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Abstract. We study the respective effects of shear rate and of ex-
ternal field intensity and direction on the contribution to the bulk
stress of Brownian dipolar axisymmetric particles suspended in a
steady macroscopically homogeneous shear flow of an incompress-
ible Newtonian fluid. Towards this end we obtain the steady orien-
tational distribution and make use of existing general dynamic the-
ories of dilute suspensions. The calculation focuses on the limit of
weak rotary diffusion. Thus, unlike previous analyses, the present
contribution is not restricted to weak shear effects.

Explicit results are presented for the bulk stress when the exter-
nal field acts in the plane of the simple shear flow. In cases when
the deterministic rotary motion possesses a single sufficiently sta-
ble node a simple unified description of the respective effects of
both the intensity and azimuthal direction of the external field is
provided the boundary-layer approximation. This approximation
enables both a qualitative explanation of existing numerical results
as well as quantitatively accurate analytical results at relatively
moderate values of the rotary Peclét number and the Langevin
parameter (∼ 10). Furthermore, at still larger values of these pa-
rameters use of the present asymptotic approximation is clearly
preferable since the numerical schemes rapidly deteriorate when
steep orientational gradients appear.

Singularities of the bulk stress are rationalized in terms of the
corresponding deterministic rotary motion. This is particularly
interesting because some of these singular phenomena ( e.g. those
associated with an ’intermediate regime’ of the field intensity and
direction, for which more than one stable attractor exists in the
deterministic problem ) have no counterparts in suspensions of
dipolar spheres or torque-free axisymmetric particles.

Finally, the present results obtained for the orientational dis-
tribution are also applicable to the study of other aspects of the
macroscale description of suspensions of dipolar axisymmetric par-
ticles. In this context we mention the extension of continuum mod-
elling of suspensions of swimming micro-organisms so as to enable
the analysis of fully-developed bioconvection.
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1. Introduction

Suspensions of dipolar particles appear in a wide variety of engi-
neering applications (e.g. ferrofluids, cf. Rosensweig 1985) as well as
natural phenomena (e.g. bioconvection set up by the swimming of cer-
tain micro-organisms, cf. Pedley & Kessler 1992). The macroscopic
behaviour (i.e. rheology, transport phenomena, optical and electro-
magnetic properties, etc.) of such suspensions is substantially affected
by the fact that, when subject to an appropriate external field, the sus-
pended particles experience an orienting torque acting so as to align
their dipole axis in the field direction. Thus, external magnetic fields
influence the orientation of the single-domain, ferromagnetic particles
suspended in a ferrofluid. Similarly, gravity affects the swimming di-
rection of various species of algae possessing an asymmetric internal
mass distribution, while certain bacteria contain magnetic particles and
hence tend to move along magnetic field lines. All of the above ori-
enting effects are collectively modelled by the response of a permanent
dipole to an external field.

Calculation of the effective suspension properties involve ensemble
averaging in which the orientational distribution density serves as the
weight function [e.g. (1) et seq.]. The present analysis thus focuses on
the calculation of this orientational distribution in a dilute suspension
of Brownian axisymmetric dipolar particles in the limit of weak rotary
diffusive effects.

The first analyses of the rheology of dilute suspensions of dipolar
spheres were those of Hall & Busenberg (1969) and Brenner (1970b)
who neglected the effect of rotary Brownian diffusion. This latter effect
has been incorporated into the thorough study of Brenner & Weissman
(1972). The limit of weak diffusion in the case when the determinis-
tic particle rotary motion is periodic was discussed by Hinch & Leal
(1972b). Shliomis (1972) studied the same problem by means of a ’re-
laxation equation’ model. However, the latter is of rather ad hoc nature
and is only applicable in certain limiting cases. Brenner & Weissman
(1972) first suggested that the lack of agreement between their results
and available experimental data regarding dipolar suspensions rheology
was due to their disregard of the nonspherical shape of the suspended
particles. Indeed, typical examples relevant to the manufacturing pro-
cess of magnetic tapes and disks (Jhon et al. 1996) are single-domain
rod-like γ − Fe2O3 particles and plate-like Ba-ferrite particles whose
axis ratios are 7.5 and 0.1, respectively. Pedley & Kessler (1990) like-
wise mention as a typical example in the context of swimming micro-
organisms prolate spheroidal cells of axis ratio about 1.4.
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While the orientational distribution and rheology of dilute suspen-
sions of torque-free nonspherical particles have extensively been studied
(cf. the review by Brenner 1974), only a relatively few investigations
considered dipolar nonspherical particles. Moreover, these are largely
restricted to the limit of weak shear effects. Thus, Jansons (1983) cal-
culated the bulk stress tensor for cases when the shear effect is small
relative to the respective effects of both the external field and the rotary
Brownian diffusion. Furthermore, some of the stress terms remained
indeterminate since the orientational distribution was only calculated
in the complete absence of shear. Pedley & Kessler (1990) obtained
the first-order shear correction of the orientational distribution ( rel-
ative to that pertaining to a quiescent fluid ). Salueña et al. (1994)
extended Jansons’ (1983) analysis providing a higher-order term in the
respective limits of weak shear and an external field which is either
weak or strong relative to the rotary diffusive effects. Shear effects
may, however, be quite significant. Thus, Smith & Bruce (1979) report
experimental data regarding magnetic fluids at high shear rates corre-
sponding to rotary Peclét numbers larger than 400. Similarly, Pedley
& Kessler (1990) suggest that extension of the continuum theory of
suspensions of micro-organisms to account for significant shear effect is
an essential step towards the analysis of experimentally-observed fully-
developed (nonlinear) collective motions.

An exception to the above is the numerical calculation of Strand &
Kim (1992) who expanded the orientational distribution density into
a series of surface harmonics and applied a Galerkin Method. How-
ever, their numerical scheme rapidly deteriorates with increasing value
of the Langevin parameter due to poor convergence of the series ex-
pansion when steep gradients of the orientational distribution appear.
Furthermore, physical insight into suspension macroscopic behaviour
in the present singular limit of weak diffusion may only be obtained
by relating the orientational distribution to the long-time limit of the
corresponding deterministic motion (i.e. in the absence of diffusion ) of
the suspended particles. This requisite relation may not be inferred via
some ’interpolation’ between the cases of dipolar spheres and torque-
free axisymmetric particles, since the motion of dipolar axisymmetric
particles may be markedly different both quantitatively and qualita-
tively (cf. Almog & Frankel 1995). Owing to cumulative effects, even
a weak external field or a small deviation from spherical shape may
significantly modify the long-time limit of particle motion. Thus, un-
like both of the above-mentioned problems, there are in the present
problem cases when all particles approach a single stable limit cycle;
in other cases multiple stable equilibrium orientations simultaneously
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coexist and orientation space is accordingly divided into separate do-
mains of attraction.

The rest of this contribution is arranged as follows. In the next
section we briefly outline the main results of the general dynamic the-
ory regarding the rheology of dilute suspensions, and formulate the
boundary-value problem governing the steady orientational density dis-
tribution. The various asymptotic limits of this distribution are out-
lined in § 3. The results are then utilized to calculate the bulk stress
which is discussed in § 4. In the concluding section we comment on the
significance of the main results of the present contribution.

2. Calculation of the bulk stress

The dynamic theories of Batchelor (1970) and Brenner (1970a, 1972)
provide a complete description of T , the bulk (volume-averaged) stress
in a dilute suspension (when hydrodynamic and other interparticle in-
teractions are negligible). The dimensionless deviation of this bulk
stress from the Newtonian stress

T − 2µS′

µGc
= 5 ⟨A⟩ − 1

2

Fr

µGτp
ϵ · ⟨Le⟩ , (1)

consists of symmetric and antisymmetric portions respectively repre-
sented by the terms on the right-hand side of (1). In this equation
µ denotes the viscosity of the suspending fluid, S′ is the macroscopic
rate-of-strain tensor (i.e., the symmetric portion of the bulk velocity
gradient), c is the volume fraction of suspended particles, G is an appro-
priate norm [cf. (11)] of the bulk velocity gradient, ϵ is the alternating
isotropic third-rank pseudotensor, F is the magnitude of external field
acting on the dipolar particles, r is the (permanent) dipole moment of a
suspended particle, and τp its volume. The tensor A and pseudovector
Le respectively denote the dimensionless orientation-specific particle
stress and external torque, and the symbol < > represents the corre-
sponding orientational averages. For an axisymmetric particle whose
orientation may effectively be represented by the unit vector e attached
to its axis of symmetry (see Fig. 1)

⟨x⟩ △
=

∫
S2

f(e)x(e)d2e , (2)

in which the weight function f(e) is the steady long-time limit of the
orientational density distribution to be discussed presently, and d2e
is an areal element on S2, the surface of the unit sphere. Adapting
the general expressions of Brenner (1972) to the present problem, we
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Figure 1. Definition of orientation e ≡ (θ, ϕ) of ax-
isymmetric particle suspended in simple shear flow (11)
and subject to an external field acting in the direction
F̂ ≡ (θ̄, ϕ̄).

obtain

⟨A⟩ =
(
2N − 3QII

B
− 4QIII

B

)
{⟨ee⟩ ·Λ}s − 3QII ⟨ee⟩ · S +QIII ⟨ee⟩ : S

−
(
3QII

B
+

4QIII

B

){
λ
({

⟨e⟩ F̂
}s

− ⟨eee⟩ · F̂
)
+

1

Pe
(I − 3 ⟨ee⟩)

}
+ 2QIS , (3)

and

⟨Le⟩ = ⟨e⟩ × F̂ . (4)
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In the above S and Λ are, respectively, the symmetric and antisymmet-
ric portions of the bulk velocity gradient normalized with respect to G,
{}s denotes the symmetrization operator, I is the identity second-rank

tensor, and the unit vector F̂ represents the direction of the external
field. The parameters λ and Pe are defined later on. The scalars, QI ,
QII ,QIII , N , and B are intrinsic coefficients determined by particle
geometry. (For spheroids these are known functions of the particle axis
ratio, cf. Brenner 1974). Thus, once f(e) is calculated, one may readily
obtain the bulk stress by means of (1)-(4).

The steady orientational density distribution of dipolar axisymmet-
ric particles which are uniformly distributed in physical space, f(e),
satisfies (cf. Brenner & Condiff 1974) the convection-diffusion equa-
tion

Pe∇e · (ėf) = ∇2
ef (5)

The dimensionless time derivative of e (normalized with respect to G)
appearing in the convective term may be represented by the sum

ė = ė1 + λė2 , (6a)

of the respective effects of shear

ė1 = ωf × e+B(I − ee)e : S , (6b)

in which ωf is the (undisturbed) fluid angular velocity, and of Le, the
orienting torque exerted on the dipolar particle by the external field F

ė2 = Le × e = (I − ee) · F̂ . (6c)

Equation (5) is supplemented by the normalization condition∫
S2

f(e)d2e = 1 (7)

and the requirement that f(e) be continuous and single-valued in S2.
Appearing in the above are the rotary Peclét number

Pe =
G

dr
(8)

and the field parameter

λ =
mrFr

G
(9)

wherein the scalar coefficients mr and dr are, respectively, the mobility
and diffusivity corresponding to particle rotation about a transverse
axis. The field parameter represents the relative effects of the external
field and the shear flow on the rotary motion. For future reference it
is also useful to define the Langevin parameter

χ = λPe (10)
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representing the relative orienting and disorienting effects respectively
associated with the external field and the rotary diffusion.

Obviously the bulk stress is a single-valued function of (χ,Pe, ē) inas-
much as, for a prescribed particle geometry and set of parameters, the
steady orientational distribution employed in (2.1)-(2.4) is the unique
long-time solution of the linear Fokker-Planck equation. The multiple-
valued results presented by Rosensweig (1985, p. 267) thus essentially
reflect the ad hoc nature of the relaxation equation from which they
have been derived.

The present analysis focuses on the simple shear flow

u = ĵGx (11)

wherein (î, ĵ, k̂) is a right-handed triad of orthonormal space-fixed unit
vectors in the directions of the (x, y, z) axes, and the scalar G denotes
the shear rate. The analysis may be extended to a broader class of pla-
nar homogeneous shear flows through an appropriate reinterpretation
of the parameters (cf. Hinch & Leal 1972a, Brenner 1974).

Parameterizing e in terms of the polar angles (θ, ϕ), the orientation-
space gradient operator is

∇e = îθ
∂

∂θ
+ îϕ

1

sin θ

∂

∂ϕ
, (12)

where (e, îθ, îϕ) is a right-handed triad of particle-fixed unit vectors
(Fig. 1), and

ė = îθθ̇ + îϕϕ̇ sin θ . (13)

Making use of these we obtain from (5)-(7)

Pe

[
∂

∂θ
(f θ̇ sin θ) +

∂

∂ϕ
(fϕ̇ sin θ)

]
=

∂

∂θ

(
∂f

∂θ
sin θ

)
+

1

sin θ

∂2f

∂ϕ2
,

(14)

θ̇ =
1

4
B sin 2θ sin 2ϕ+ λ[sin θ̄ cos θ cos(ϕ− ϕ̄)− cos θ̄ sin θ] , (15a)

ϕ̇ =
1

2
(1 +B cos 2ϕ)− λ

sin θ̄

sin θ
sin(ϕ− ϕ̄) , (15b)

and ∫ π

0

∫ 2π

0

f sin θdϕdθ = 1 . (16)

In (15a) and (15b) θ̄ and ϕ̄ are the polar angles characterizing F̂ (Fig.
1). It is worthwhile to mention that symmetry properties of (15a) and
(15b) discussed by Almog & Frankel (1995) allow us to restrict the
variation of the parameters to the respective intervals 0 ≤ θ̄ ≤ π/2,
0 ≤ ϕ̄ ≤ π, and 0 ≤ B ≤ 1.



8 Y. ALMOG AND I. FRANKEL

Numerical solution of (14)-(16) has been obtained via a Galerkin
method similar to that presented by Strand & Kim (1992): f(e) is
expanded in a series of surface spherical harmonics. Truncation of the
series beyond the degree n = N yields a system of (N + 1)2 linear
algebraic equations for the coefficients. The solution thus obtained ap-
proximates the projection of f(e) onto the first N-harmonic subspace.
In the next section we study the asymptotic behaviour of f(e) in the
limit when the effect of Brownian diffusion is weak relative to convec-
tion.

3. The orientational distribution

Before proceeding to the actual calculation of f(e), we briefly discuss
the dependence upon the parameters χ and Pe of the nature of prospec-
tive orientational distributions. A qualitative schematic description of
the various domains in the plane of parameters (χ,Pe) is presented on
a ’logarithmic’ scale in Fig. 2 for θ̄ = π/2. We primarily distinguish
between two different limits:

(1) Dominant diffusion when both χ,Pe ≪ 1. In this case (corre-
sponding to the bottom left portion of the figure), we anticipate
a nearly uniform orientational distribution. The first-order de-
viation from such uniform distribution is expressible as a su-
perposition of correction terms corresponding to the respective
effects of fluid shear and external field. These, in turn, have
previously been obtained by Brenner & Condiff (1972,1974).

(2) Weak diffusion when χ ≫ 1 or Pe ≫ 1. We expect the ori-
entational distribution in this case to be closely related to the
long-time behaviour of the corresponding deterministic rotary
motion (i.e., for the same λ and F̂ in the absence of Brown-
ian diffusion). With a few exceptions (cf. Almog & Frankel
1995), in the latter problem as t → ∞ the dipolar particles ap-
proach either a stable equilibrium orientation or a stable limit
cycle. Whether or not the resulting orientational distribution
is of boundary-layer type depends, however, on the strength of
the corresponding attractor. In order to clarify this point we
compare (dr)

−1, the diffusive time scale, and the characteris-
tic time associated with the deterministic rotary motion in the
limit λ ≪ 1. According to Almog & Frankel (1995), the lat-
ter is O(1/λ2G) when the external field acts in the plane of
shear (θ̄ = π/2) and O(1/λG) when the field has a nonzero
component in the direction of the undisturbed fluid vorticity
(θ̄ ̸= π/2). Both (diffusive- and convective-) time scales will
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dominant

diffusion

χ<<1

1

dominant  shear

χ>>

χ>>1

dominant

field

λ<<1

λ=1

λ>>1

χ χ2

1/2

Pe

Pe

Pe << 1

Pe >> 1

Pe >> 

1

Figure 2. Schematic description of the various domains
in the plane of parameters (χ,Pe) for an external field
acting in the plane of shear θ̄ = π/2.
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thus be comparable for χ ∼ O(Pe1/2) when θ̄ = π/2 and for
χ ∼ O(1) otherwise.

We conclude that for fixed Pe ≫ 1 and sufficiently small λ,
rotary diffusion, though weak, will have a global effect through-
out S2. Indeed, asymptotic calculation in the domain of ’dom-
inant shear’ (indicated at the upper left of Fig. 2, cf. § 3.2)
yields a rather even orientational distribution as opposed to
the boundary-layer type distributions obtained for sufficiently
large values of λ (at the right of the figure). When θ̄ ̸= π/2
some changes take place in the location of the boundaries of
the respective domains of dominant external field and domi-
nant shear. (Thus, for instance, in agreement with the above
estimates, orientational boundary- layer distributions may oc-
cur whenever χ ≫ 1.) This may result in some overlap between
the various domains of weak diffusion, thereby allowing for a
smooth transition between the corresponding asymptotic solu-
tions for the orientational distribution (cf. § 3.2).

3.1. Boundary-layer distributions.

3.1.1. A Stable equilibrium orientation. As established by Almog &
Frankel (1995) and mentioned above, for sufficiently large values of λ,
the dipolar particles approach, in the absence of Brownian diffusion,
a stable equilibrium orientation. Large gradients of f(e) are expected
in the immediate vicinity of this orientation and diffusive effects will
no longer be negligible there. We thus seek a boundary-layer-type
orientational distribution. Define the ’inner’ coordinates

θ = θc + δα , and ϕ = ϕc + ϵβ (3.17a,b)

where ec ≡ (θc, ϕc), the equilibrium orientation, is obtained by setting
ė = 0 in (6a) and (6b) and ϵ, δ → 0 as Pe, χ → ∞. The respective
effects of diffusion and external field balance within the boundary layer
for

δ = χ−1/2 , and ϵ = χ−1/2/ sin θc . (3.18a,b)

(Thus an expansion about (θ̄, ϕ̄) rather than (θc, ϕc) will be nonuniform

unless the displacement of ec from F̂ , which for large λ is O(λ−1), is
smaller than the boundary-layer thickness, i.e. unless χ ≫ Pe2. Fur-
thermore, some minor modifications are required when θ̄ = 0, because
θc = 0 then.) Expanding (14), (15a) and (15b) in terms of these inner



SUSPENSIONS OF BROWNIAN DIPOLAR PARTICLES 11

variables yields

f ∼=
χ

2π

(
C1C3 − C2

2

)1/2
exp

[
−1

2

(
C1α

2 + 2C2αβ + C3β
2
)]

[1+χ−1/2f1(α, β)+O(χ−1)] ,

(3.19a)
up to and including a first-order O(χ−1/2) correction (which is not
explicitly presented here ). The above solution is only valid provided
that the constants C1, C2, C3 (which, in turn, depend upon aij (i, j =
1, 2), the scalar components of ∇eė) satisfy C1C3 − C2

2 > 0. It is easy
to show that the latter inequality is equivalent to the requirement that
ec be a stable equilibrium orientation. In the particular case when
θ̄ = π/2 we have

f ∼=
χ

2π
(a11a22)

1/2 exp

[
−1

2

(
a11α

2 + a22β
2
)]

[1+χ−1/2f1(α, β)+O(χ−1)] .

(3.19b)
It is worthwhile to emphasize that, unlike earlier weak-shear approxi-

mations in the literature, validity of the present results does not require
that Pe ≪ 1 nor in fact even Pe ≪ χ. Rather, (3.19a) and (3.19b) are
valid provided that the stable node at ec be sufficiently attractive so
that the coefficients aij are O(1). This is satisfied for large enough
λ ∼ O(1) (cf. the discussion of Fig. 3 ). Finally, the above calculation
tacitly assumes that ec is the unique stable equilibrium orientation.
The analysis may in principle be extended to the case when there si-
multaneously coexist more than one such orientation. The orientational
distribution may then be obtained via superposition provided that the
normalization condition is modified so as to allocate the appropriate
relative weight to each of the stable equilibrium points.

3.1.2. A stable limit cycle. A stable limit cycle may exist in the de-
terministic problem when the external field is nearly parallel to the
plane of shear (i.e. cos θ̄ ≪ 1) and acts in an azimuthal direction
0 < ϕ̄ < π/2 (Almog & Frankel 1995). We focus here on the case
θ̄ = π/2 when the limit cycle coincides with the unit circle θ = π/2.
Define the inner variable a via

θ = π/2 + Pe−1/2α . (3.20)

From (14), (15a), and (15b) together with the requirement of period-
icity f(α, ϕ+ 2π) = f(α, ϕ), we obtain

f(α, ϕ) ∼= APe1/2
[
2πϕ̇0 (∆(ϕ))1/2

]−1

exp

[
− α2

4∆(ϕ)

]
[1 +O(Pe−1)] ,

(3.21)
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in which the O(1) coefficient A is obtainable from the normalization
condition (16). The various functions of ϕ appearing in (3.21) are

ϕ̇0(ϕ) = ϕ̇
∣∣∣
θ=π/2

, θ̇1(ϕ) =
∂θ̇

∂θ

∣∣∣∣∣
θ=π/2

, (3.22a,b)

F (ϕ)
△
= −

∫ ϕ

0

θ̇1(φ)

ϕ̇0(φ)
dφ (3.22c)

G(ϕ)
△
= e−2F (ϕ)

∫ ϕ

0

e2F (φ)

ϕ̇0(φ)
dφ , ∆(ϕ)

△
= G(ϕ) +G(2π)

e−2F (ϕ)

1− e−2F (ϕ)
.

(3.22d,e)
The first-order O(Pe−1) correction to f (which is not explicitly pre-
sented in (3.5)) has been obtained as well and is utilized in the next

section. When a stable limit cycle exits, ϕ̇0 > 0 for all ϕ. From the
definition (3.22c) of F (ϕ), F (2π) is related to the increment in θ along
a segment of (deterministic) particle path between ϕ = 0 and ϕ = 2π.
From this kinematic interpretation together with the assumed stability
of the limit cycle there immediately follows the inequality F (2π) > 0.
Thus, by (3.22d,e) ∆(ϕ) > 0 which, in turn, is necessary for the validity
of (3.21).

The above results allow for the simple qualitative interpretation of
the distribution about a stable limit cycle as the product of a quasi
one-dimensional Gaussian distribution in the îθ direction (whose ’local’

width is determined by the local attraction ∆−1(ϕ)) multiplied by ϕ̇−1
0

representing the relative residence time of the particle at the orientation
ϕ along the limit cycle.

Uniformity of the foregoing boundary-layer approximation may be
restricted to a relatively narrow interval of λ (cf. Fig. 7). With de-
creasing λ, F (2π) and ∆(ϕ) decrease as a result of the diminishing
attraction of the limit cycle in the deterministic problem. Thus, con-
trary to the assumption underlying the present derivation, f (3.21) no
longer represents (the leading behaviour of) a narrow boundary layer
centred about the limit cycle. With increasing λ, the corresponding
deterministic problem undergoes a bifurcation which changes the na-
ture of the attractor. A stable node appears on θ = π/2 at which

point ϕ̇0 vanishes and f turns singular. The transition in the nature
of the orientational distribution accompanying the bifurcation of the
deterministic problem is examined next.
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3.1.3. A saddle-node point. We seek to approximate the orientational
distribution for θ̄ = π/2 and 0 < ϕ̄ < π/2 when

λ = λb(ϕ̄, B) + νλ1 , (3.23)

in which λb(ϕ̄, B) corresponds to the bifurcation when, in the absence
of Brownian diffusion, the attracting set changes from a limit cycle
for λ < λb to a stable node for λ > λb. At the saddle-node point

eb = (π/2, ϕb) θ̇ = ϕ̇ = 0 and ∂ϕ̇/∂ϕ
∣∣∣
b
= 0, i.e. the eigenvalue of ∇eė

corresponding to the eigenvector îϕ vanishes. We further assume that

the saddle-node point is sufficiently attractive in the îθ direction, i.e.

a
△
= − ∂θ̇

∂θ

∣∣∣∣∣
b

> 0 (3.24)

is O(1). From the boundary-layer solutions of the preceding subsections
we anticipate that when |λ−λb| ≪ 1 the distribution will effectively be
concentrated about the saddle-node. We thus introduce the boundary-
layer coordinates

θ = π/2 + δα , and ϕ = ϕc + ϵβ . (3.25a,b)

Expanding (14),(15a), and (15b) in terms of these coordinates we ob-
tain the order estimates: (i) O(Pe) for convective terms associated with

θ̇, (ii) O(δ−2) for diffusive terms resulting from gradients with respect

to θ, (iii) O(Pe ϵ,Peδ2/ϵ,Peν/ϵ) for convection in the îϕ direction, and

(iv) O(ϵ−2) for diffusion in the îϕ direction. The present limit is ex-
pected to be intermediate between the previously analysed cases. We
therefore anticipate the decay of f(e) to be slower in the îϕ direction,
i.e. δ ≪ ϵ. Furthermore, unlike the expansion near a limit cycle where
diffusion associated with azimuthal density gradients was negligible, we
expect here diffusive and convective terms in the azimuthal direction to
be of the same order. Similarly to previous boundary-layer solutions,
diffusion and convection in the îθ direction are expected to balance
each other in the leading order. The foregoing considerations lead to
the scaling

δ = Pe−1/2 , ϵ = Pe−1/3 (3.26a,b)

and therefore
ν = ϵ2 = Pe−2/3 . (3.26c)

It is worthwhile to note that the stable node (at ϕc) occurring when
λ1 > 0 is displaced from the saddle-node point by |ϕc − ϕb| ∼ O(ν1/2).
Thus, the latter relation serves to insure that the critical point is lo-
cated within the inner domain of the present expansion.



14 Y. ALMOG AND I. FRANKEL

In terms of the inner variables, the leading-order problem yields

f ∼= APe5/6h(β) exp

{
−1

2
aα2

}
[1 +O(ϵ)] (3.27)

wherein the O(1) constant A is obtainable from the normalization con-
dition and h(β) is an arbitrary function of β. The latter is calculated
from a solvability condition in the next-order balance which yields

h(β) = exp

(
1

3
bβ3 + b0λ1β

)∫ ∞

β

exp

(
−1

3
bβ3

1 − b0λ1β1

)
dβ1 .

(3.28)
In (3.28) appear the constant coefficients

b0
△
=

∂ϕ̇

∂λ

∣∣∣∣∣
b

< 0 , and b
△
=

∂2ϕ̇

∂ϕ2

∣∣∣∣∣
b

> 0

whose respective signs may be ascertained by considering the details
of the deterministic motion for λ ≈ λb. The function h(β) decays like
O(β−2) for |β| ≫ 1, and at the bifurcation it is

h = e
1
3
bβ3

Γ

(
1

3
,
1

3
bβ3

)
. (3.29)

Employing Laplace’s method one may verify that (3.27) becomes
equivalent to the respective leading orders of (3.19b) and (3.21) when
λ1 → ±∞. It is thus demonstrated that the present inner solu-
tion about a saddle-node point indeed describes the transition from a
boundary layer about a limit cycle (for λ1 → −∞) to a boundary-layer
distribution about a stable equilibrium orientation (when λ1 → ∞).

Finally, it is interesting to note that, unlike the exponentially decay-
ing boundary-layer expansions obtained in the preceding subsections,
consistent calculation of a correction term ( which is omitted here )
requires in the present case the consideration of a non-trivial outer
solution.

3.2. Dominant shear. We now consider the case when Pe ≫ 1 and
λ ≪ 1. (It is worthwhile to mention that when θ̄ ̸= π/2, even the
simpler problem for a dipolar sphere has not previously been solved.)
According to the discussion at the beginning of this section, the (weak)
influence of rotary diffusion is not necessarily confined to narrow ori-
entational boundary layers but may rather have a global effect on the
orientational distribution. From (5) we obtain the leading-order equa-
tion

∇e · (ė1f) = 0 (3.30)
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whose characteristic curves are the family of closed Jeffery orbits (Jef-
fery 1922). Following Leal & Hinch (1971), we introduce the transfor-
mation

tanϕ = R tan τ , and tan θ = C(R2 sin2 τ + cos2 τ)1/2 (3.31a,b)

from the polar angles to the ’natural’ coordinates C, the orbit param-
eter (denoting a specific orbit), and τ , the phase along the orbit. In

the above R = [(1 +B)/(1−B)]1/2 is the effective axis ratio of the
axisymmetric particle.

The solution of (3.30) is rendered unique by a method originally pro-
posed by Batchelor (1956) in the context of closed-streamline flow fields
at large Reynolds numbers and later applied by Leal & Hinch (1971) in
obtaining the steady, large-Peclét-number orientational distribution in
the absence of external field (λ = 0). To this end, we integrate (5) over
a domain in S2 bounded by a single Jeffery orbit (C=const.). Making
use of the divergence theorem we arrive at∮

C=const.

∂f

∂n
dl = χ

∮
C=const.

(n̂ · ė2)f dl , (3.32)

in which n̂ is an outwardly directed unit vector normal to the inte-
gration contour and lying in S2. The resulting condition expresses the
vanishing at steady state of the net rotary flux induced by both diffu-
sion and external field across the Jeffery orbit C=const..

Expressing (3.30) in terms of the natural coordinates (C, τ) the re-
sulting equation is readily integrated to yield

f = F (C)g(C, τ) , (3.33)

where

g(C, τ)
△
=

(
∂(θ, ϕ)

∂(C, τ)
sin θ

)−1

.

Substituting (3.33) into (3.32) we obtain a first-order equation for F (C)
which yields

F (C) = AF 0(C) exp

[
−4χ

π
cos θ̄h(C)

]
(3.34)

where F 0(C) = F (C)|χ=0 (cf. Leal & Hinch 1971), and

h(C) =

{ ∫ C

0
H(C1)dC1 C > 0∫ C

−∞ H(C1)dC1 +
∫∞
0

H(C1)dC1 C < 0 ,

in which

H(C)
△
=

|C|(1 + C2R2)1/2E
(

C2(R2−1)
1+C2R2

)
HC4 +KC2 +M

,
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E(·) denoting the complete elliptic integral of the second kind. The
constant coefficient A is calculated from the normalization condition.
The R-dependent coefficients H(R),K(R), and M(R) are tabulated by
Leal & Hinch (1971).

From (3.34) we see that, in the present limit, the external field affects
the leading order of the orientational distribution only through the ap-
pearance of χ cos θ̄ in the exponential factor. Thus, when θ̄ = π/2 f
is the same as the one obtained by Leal & Hinch (1971) in the ab-
sence of external field. On the other hand, when 0 ≤ θ̄ < π/2 and
1 ≪ χ cos θ̄ (≪ Pe), f becomes increasingly concentrated about C = 0
(i.e. θ = 0) which, in turn, minimizes h(C). (Cf. (3.31a,b) and the
above definitions of h(C) and H(C).) These results may be rationalized
in terms of the nearly periodic deterministic motion under the action
of a weak (λ ≪ 1) external field. In this context, Almog & Frankel
(1995) noted that no net rotary flux across Jeffery orbits is induced
by the external field acting in the plane of shear ( ¯θ = π/2). However,
when 0 ≤ θ̄ < π/2 a stable spiral point exists at θc ∼ O(λ) (irrespec-
tive of the azimuthal direction ϕ̄) and the external field thus generates
a drift of the particles across Jeffery orbits towards θ = 0. With in-
creasing intensity of the external field we therefore anticipate a gradual
transformation of f from an even distribution over the family of Jeffery
orbits to an orientational boundary layer about the stable (spiral) criti-
cal point. In accordance with Fig. 2 and the accompanying discussion,
no such smooth transition of the orientational distribution is expected
when θ̄ = π/2.

Finally, from the calculation of the correction term ( which is omitted
here), one concludes that the correction associated with the external
field ( which for χ ≫ 1 is the dominant correction) is O(χ3/Pe) for
θ̄ ̸= π/2 and O(χ2/Pe) for θ̄ = π/2. The latter estimate is the basis
for defining the boundary of the ’dominant shear’ domain presented in
Fig. 2, so as to insure that the present expansion is indeed asymptotic
throughout that domain. The resulting schematic description is thus
in agreement with the prediction of no overlap of the domains of dom-
inance of shear and external field, respectively. The above estimates
together with the discussion at the very beginning of § 3 indicate, how-
ever, that such an overlap does exist when θ̄ ̸= π/2 and 1 ≪ χ ≪ Pe1/3,
which supports the earlier discussion of (3.34).

4. Results and discussion

In the following we make use of the above outlined results regarding
the orientational distribution to calculate the suspension bulk stress.
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We here focus on the case θ̄ = π/2 (external field acting in the plane
of shear), when the particles contribution to the bulk stress is planar
and is completely specified [cf. (1)] in terms of the intrinsic viscosity

[η]
△
=

1
2
(T12 + T21)− 2µS12

µGc
= 5 ⟨A12⟩ , (4.35a)

the normal-stress differences

[τ1]
△
=

T11 − T33

µGc
= 5(⟨A11⟩−⟨A33⟩), and [τ2]

△
=

T22 − T33

µGc
= 5(⟨A22⟩−⟨A33⟩) ,

(4.35b, c)
describing ⟨A⟩, the deviatoric particle stress, and

[τa]
△
=

T12 − T21

2µGc
= −1

2

Fr

µGτp
⟨Le

3⟩ , (4.35d)

representing the average external couple. In accordance with the calcu-
lations of the preceding section which focused on the limit of weak dif-
fusion, most subsequent results describe the variation with λ, the field
parameter (9), and ϕ̄, the azimuthal direction of the external field, of
the planar bulk stress at large Peclét numbers, Pe ≫ 1. When a single
stable equilibrium orientation ec exists, and for sufficiently large χ ≫ 1,
the boundary layer about ec becomes so narrow that one anticipates
the goniometric factors occurring in (3) and (4) to be approximately
, ⟨e⟩ ∼= ec, ⟨ee⟩ ∼= eec,. . . , etc. Making use of the boundary-layer
approximation (3.19b) we obtain

1

5
[η] ∼=

1

4
(3QII+4QIII) cos

2 2ϕc+
1

2
N cos 2ϕc−

3

4
QII+QI+χ−1[η(2)]+O(χ−3/2) ,

(4.36a)

1

5
[τ1] ∼= −1

4
(3QII+4QIII) sin 2ϕc cos 2ϕc−

(
1

2
N +

3

4
QII

)
sin 2ϕc+χ−1[τ

(2)
1 ]+O(χ−3/2) ,

(4.36b)

1

5
[τ2] ∼=

1

4
(3QII+4QIII) sin 2ϕc cos 2ϕc+

(
1

2
N − 3

4
QII

)
sin 2ϕc+χ−1[τ

(2)
2 ]+O(χ−3/2) ,

(4.36c)
and

[τa] ∼=
3

2
Kr(1 +B cos 2ϕc) + χ−1(τa)(2) +O(χ−3/2) , (4.36d)
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correct to O(χ−1) terms 1(which are not explicitly presented here). In
(4.36d) Kr = (6µτpmr)

−1 denotes the intrinsic hydrodynamic resis-
tance to rotation of the particle about a transverse axis. These as-
ymptotic results show that the respective leading-order terms indeed
depend upon ϕc alone.

Figure 3 presents the variation of [η] with λ for a prolate spheroid
(R = 3) at Pe = 100 and ϕ̄/π = 0(a) 1/4(b), 5/12(c), 1/2(d), 7/12(e),
2/3(f), 5/6(g), and 1(h). Solid lines represent exact results obtained
via the numerical scheme mentioned at the conclusion of § 2. [In fact,
the evaluation of the goniometric factors ⟨e⟩, ⟨ee⟩, . . . , etc. involved in
the calculation of the bulk stress only requires a few coefficients of the
lowest-order surface harmonics in the expansion of f(e)]. The dotted
lines are based on the boundary- layer approximation (4.36a). In all
cases presented (except for ϕ̄ = π/2, 7π/12 which are discussed later
on) the exact results are indistinguishable from the latter approxima-
tion for λ >∼ 0.5. In the following we take advantage of this agreement
and present only (4.36a) for λ > 1 where performance of the numerical
scheme deteriorates (cf. Strand & Kim 1992).

A common feature in all parts of the figure is that [η] is nearly con-
stant up to λ ∼= 0.1. This observation accords with the asymptotic
results (3.34) indicating that, for an external field acting in the plane
of shear (θ̄ = π/2) , λ does not affect the leading order of the orienta-
tional distribution. Other than this, the variation of [η] with λ appears
both quantitatively and qualitatively different for the different values
of ϕ̄. However, by (4.36a)-(4.36d) for χ sufficiently large the bulk stress
depends upon ϕ̄ and λ only through their combination in ϕc (rather
than on each parameter separately). This suggests a unified manner of
description of the different modes of variation as well as a mechanistic
explanation of the various trends appearing in the preceding figure.

Accordingly, Fig. 4 presents the variation of [η] with ϕc at Pe = 100
for a prolate spheroid whose axis ratio is R = 3. The bold solid curves
represent ϕ̄ = 0, π/2 and 2π/3 and the dotted line ϕ̄ = 7π/12 (respec-
tively corresponding to parts (a), (d), (f), and (e) of Fig. 3). The
thin solid line describes the variation of [η] in the limit of Pe → ∞
and fixed λ ∼ O(1) according to (4.36a). For each value of ϕ̄, ϕc is
uniquely determined by λ (Almog & Frankel 1995), and is monotoni-
cally decreasing with λ towards the limit ϕc = ϕ̄ as λ → ∞. (Thus the
parameter λ increases leftwards along each of the curves.)

1Making use of the O(χ−1) term in the normalization condition (7), one readily
verifies that , the second-order correction in (3.3b) will only affect O(χ−3/2) terms
in the goniometric factors.
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Figure 3. Variation of [η], the intrinsic viscosity, with
λ for a suspension of prolate spheroids (R = 3) at Pe =
100, θ̄ = π/2 and azimuthal directions of external field
ϕ̄/π = 0 (a), 1/4 (b), 5/12 (c), 1/2 (d), 7/12 (e), 2/3
(f), 5/6 (g), and 1 (h). —— exact (numerical) results,
· · · · · · boundary-layer approximation (4.36a).
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Figure 4. Variation of [η], with ϕc, the azimuthal di-
rection of (deterministic) stable equilibrium orientation,
for a suspension of prolate spheroids (R = 3) at Pe = 100
and the indicated azimuthal directions of external field
(bold solid or dotted lines). Thin solid curve represents
the leading order behaviour in (4.36a).

The curves pertaining to ϕ̄ = 0 and 2π/3, (and indeed all other values
of ϕ̄ appearing in Fig. 3 and not presented here) show for sufficiently
large (∼ O(1)) λ a remarkable agreement with the universal asymptote
based on the leading-order term of (4.36a). This latter term reflects
the relation between the rate of dissipation and particles orientation:
When the (prolate) particles align with the streamlines (ϕc = π/2 in
the present problem), the rate of dissipation is minimized; it is max-
imized when the particles are oriented perpendicularly to the undis-
turbed fluid velocity (ϕc = 0). The trends observed earlier in Fig. 3
may now be rationalized via comparison of the various curves there to
their counterparts here. It thus becomes clear that for ϕ̄ = 0 and λ suf-
ficiently large (to insure validity of the boundary-layer approximation),
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[η] monotonically increases towards its absolute (i.e. for all λ and ϕ̄ at
Pe >> 1) maximal value which is attained in the limit λ → ∞ when
ϕc → ϕ̄=0. Similarly, for ϕ̄ = 2π/3, [η] initially increases to a maximal
value when ϕc = π (which local maximum is slightly lower than the
former absolute maximum because it is attained when λ ∼= 1 and the
boundary layer is not yet sufficiently narrow to insure that all particles
effectively share the equilibrium orientation ϕc = π). With further in-
crease in λ, ϕc continues to decrease towards the limit ϕc = ϕ̄ = 2π/3
for λ → ∞ and [η] accordingly decreases as well.

As mentioned before, the behaviour of the curves corresponding to
ϕ̄ = π/2, 7π/12 is exceptional. When ϕ̄ = π/2 matching of the exact
(numerical) and approximate (boundary-layer) solution in Fig. 3(d)
is only achieved at relatively large values of λ(>∼ 1) and then only
over a relatively narrow interval of ϕc in Fig. 4. For ϕ̄ = 7π/12,
contrary to all other curves presented, which monotonically approach
the boundary-layer asymptote with λ(>∼ 0.5), here when λ ∼= 1, the
[η] curve (in both Fig. 3(e) and Fig. 4) substantially deviates from the
asymptote, rejoining it only at larger values of λ. These peculiarities
may be rationalized in terms of the corresponding deterministic particle
motion. Thus (cf. Almog & Frankel 1995) when ϕ̄ = π/2 and λ < 0.9 a
certain part of orientation space is spanned by a family of closed orbits.
Attraction to the stable equilibrium orientation is confined to the rest
of orientation space. In the case of ϕ̄ = 7π/12 , when λ ∼= 1 the curve

corresponding to ϕ̇ = 0 in the deterministic problem is nearly tangent

to the circle θ = π/2. As a result
(
∂ϕ̇/∂ϕ

)
c
, the eigenvalue of ∇eė|ec

corresponding to the azimuthal direction [cf. (3.23) et seq.] nearly
vanishes [see Fig. 5(a)]. Thus, despite the relatively large value of λ,
the equilibrium orientation is locally (for this value of λ) insufficiently
stable to insure the existence of a boundary-layer distribution. Another
result of the tangency mentioned above is the steep decrease of ϕc with
λ which may be observed in Fig. 5(b). This in turn explains the abrupt
changes of [η] with λ ∼= 1 in Fig. 3(e).

For the specific shape selected in the present illustration (i.e. R = 3),
the values ϕ̄ = π/2,∼ 7π/12 are in fact the boundaries of the ’inter-
mediate regime’ in which (Almog & Frankel 1995) the deterministic
motion is characterized by the division of orientation space into sepa-
rate domains of attraction corresponding to a number of simultaneously
coexisting stable attractors. As a typical example, part (c) of Fig. 5
illustrates the variation of ϕc with λ for ϕ̄ = 5π/9. A narrow interme-
diate interval of λ occurs in which ϕc is multiple-valued corresponding
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Figure 5. Illustration of deterministic motion of a pro-
late spheroid (R = 3) in the intermediate regime (Almog
& Frankel 1995): (a) Variation with λ of the eigenvalue
(∂ϕ/∂ϕ)c for ϕ̄ = 7π/12 ; (b) Variation of ϕc with λ,
ϕ̄ = 7π/12 ; (c) Variation of ϕc for ϕ̄ = 5π/9 ;
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to the simultaneous coexistence of a pair of different stable equilibrium
orientations.

It is interesting to note that, in the absence of diffusion, the varia-
tion of the bulk stress with λ exhibits the phenomenon of hysteresis,
i.e. the bulk stress in the intermediate domain may depend on whether
λ is being increased or decreased. The introduction of (however weak)
rotary diffusion will render unique the orientational distribution which,
in turn, may be obtained through an appropriate modification of the
boundary-layer solution (3.19b) (cf. the conclusion of § 3.1.1.). Fur-
thermore, the discontinuous change in ϕc across this intermediate in-
terval is expected to be accompanied by rapid variations of [η] with
λ. It is remarkable that unlike the previously discussed cases (e.g.
ϕ̄ = 0, 2π/3) in which the limit when χ → ∞ of the bulk stress is
regular and may directly be obtained from the deterministic problem
[i.e. the leading-order terms in (4.36a)-(4.36d)], the present example
shows that this limit is singular within the intermediate regime.

Figure 6 describes the effect of Pe on the variation of [η] with λ
for a prolate spheroid (R = 3) under the action of an external field
whose azimuthal direction is ϕ̄ = 2π/3 (cf. Fig. 3(f)). The solid lines
correspond to the indicated values of Pe. The horizontal asymptotes
respectively correspond to the limits Pe → 0 for a finite λ (χ → 0,
dash-dotted line), and λ → ∞ (so that χ → ∞, dotted line). The
asymptote (4.2a) for Pe → ∞ has been omitted as it nearly coalesced
with the curve representing Pe = 300.

The left and right horizontal asymptotes respectively correspond to
a uniform orientational distribution, and a narrow boundary layer at
ϕc = ϕ̄ = 2π/3. Since for the latter case dissipation rate is smaller than
for a uniform distribution, the corresponding value of [η] is smaller.
At small Peclét numbers (Pe ≪ 1) the suspension-orientational dis-
tribution monotonically evolves with increasing λ from a uniform dis-
tribution to a boundary layer about ϕ̄, hence the nearly monotonical
variation of [η] at Pe=1.

The variation of [η] with Pe depends upon the value of λ. At rela-
tively small values (λ <∼ 0.1) [η] decreases with Pe since, as a result
of the shear flow the prolate suspended particles tend to align with
fluid velocity (Hinch & Leal 1972a). At intermediate values λ ∼= 1
[η] increases with Pe. This behaviour results from the appearance of
boundary layers near ϕc

∼= π (cf. the description of the curve ϕ̄ = 2π/3
in Fig.4). Since for a given λ χ is proportional to Pe, these boundary
layers become narrower with increasing Pe, i.e. more particles assume
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Figure 6. Variation with λ of [η] at the indicated values
of Pe for a suspension of prolate spheroids (R = 3) under
external field acting in the plane for shear θ̄ = π/2 in the
azimuthal direction ϕ̄ = 2π/3. —— exact (numerical) or
boundary-layer approximation (4.36a); − − · − − · −−
Pe → 0 and λ finite (χ → 0); · · · · · · λ, χ → ∞.
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Figure 7. Variation of [η] with λ for a suspension of
prolate spheroids R =

√
3 for θ̄ = π/2, and ϕ̄ = π/4.

—— exact (numerical) solution for the indicated values
of Pe, △ saddle-node point, · · · · · · Pe → ∞ asymptotes,
− − − − − limit-cycle approximation for Pe = 3000.

the orientation perpendicular to the streamlines thereby increasing dis-
sipation rate. For still larger values of λ, ϕc → ϕ̄ = 2π/3, and [η]
accordingly converges to the right limit independently of Pe.

Discussion of the bulk stress has so far concentrated on cases of
boundary-layer distributions about stable equilibrium orientations. We
now briefly consider the case when a stable limit cycle exists. Calcula-
tion of the goniometric factors is accomplished by making use of (3.21)
and (3.6) together with the first-order O(Pe−1) correction (which has
not explicitly been presented). Results are illustrated in Fig. 7 which
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depicts the variation of [η] with λ for a prolate spheroid R =
√
3

(B=0.5) and azimuthal direction of the external field ϕ̄ = π/4. The
solid lines represent the exact (numerical) solution for Pe = 100, 3000.
The dotted curve and the triangle represent the leading-order Pe → ∞
asymptotes. The triangle marks the value of [η] at the saddle-node
point appearing at λb = 0.323 [which value of [η] is obtained from
(3.28) and (3.30)]. The portion of the dotted line to the right of λ = λb

is the leading-order approximation (4.36a) for a boundary-layer about
a stable node, whereas the left portion of this curve depicts the corre-
sponding limit-cycle approximation (3.21) and (3.6). (The left portion
of the dotted line terminates short of λ = λb since the latter approxi-
mation becomes singular there.) The dashed curve is obtained from the
limit-cycle approximation including the first-order O(Pe−1) correction
term for Pe = 3000. It is remarkable that even at such a large value
of Pe, the correction term is still significant and is indeed necessary in
order to achieve quantitative agreement with the exact solution. This
agreement is limited to the rather narrow interval ∼ 0.12 < λ <∼ 0.30.
For smaller values of λ the limit cycle is insufficiently attractive to give
rise to a narrow boundary-layer distribution. For larger values λ ap-
proaches the bifurcation at λ = λb and the approximation becomes
singular (cf. the conclusion of § 3.1.2).

Finally, it is interesting to note that Fig. 7 illustrates the singular
behaviour in the limit when λ → 0 and Pe → ∞. Thus, toward
the left margin of the figure, the dotted curve represents the limit
limλ→0{limPe→∞[η]} ∼= 2.74 whereas all solid curves eventually converge
to limPe→∞{limλ→0[η]} ∼= 2.55. The source of this difference is that
when λ → 0 for a finite fixed Pe then χ → 0 too. The corresponding
deterministic rotary motion is periodic along Jeffery orbits and the
limit Pe → ∞ of the orientational distribution is given by the leading-
order term in the expansion of Hinch & Leal (1972a). However, when
Pe → ∞ for a fixed (however small) value of λ, χ → ∞ as well and
the deterministic motion is rather characterized by a limit cycle on
θ = π/2. The difference between both of the foregoing limit processes
is also evident in Fig. 2. Thus, when λ → 0 while Pe(≫ 1) is fixed
one is necessarily located in the dominant- shear domain. On the other
hand, if Pe → ∞ first we move to the right along a line of constant
λ. Eventually, for Pe sufficiently large, we enter the domain (χ2/Pe =
λ2Pe ≫ 1) of dominant external field. No such a singular behaviour in
the limit λ → 0 exists in the case of dipolar spheres. When the external
field acts in the plane of shear and λ → 0 the deterministic rotary
motion is periodic. Hence, no boundary-layer distribution can appear
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and the bulk stress changes smoothly in the limit λ → 0 independently
of Pe.

The above discussion has concentrated on the variation of the in-
trinsic viscosity [η] However, we emphasize that, once the orientational
distribution has been obtained, the rest of the components of the bulk
stress may similarly be studied. In this context, it seems worthwhile
to mention that when χ, λ → ∞, [τa] converges to the nonzero limit
(4.36d). This result is in contrast to the common opinion (e.g. Brenner

1970b, Leal 1971) that [τa] vanishes (presumably because ⟨e⟩ → F̂ )

in this limit. While indeed
∣∣∣⟨e⟩ × F̂

∣∣∣ ∼ O(ϕc − ϕ̄) ∼ O(λ−1) when

χ, λ → ∞, [cf. the paragraph following (3.18a,b)], (4.1d) is propor-

tional to λ ⟨e⟩ × F̂ , hence the external torque remains finite. In fact,
as (4.36d) shows, the latter is equal to the hydrodynamic torque cre-
ated by the shear flow. Obviously, in the absence of inertial effects
both torques must balance each other.

As mentioned in the introduction, the numerical computation of
Strand & Kim (1992) has so far been the only study of suspensions
of dipolar axisymmetric particles which has not a priori been restricted
to weak shear. We here focus on their figures 4 and 5 which (in the
present notation) describe the variation with Pe of [η]+ [τa] for a num-
ber of values of χ for a simple shear flow of a suspension of dipolar
Brownian oblate spheroids (R=0.4) subject to an external field acting
in the plane of shear in the respective azimuthal directions ϕ̄ = π/4
and ϕ̄ = π/2. Strand & Kim (1992) pointed out the maxima in the
curves (of [η] + [τa]) pertaining to χ > 2 and attempted to provide an
intuitive explanation for their occurrence by considering the behaviour
of the particles in the limits Pe → 0,∞ ( λ → ∞, 0 respectively, for a
fixed value of χ ).
A correct qualitative explanation as well as an accurate quantitative

prediction may, however, be obtained by means of the present analysis.
Thus, by making use of (4.36a,4.36d), one readily finds that the above
maxima occur at the respective Peclét numbers for which the equilib-
rium orientation is parallel to the streamlines, i.e., ϕc = 0. (which
for oblate spheroids corresponds to maximal hydrodynamic torque and
dissipation rate). Furthermore, since for prescribed particle shape (R)
and external field direction ē, ec is exclusively determined by λ = χ/Pe,
Pe needs to vary with (sufficiently large) χ so as to maintain the con-
stant value of λ for which ϕc = 0. Indeed,the maxima in these figures
correspond to nearly constant values of λ despite the rather moderate
values of both Pe and χ. This accords with our numerical tests which
verify that for χ = 10, λ = 1 the deviation from the exact solution of
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(4.36a)-(4.36d) including the first-order correction terms is less than 1
per cent. Use of (4.36a)-(4.36d) will in general become more advanta-
geous with increasing χ or λ because its accuracy improves while the
numerical scheme deteriorates. Finally, we note that the case ϕ̄ = π/2
of Strand & Kim (1992) corresponds to ϕ̄ = π/2 in the present study.
(In the former case ϕ̄ = π/2 corresponds to an external field acting
perpendicularly to the streamlines of the ambient flow, however this
is compensated by the fact that Strand & Kim (1992) consider oblate
particles.) Thus the steep gradients occurring in their Fig. 5 are of
similar origin as those appearing in our Fig. 3(d) and are related to
the rapid variation of ϕc with λ in the intermediate regime discussed
above.

5. Concluding Remarks

The present results assume a particularly simple and useful form
when a single sufficiently stable equilibrium orientation ec exists in
the corresponding deterministic problem. The bulk stress may then
be obtained explicitly in terms of ec [cf.(4.36a)-(4.36d)]. Furthermore,
validity of the results thus obtained is not restricted to weak shear
Pe ≪ 1, nor in fact even to Pe ≪ χ for χ ≫ 1. Rather, ec is sufficiently
stable to insure that (4.36a)-(4.36d) is an appropriate approximation
for some λ ∼ O(1) (typically λ >∼ 0.5, cf. Fig. 3).

Comparison of Fig. 3 and Fig. 4 demonstrates that the use of
(4.36a)-(4.36d) allows for a unified description as well as qualitative
explanation of apparently different modes of variation of the bulk stress
with intensity and direction of the external field. Moreover, for λ ∼
O(1) sufficiently large, the asymptotic expansions (4.36a)-(4.36d) are
already accurate even at relatively moderate values of Pe and χ. (For
instance, (4.36a)-(4.36d) including the first-order correction terms in-
volve a relative error of less than 1 per cent for Pe, χ ≈ 10). They
can thus successfully replace the numerical scheme which rapidly de-
teriorates with the onset of the steep gradients typical of orientational
boundary layers.

The present analysis of the orientational distribution identifies the
limits on the validity of the above boundary-layer approximation and
facilitates discussion of the transition between the various asymptotic
limits in terms of the corresponding deterministic particle rotary mo-
tion. This discussion is particularly important because some of these
limits have counterparts neither in the problem of dipolar spheres nor
in the case of torque-free axisymmetric particles. Thus (4.36a)-(4.36d)
cease to be valid because the stable attractor may become insufficiently
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strong, or may change its type (e.g. a limit cycle rather than a node),
or else may not be unique. (Only the first of these has its parallel in
the problem of dipolar spheres.)

We thus describe in terms of the deterministic motion the transition
through the saddle-node bifurcation of the orientational distribution
from a boundary layer about a stable equilibrium orientation to the rel-
atively smooth distribution about a stable limit cycle. In the course of
this transition the width of the boundary layer increases fromO(Pe−1/2)

to O(Pe−1/3) in the iϕ azimuthal direction. Furthermore,unlike the
usual exponential decay of boundary-layer distributions, the density of
the bifurcation distribution only diminishes algebraically (O(|ϕ−ϕb|−2)
in the azimuthal direction. Finally, the analysis demonstrates the dif-
ficulty in obtaining accurate approximations when λ ≈ λb, since the
first-order correction to the bulk stress is relatively large O(Pe−1/3) as
opposed to the standard O(Pe−1) correction.
Also interesting is the transition between the various boundary-layer

approximations and the dominant-shear case. Thus, by considering
the net average rotary flux induced by the external field, we explain
the overlapping when θ̄ ̸= π/2 of the respective domains of validity in
the (χ,Pe) plane of the boundary-layer and dominant-shear approxi-
mations. No such overlapping exists for θ̄ = π/2 which is the source of
the singularity of the double limit λ → 0, Pe → ∞. Depending upon
the order in which these limits are taken, different bulk stresses are
obtained (c.f. Fig.7). The difference is associated with the correspond-
ing orientational distribution being either of boundary-layer type or an
even dominant-shear distribution. No comparable singular behaviour
occurs in dipolar spheres because their rotary motion possesses no limit
cycles and is always periodic for λ < 1/2.

Particularly interesting phenomena are associated with the ’inter-
mediate regime’ where, for certain intervals of external-field directions
and intensities, the phase space of the deterministic problem is di-
vided into separate domains of attraction corresponding to a number
of simultaneously coexisting stable attractors. Thus in this regime the
variation with λ of the bulk stress will, in the absence of rotary diffu-
sion, be discontinuous and exhibit hysteresis. Consequently, the limit
of the macroscopic stress when χ → ∞ [for fixed λ ∼ O(1)] is singular.
These features explain the failure of (4.36a)-(4.36d) [e.g. for ϕ̄ = 7π/12
in Fig. 4 and Fig. 3(e)] at the relatively large values of λ ≈ 1 (when
equilibrium orientations are presumably sufficiently attractive) as well
as the observed drastic variations of the bulk stress with ϕ̄ and λ.
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