.2 0 < ψ < 1 for all x ≥ 0.
By lemma 2.4 ψ −−−→

x→∞
0, and in view of the convexity of ψ - ψ′ and ψ′′ must decay at

infinity as well. Hence, by (2.1a) ψA2 −−−→
x→∞

0 and therefore, from the Hamiltonian relation

(2.3) we obtain
lim
x→∞

A′ = ±h .

To complete the proof of the theorem it remains necessary to show that A′ tends to h
and not to −h. Suppose then, for a contradiction that A′ → −h. Clearly, A must have a
negative maximum in that case at some point x = x1 > 0. At x = x1 we have by (2.3)

[

(ψ′)2

κ2
− 1

2
ψ4 + ψ2

]∣

∣

∣

∣

∣

x1

> h2 . (2.6)

Suppose first that ψ′(x1) > 0. Consequently, by (2.2) the above inequality must hold for
any interval [x1, x] on which ψ′ > 0. However, from (2.6) follows ψ′(x1) > κ

√

h2 − 1/2, and
hence by bootstraping we obtain ψ′ > 0 for all x > x1, which clearly contradicts lemma 2.4.

If, on the other hand ψ′(x1) < 0, then in some interval (x0, x1], in which ψ′ < 0 we have

d

dx

[

(ψ′)2

κ2
− 1

2
ψ4 + ψ2

]

< 0 . (2.7)
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Since ψ′′(0) > 0 there must be such a point x = x0, where ψ
′ = 0. Clearly,

[

(ψ′)2

κ2
− 1

2
ψ4 + ψ2

]∣

∣

∣

∣

∣

x0

<
1

2
,

which contradicts (2.6) and (2.7). Finally, if A′(x1) = ψ′(x1) = 0, then by (2.3)

ψ2 − 1

2
ψ4 > h2 ,

which is once again a contradiction with h2 > 1/2. �
If h > hc3 the set S2 becomes empty, and hence, the above arguments becomes inap-

plicable. It is reasonable to assume that for h > hc3 no solution can exist to (1.1). The
requirement h > 1/

√
2 is necessary both in the proof of lemma 2.2 and the argument show-

ing that A′ tends to h and not to −h. For h ≤ 1/
√
2 it is demonstrated in the next section

that no solution can exist to (1.1). We note that the results in this section are applicable to
type I superconductors as well, as long as hc3 ≈ 1.7κ > 1/

√
2, as the requirement κ > 1/

√
2

was never used per Se. Nevertheless, since h must be greater than 1/
√
2, theorem 2.1 ceases

to be valid when 1.7κ ≤ 1/
√
2.

3 Non-existence

In this section we prove the following result:

Theorem 3.1 Let κ > 1√
2
and h ≤ 1√

2
. Then no solution can exist to (1.1), except for the

normal state ψ ≡ 0, A = hx+ C.

In order to prove the theorem we first derive the asymptotic behaviour of ψ as x→ ∞.

Lemma 3.2 Let (ψ,A) be a solution of (1.1). Then

ψ = χ(x)U
(

− κ

2h
, ξ
)

(3.1a)

A ∼ hx− a+O(e−αx
2

) as x→ ∞ (3.1b)

wherein U is a parabolic cylinder function of the first kind, a and α are some positive numbers,

ξ =
√
2κh

(

x− a

h

)

(3.1c)

and χ satisfies

χ(x) ∼ χ0 +O
(

e−αx
2

)

. (3.1d)
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Proof: We first note that (3.1b) has already been proved in [11]. Following [11] we then
multiply (1.1a) by ψ′ and integrate over (x,∞) to obtain, for sufficiently large x

−1

2
ψ′ 2 = κ2

∫ ∞

x

ψψ′ (ψ2 + A2 − 1
)

dt > −1

2
Kx2ψ2 ,

where K is any positive number smaller than κh. Hence, taking into account that ψ′ < 0
for sufficiently large x we must have

ψ ≤ e−Kx
2

(3.2a)

for any 0 < K < κh/2. By (1.1b) we obtain

A ∼ hx− a+O(e−Kx
2

) as x→ ∞ (3.2b)

for the same values of K.
It is not difficult to show using variation of parameters, in view of (3.2), that any decaying

solution of (1.1a) can be written in the form

ψ = χ(x)U
(

− κ

2h
, ξ
)

(3.3)

where

χ′(x) = − κ2

U2
(

− κ
2h
, ξ(x)

)

∫ ∞

x

[

A2 − (hx− a)2 + ψ2
]

ψ(t)U
(

− κ

2h
, ξ(t)

)

dt

Since for sufficiently large x, U is monotonically decreasing, we obtain by (3.2)

|χ′(x)| ≤ e−2Kx2

U
(

− κ
2h
, ξ(x)

) .

From the well known asymptotic behaviour of U [1] we obtain U ∼ O(e−κhx
2/2). Conse-

quently, picking K which is sufficiently close to κh/2, yields

|χ′(x)| ≤ exp

{

−1

4
κhx2

}

from which (3.1d) immediately follows. �
Proof of theorem 3.1 Suppose for a contradiction that a solution (ψ,A) to (1.1) does

exist. Following [10] we define the functions

F =
√
2A′ − 1 + ψ2 (3.4a)

G =
ψ′

κ
+ ψA (3.4b)
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Using (3.2b) and the asymptotic behaviour of U as x→ ∞ yields (cf. also [3])

ψ ∼ C exp

{

−1

2
κhx2 + κax− 1

2

h− κ

h
log x+

}{

1 +O

(

1

x2

)}

.

Hence, as x→ ∞
G ∼

(

−1

2

h− κ

κhx
+O(x−2)

)

ψ . (3.5)

In the present case (h ≤ 1/
√
2 < κ), therefore, G becomes positive for sufficiently large x.

Yet, G(0) < 0 since A(0) must be negative (otherwise ψ′′ would be monotone increasing for
all x). Denote then by x1 the last zero of G in R

+. Clearly, for x > x1 G must be positive.
Hence,

G′(x1) ≥ 0 (3.6)

However, it is easy to show [10] that

G′ < κ(ψF + AG) . (3.7)

Furthermore, writing Hamiltonian relation (2.3) in the form

F (ψ2 − 1−
√
2A′)− 2G

(

ψ′

κ
− ψA

)

= 1− 2h2

it can be easily seen that for h ≤ 1/
√
2, F (x1) ≤ 0, which together with (3.7) contradicts

(3.6). �
We note that the above arguments are inapplicable for type I superconductors. We expect

that solutions would cease to exist for h ≤ κ, but the above arguments do not support this
hypothesis [2].

4 Properties as h ↓ 1/
√
2

In this section we investigate the properties of the solutions of (1.1) in the limit h ↓ 1/
√
2.

To this end we need first the following lemma which summarizes a few auxiliary results.

Lemma 4.1 Any solution of (1.1) must satisfy

A′ > 0 (4.1a)

0 < ψ < 1 (4.1b)

− 1 < A(0) < −1/
√
2 (4.1c)

Furthermore, ψ has exactly one local maximum in R
+ at some point x0 > 0.
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Proof: For the proof of (4.1a) see the proof of lemma 2.3. Lemma 2.2 demonstrates that
ψ < 1. The positivity of ψ is proved in [11]. The proof of (4.1c) follows directly from (2.1f).

To prove the last statement (that ψ has a single maximum), let (ψ,A) be a solution of
(1.1) for κ > 1/

√
2. It is not difficult to show that ψ has exactly one maximum point at

some x = x0 > 0. If it has a minimum at x = x1 > x0, then

(

ψ2 + A2 − 1
)∣

∣

x1
≥ 0 ≥

(

ψ2 + A2 − 1
)∣

∣

x0

and since ψ(x1) < ψ(x0) we must have A2(x1) > A2(x0). As A(x1) > A(x0), we must have
A(x1) > 0. However, since ψ′′(x1) ≥ 0, and since (ψ2 + A2 − 1)

′
> 0 as long as ψ′ ≥ 0 we

must have, by bootstraping, ψ′ > 0 for all x > x1 which is clearly a contradiction. �
In the following we investigate the asymptotic behaviour of ψ(x0), A(x0) and x0 in the

limit h ↓ 1/
√
2. We prove the following result

Theorem 4.2 Let {hk}∞k=1 tend to 1√
2

+
. Denote by (ψk, AK) a solution of (1.1) with h = hk,

and ψk(0) > 0. Then,

1. {(ψk, Ak)}∞k=1 contains a converging subsequence in Cm[0, x] for any x > 0, m > 0.

2. Let (ψk, Ak) → (ψ∞, A∞) uniformly on any finite interval [0, x]. Then, (ψ∞, A∞) is a
solution of the problem for (cf. [8])

ψ′′

κ2
= ψ3 − ψ + A2ψ (4.2a)

A′′ = ψ2A (4.2b)

ψ′(0) = 0 lim
x→∞

ψ = 1 (4.2c,d)

A′(0) = 1/
√
2 lim
x→∞

A = 0 . (4.2e,f)

We note that the proof of the theorem must include a proof of existence of solutions to (4.2).
To prove the theorem we first show that ψ(x0) → 1 and A(x0) → 0 as h ↓ 1/

√
2.

Lemma 4.3 Let (ψ,A) be a solution of (1.1) for h < κ. Let x0 be the maximum point of

ψ, and let ψm
def
= ψ(x0), Am

def
= A(x0). Then

A2
m ≤ 1− ψ2

m ≤
√

h2 − 1
2

κ2 − 1
2

; A′ 2 (x0) ≤
√

h2 − 1
2

κ2 − 1
2

+ h2 − 1

2
(4.3a,b)

Proof: In § 3 in (3.4b) we define a function G which is negative at the origin and positive
for sufficiently large x. Hence, there is a point x = x1 where G(x1) = 0 and G′(x1) ≥ 0. It
is easy to show, by calculating the derivative of G that at this point, that

[

ψ2 − 1 +
A′

κ

]

x=x1

≥ 0
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Let ψ1 = ψ(x1) and A
′
1 = A′(x1). By the above inequality we have

κ2
(

1− ψ2
1

)2 ≤ (A′
1)

2
.

By (3.2a), (2.3) is valid for any solution of (1.1). At x = x1, keeping in mind that G(x1) = 0,
(2.3) is expressible in the form

(A′
1)

2 − 1

2

(

1− ψ2
1

)2
= h2 − 1

2
.

Hence,

κ2
(

1− ψ2
1

)2 ≤ 1

2

(

1− ψ2
1

)2
+ h2 − 1

2
.

Consequently, as ψ1 ≤ ψm we have

(

1− ψ2
m

)

≤
(

1− ψ2
1

)

≤
√

h2 − 1
2

κ2 − 1
2

.

Obviously, since x = x0 is a maximum point we must have ψ′′(x0) ≤ 0 and hence,

A2
m ≤ 1− ψ2

m (4.4)

which proves (4.3a).
To prove (4.3b) we use (2.1) at x = x0 to obtain

A′(x0)
2 − 1

2

(

1− ψ2
m

)2
= ψ2

mA
2
m + h2 − 1

2
. (4.5)

which, combined with (4.4), yields

A′(x0)
2 ≤ h2 − 1

2
ψ4
m . (4.6)

Substituting (4.3a) in the above proves (4.3b). �
Next, we show that x0 → ∞ as h ↓ 1/

√
2.

Lemma 4.4 Let (ψ,A) be a solution of (1.1), and let x0 denote the maximum point of ψ.
Then

x0 > C +
1

4
log

1

h2 − 1
2

. (4.7)

Proof: Denote by Ã the solution of the problem

Ã′′ = Ã in (0, x0) (4.8a)

Ã(x0) = −|A(x0)| ; Ã′(x0) = A′(x0) (4.8b,c)
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The solution of (4.8) is given by

Ã(x) = −|A(x0)| cosh(x− x0) + A′(x0) sinh(x− x0) ,

which together with (4.3) yields the estimate

−C
[

h2 − 1

2

]1/4

ex0−x ≤ Ã < 0

In view of (1.1b) and (4.8a), it is not difficult to show that Ã ≤ A for all x ∈ [0, x0]. Hence,
Ã(0) < A(0) < −1/

√
2, from which (4.7) easily follows. �

Proof of theorem 4.2: Since (2.3) is valid for any solution of (1.1) [in view of (3.2a)] and
since A(0) must be negative, it is clear that any solution satisfying (1.1) must be a solution
of (2.1) for some 0 < ψ0 ≤ 1. Namely,

ψ′′
k

κ2
= ψ3

k − ψk + A2
kψk

A′′
k = ψ2

kAk

ψ′
k(0) = 0 ; ψk(0) = ψ

(k)
0

A′
k(0) = hk ; Ak(0) = −

√

1− 1

2

(

ψ
(k)
0

)2

where 0 < ψ
(k)
0 < 1. Hence, we can assume ψ

(k)
0 → ψ∞

0 or else move to an appropriate
subsequence. Let (φ,B) denote the solution of

φ′′

κ2
= φ3 − φ+ B2φ (4.9a)

B′′ = φ2B (4.9b)

φ′(0) = 0 ; φ(0) = ψ∞
0 (4.9c,d)

B′(0) = 1/
√
2 ; B(0) = −

√

1− 1/2(ψ∞
0 )2 . (4.9e,f)

By continuity of solutions with respect to initial conditions (cf. theorem 4.1 in chapter
V of [13]) together with the extension theorem (cf. theorem 3.1 in chapter II of [13]), it now
immediately follows that (ψk, Ak) → (φ,B) in Cm[0, x] for any x > 0 and m > 0.

To prove that (φ,B) ≡ (ψ∞, A∞) we need first to show that ψ∞
0 > 0. Suppose, for a

contradiction, that ψ∞
0 = 0. Then, (ψk, Ak) must tend pointwise to

ψ ≡ 0 ; A =
x√
2
− 1 (4.10a,b)

Denote by x
(k)
0 the maximum point of ψk. By lemma 4.3 Ak(x

(k)
0 ) → 0 as k → ∞. Fur-

thermore, Ak(x) < Ak(x
(k)
0 ) for all x < x

(k)
0 , and since by lemma 4.4 x

(k)
0 → ∞ as k → ∞,

Ak 6→ A yielding ψ∞
0 > 0.
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It remains necessary to show only that (φ,B) satisfies (4.2d) and (4.2f). It has already

been demonstrated that for x < x
(k)
0 we have

ψk(x) < ψk(x
(k)
0 ) ; Ak(x) < Ak(x

(k)
0 ) ; ψ′

k(x) > 0 ; A′
k(x) < 0 .

Hence, since x
(k)
0 → ∞ we have φ′ > 0 and B′ > 0 for all x > 0. Furthermore, by lemma 4.3

we have φ < 1 and B < 0 for all x > 0. Thus, both φ and B must tend to constants, which
we respectively denote by φ∞ and B∞, at infinity. By (4.9a,b) we must then have φ′′ → 0
and B′′ → 0 and since φ∞ > ψ∞

0 > 0, we must have φ∞ = 1, B∞ = 0. �

5 conclusion

We have demonstrated, for type II superconductors that

1. Positive solutions (ψ > 0) exist whenever 1/
√
2 < h < hc3 ≈ 1.7κ

2. No positive solutions can exist for h ≤ 1/
√
2

3. As h ↓ 1/
√
2 the limit of any converging subsequence satisfies A = 0, ψ = 1 at infinity.

For type I superconductors only the results 1. and 3. are proved, and even that only for the
case 1.7κ > 1/

√
2. We note that since the normal state is known to be unstable for h < 1.7κ

result 2 does not mean that the normal state would prevail but rather that any solution
satisfying the normal state condition at infinity must be unstable (or time-dependent). Result
3 indicates that steady solutions must satisfy the perfectly superconducting state at infinity.

The above results are in agreement with conjecture 4.8 in [2], which discusses the existence
of asymmetric solutions of (1.1a,b) on the interval [−a, a] in the limit a→ ∞. There are two
types of asymmetric solutions according to this conjecture: one that can be approximated
by the solution of (4.2) with A′(0) not necessarily equal to 1/

√
2, and one that can be

approximated by the solution of (1.1). We note that for the linearized equations it was
proved [7] that the solutions in the interval [−a, a], satisfying ψ′(±a) = 0 tend to the solution
in R

+ as a→ ∞.
It should be mentioned that the solution on the real line, which represents one of the

symmetric modes on [−a, a] as a→ ∞, does not exist for h ≤ 1/
√
2 for type II superconduc-

tors [3]. Furthermore, formal asymptotic expansion for κ ≈ 1/
√
2 shows that as h → 1/

√
2

the solution tends pointwise to ψ ≡ 1 A ≡ 0. Both results resemble the results i § 3 and § 4.
Finally, it is reasonable to believe that for some h < κ the solutions of (1.1) become unstable
in two dimensions. It is expected that periodic solutions in the form of Abrikosov’s lattices
would emerge away from the boundaries for sufficiently low field.
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