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Abstract

The Ginzburg-Landau model for superconductivity is considered in two dimensions. We show, for smooth

bounded domains, that superconductivity remains concentrated near the surface when the applied magnetic

field is decreased below HC3
as long as it is greater than HC2

. We demonstrate this result in the large domain

limit, i.e, when the domain’s size tends to infinity. Additionally, we prove that for applied fields greater than

HC2
, the only solution in R2 satisfying normal state condition at infinity is the normal state. The above

results have been proved in the past for the linear case. Here we prove them for non-linear problems.

1. Introduction

Consider a planar superconducting body which is placed in a sufficiently low temperature (below the

critical one) under the action of an external magnetic field . It is known both from experiments [20] and

rigorous analysis [15] that for a sufficiently strong magnetic field the normal state would prevail. If the field

is then decreased, there is a critical field, depending on the sample’s geometry, where the material would

enter the superconducting state. For samples with boundaries, this field is known as the onset field and has

been termed HC3
.

The simplest case in which the bifurcation from the normal state to the superconducting one was cal-

culated is a half-plane [24]. The analysis in this case is one dimensional: the linearized Ginzburg-Landau
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equations, which are the most common model for macroscopic superconductivity, were solved on R+. Even in

this simple case the onset field is substantially larger than the bifurcation field on R [14]. The situation is no

different in two dimensions: it was proved in [19] and [11] that the bifurcating mode in R2
+ is one-dimensional

and that the value of HC3 is exactly the same as in the one-dimensional case. Similarly, the bifurcation from

the normal state in R2 takes place when the applied magnetic field is identical with the bifurcation field for

R, which has been termed HC2
.

In addition to the difference in the values of the applied field, it was found by Saint-James and de-Gennes

[24] that superconductivity is concentrated at the onset near the boundary for a half-plane. This phenomenon,

which appears only in the presence of boundaries have been termed, therefore, surface superconductivity.

The significance of Saint-James and de Gennes’ solution [24] extends far beyond the simple, one-dimensional

example of a half-plane. It was proved, first for films [6], then for discs [4], and finally for general two-

dimensional domains with smooth boundaries [18,11], that as the domain’s scale tends to infinity the onset

field tends to de-Gennes’ value. If the boundaries include wedges the onset field will be larger than de-Gennes’

value [5,16,25,17].

Surface superconductivity reflects another difference between the problems in R2
+ and R2, where the

bifurcation takes place in the form of periodic solutions [1,7,3] known as Abrikosov’s lattices. The transition,

as the applied magnetic field decreases, from surface superconductivity to the experimentally observed [12]

Abrikosov’s lattices is not yet well understood. Rubinstein [23] conjectured that superconductivity remains

limited to a neighborhood of the boundary until about HC2
when a new solution which is similar in the bulk

to Abrikosov lattice appears.

In the present contribution we focus on the first part of the conjecture in [23]. We show that supercon-

ductivity remains concentrated near the surface when the magnetic field is decreased below HC3
as long as

it is greater than HC2 . We demonstrate this result in the large domain limit, i.e, when the domain’s size

tends to infinity. We consider here only smooth domains, domains with corners are left to future research.
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Additionally, we prove that for applied fields greater than HC2 only the normal state can exist in R2.

This result has been proved in the linear case, near the bifurcation from the normal state [19,11], and for

one-dimensional problems [2]. Here we prove it for the non-linear problem in R2.

In a recent contribution Pan [22] studies the same problem in the limit κ → ∞. Pan’s results are in

some senses weaker than the results presented here. Nevertheless, he provides estimates for the energy of the

solution near the boundary, a problem which is not addressed at all in the present contribution. We extend

the discussion a little further at this point in the end of § 3.

The Ginzburg-Landau energy functional may be represented in the following dimensionless form [9]

E =

∫
Ω

(
−|Ψ |2 + |Ψ |4

2
+ |h− hex|2 +

∣∣∣∣ iκ∇Ψ +AΨ

∣∣∣∣2
)
dxdy (1.1)

in which Ψ is the (complex) superconducting order parameter, such that |Ψ | varies from |Ψ | = 0 (when

the material is at a normal state) to |Ψ | = 1 (for the purely superconducting state). The magnetic vector

potential is denoted by A (the magnetic field is, then, given by h = ∇ × A), hex is the constant applied

magnetic field, and κ is the Ginzburg-Landau parameter which is a material property. Superconductors for

which κ < 1/
√
2 are termed type I superconductors, and those for which κ > 1/

√
2 have been termed type

II. The domain Ω is the domain of superconductor whose Gibbs free energy is given by E. Note that E is

invariant to the gauge transformation

Ψ → eiκηψ ; A→ A+∇η . (1.2)

The Euler-Lagrange equations associated with E (the steady state Ginzburg-Landau equations) are given

by

(
i

κ
∇+A

)2

ψ = ψ
(
1− |ψ|2

)
, (1.3a)

−∇×∇× A =
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A , (1.3b)

and the natural boundary conditions by

(
i

κ
∇+A

)
ψ · n̂ = 0 ; h = hex . (1.4a,b)
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We consider two-dimensional settings where we can write h = (0, 0, h(x, y)) and hex = (0, 0, hex). In the

next section we consider solutions of (1.3) in R2 satisfying the boundary conditions

|ψ| −−−−→
|x|→∞

0 (1.5a)

h = ∇×A −−−−→
|x|→∞

hex (1.5b)

we prove that only the normal state, where ψ ≡ 0 and h ≡ hex can satisfy (1.3) and (1.5) whenever

hex > κ = HC2
.

In § 3 we consider the global minimizer of (1.1) in smooth bounded domains. We consider the large

domain limit, i.e., we stretch the domain with respect to a fixed point and let its scale tend to infinity. We

show that for sufficiently large scales, the global minimizer of (1.1) which must solve (1.3) together with

(1.4), tends exponentially fast away from the boundaries to a normal state as long as hex > κ.

2. Non-existence in R2

In this section we prove the following result:

Theorem 2.1. Let ψ : R2 → C and A : R2 → R2 satisfy the equations

(
i

κ
∇+A

)2

Ψ = Ψ
(
1− |Ψ |2

)
x ∈ R2, (2.1a)

−∇× (∇×A) =
i

2κ
(Ψ∗∇Ψ − Ψ∇Ψ∗) + |Ψ |2A x ∈ R2, (2.1b)

together with the boundary conditions

|ψ| −−−−→
|x|→∞

0, (2.1c)

h = ∇×A −−−−→
|x|→∞

hex, (2.1d)

where the applied magnetic field, hex, is a constant. (For convenience we pick the Coulomb gauge, i.e.,

∇ ·A = 0.)

Then if either
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1. hex > κ and κ > 1/
√
2,

or

2. hex <
1
2κ and κ < 1/

√
2,

then, ψ ≡ 0, h ≡ hex is the unique solution of (2.1).

Proof: Let ψ = ρeiϕ. Multiplying (2.1a) by e−iϕ and taking the real part we obtain

1

κ2
∇2ρ+ ρ(1− ρ2) = ρ

∣∣∣∣ 1κ∇ϕ−A

∣∣∣∣2 =
|∇h|2

ρ3
, (2.2a)

whenever ρ ̸= 0. (To obtain the second equality in (2.2) we used (2.1b)). Dividing (2.1b) by ρ2 and taking

its curl (by standard elliptic estimates any solution of (2.1) must be C∞ on any smooth compact subset of

R2) yields

∇ ·
(
∇h
ρ2

)
− h = 0, (2.2b)

whenever ρ ̸= 0 [21]. Consider first the case hex > κ, κ > 1/
√
2. Define

u = h− κ+
1

2κ
ρ2. (2.3)

Utilizing (2.2) yields the following equation for u:

∇2u− ρ2u = κ

∣∣∣∣∇uρ
∣∣∣∣2 + (κ− 1

2κ

)
ρ4, (2.4)

whenever ρ ̸= 0.

It is possible to derive a similar equation which is valid when ρ = 0 as well. To this end we define,

following [26]

∂

∂z

def
=

1

2

(
∂

∂x
− i

∂

∂y

)
;

∂

∂z∗
def
=

1

2

(
∂

∂x
+ i

∂

∂y

)
; Â

def
= Ax + iAy

and

Ĵ =
2

κ

∂ψ

∂z∗
− iÂψ J3 = h− κ

(
1− ρ2

)
(2.5)

The Ginzburg-Landau equations (2.1) can now be written in the form

2

κ

∂Ĵ

∂z
− iÂ∗Ĵ − 1

κ
J3ψ = 0 (2.6a)

2
∂J3
∂z∗

− ψ∗Ĵ = 2

(
κ− 1

2κ

)
∂ρ2

∂z∗
. (2.6b)
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Differentiating (2.6b) with respect to z we obtain

∇2J3 − ρ2J3 = κ
∣∣∣Ĵ∣∣∣2 + (κ− 1

2κ

)
∇2(ρ2) ,

and since

J3 = u+

(
κ− 1

2κ

)
ρ4,

we obtain

∇2u− ρ2u = κ
∣∣∣Ĵ∣∣∣2 + (κ− 1

2κ

)
ρ4. (2.7)

Comparing with (2.4) we obtain ∣∣∣Ĵ∣∣∣2 =

∣∣∣∣∇uρ
∣∣∣∣2 (2.8)

whenever ρ ̸= 0. While (2.7) is valid for all x ∈ R2 (even where ρ = 0), (2.8) would prove to be very useful

in the next section.

By (2.7), u cannot have a positive maximum in R2 including points where ρ vanishes. Therefore,

u ≤ hex − κ. (2.9)

Let

u+ =


u u > 0

0 u ≤ 0

.

Multiplying (2.4) by u+ and integrating over B(0, r) we obtain

∫
∂B(0,r)

u+
∂u+

∂r
≥ F (r) (2.10a)

where

F (r) =

∫
B(0,r)

κu+
∣∣∣Ĵ∣∣∣2 + ρ2

(
u+
)2

+
∣∣∇u+∣∣2 . (2.10b)

multiplying (2.10a) by 1/r and integrating between 1 and R yields

1

2

∫ 2π

0

(
u+
)2
dθ

∣∣∣∣R
1

≥
∫ R

1

F (r)

r
dr
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In view of (2.9) we have ∫ R

1

F (r)

r
dr ≤ π(hex − κ)2 ∀R > 1. (2.11)

Thus, since F (r) is monotonically increasing it must identically vanish (F (r) ≡ 0). Consequently, to satisfy

(2.1c,d), we must have

u ≡ hex − κ ; ρ ≡ 0.

To prove that the same result holds whenever κ < 1/
√
2 and hex >

1
2κ we define

w = h− 1

2κ
(1− ρ2) (2.12)

to obtain

∇2w − ρ2w = κ
∣∣∣Ĵ∣∣∣2 + ( 1

2κ
− κ

)
(ρ2 − ρ4),

and proceed in the same manner as in the previous case.

□

We note that for type I superconductors, no solution can exist in the one-dimensional case whenever

hex ≥ 1/
√
2 [2]. Thus, it might be that 1

2κ is larger than the supremum of all the values of hex for which

non-trivial solutions of (2.1) can exist. (It is expected that, for κ > 1/
√
2, any non-trivial solution would be

unstable for hex > κ, where the normal state is known to be linearly stable [8], nevertheless unstable solution

can exist [7,2].) For type II, however, it is well known from linear bifurcation theory (cf. [11,7] for instance)

that at hex = κ there is a supercritical bifurcation from the normal state. Finally, theorem 1 validity can

trivially be extended to all cases where either u (for type II), or w (for type I) are known to be positive at

some point in the plane.

3. Surface superconductivity for type II S.C.

In this section we consider the same equations but this time in a bounded domain. Denote by Ω1 a planar

domain whose boundaries are at least C2,α for some 0 < α < 1. Denote by ΩR the family of domains which
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are obtained from Ω1 via the transformation

x −→ x0 +R(x− x0) (3.1)

where x0 is any point in R2. (If we change x0 we merely translate the domains, and hence, the results in

the sequel remain valid.) Let (ψR, AR) denote the global minimizer of the energy functional (1.1) in W(ΩR),

where

W(ΩR) =

{
(ψ,A) ∈ H1(ΩR)×H1(ΩR)|

(
i

κ
∇+A

)
Ψ ∈ L2(ΩR)

}
.

Then (ψR, AR) must be a solution of (2.1a,b) in ΩR together with the boundary conditions(
i

κ
∇+AR

)
ψR · n̂ = 0 on ∂ΩR (3.2a)

hR = hex on ∂ΩR. (3.2b)

where n̂ is the outward normal on ∂ΩR and hR = ∇×AR.

We consider here the case κ > 1/
√
2, for which we prove the following theorem

Theorem 3.1. Let hex > κ. Then, ∃β > 0, R0 > 0 and a constant h̃R such that

|DαψR| ≤ Cαe
−βd(x,∂ΩR) for all α ≥ 0, R > R0, and x ∈ ΩR (3.3a)∣∣∣Dα(hR − h̃R)

∣∣∣ ≤ Cαe
−βd(x,∂ΩR) for all α ≥ 0, R > R0, and x ∈ ΩR (3.3b)∣∣∣h̃R − hex

∣∣∣ ≤ C

R1/2
(3.3c)

To prove the theorem we need first to derive several auxiliary results. The first of them is uniform

boundedness of hR and ρR = |ψR| for all R > 1

Lemma 1. Let hex ≥ 0. Then,

∥ρR∥L∞(ΩR) < 1 (3.4a)

∥hR∥L∞(ΩR) < max

(
κ, hex +

1

2κ

)
(3.4b)

∥∥∥ĴR∥∥∥
L∞(Ωs

R)
≤ C(s) (3.4c)

where Ωs
R = {x ∈ ΩR | d(x, ∂ΩR) ≥ s} for some s > 0.
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Proof: The proof of (3.4a) is well known and follows immediately from (2.2a) and the real part of the

boundary condition (3.2a). To prove (3.4b) we define

uR = hR − κ+
1

2κ
ρ2R.

Since uR satisfies (2.7) it cannot have a positive maximum. Hence,

uR ≤ hex − κ+
1

2κ
⇒ hR ≤ hex +

1

2κ
(3.5)

In order to bound hR from below we first note that (ψ̄R,−AR) is a solution of (2.1a,b) and (3.2a). It also

satisfies (3.2b) with hex replaced by −hex. Proceeding in the same manner as before we obtain

−hR − κ+
1

2κ
ρ2R ≤ 0 ⇒ hR ≥ −κ (3.6)

We then prove (3.4b) by combining (3.5) and (3.6).

We prove (3.4c) using standard elliptic estimates. We write (2.1) in the form

1

κ2
∇2ψR = 2AR ·

(
i

κ
∇+AR

)
ψR + ψR

(
1− |ψR|2 + |AR|2

)
∇2A = ℑ

[
ψ̄R

(
i

κ
∇+AR

)
ψR

]

Let x0 ∈ Ωs
R. We first apply the transformation (1.2)

AR → AR −AR(x0) ; ψR → eiκAR(x0)·xψR, (3.7)

which leaves (3.8) unaltered. In view of (3.4b) AR must now be uniformly bounded in B(x0, s), i.e,

∥AR∥L∞[B(x0,s)] ≤ C . (3.8)

By standard elliptic estimates [13] we have

∥ψR∥2H2[B(x0,s/4)]
≤ C(s)

∫
B(x0,s/2)

[
ρ2R + 4

∣∣∣∣AR ·
(
i

κ
∇+AR

)
ψR

∣∣∣∣2 + ρ2R
(
1− |ψR|2 + |AR|2

)2]
(3.9)

In view of (3.4a) we have ∫
B(x0,s/2)

ρ2 ≤ s/2
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Define the cutoff function

χ =


1 |x− x0| ≤ s/2

0 |x− x0| ≥ s

where |∇χ| ≤ C/s. Then [19],

∫
B(x0,s)

∣∣∣∣( iκ∇+AR

)
(χψR)

∣∣∣∣2 =

∫
B(x0,s)

χ2ρ2R
(
1− ρ2R

)
+ |∇χ|2ρ2R ≤ C .

Combining the above inequality (3.8) and (3.9) we obtain

∥ψR∥H2[B(x0,s/2)]
≤ C(s) .

In a similar manner we obtain the same inequality for the H2 norm of AR. Bootsraping and sobolev embed-

ding then yiels (3.4c). Note that since ĴR is gauge invariant (3.4c) would remain valid even if we did not

apply (3.7).

□

We can now prove the following estimates on the L2 norms of ρR and hR − hex.

Lemma 2.

∫
ΩR

ρ2R ≤ CR (3.10a)∫
ΩR

|hR − hex|2 ≤ CR (3.10b)

where C is independent of R.

Proof: In a similar manner to [11] we define a local coordinate system near ∂ΩR. Let η denote the distance

from the boundary and s the arclength along the boundary, with some point x0 ∈ ∂ΩR corresponding to

s = 0. This local coordinate system is well defined in the rectangle

SR = {(s, η)| −RL/2 < s < RL/2, 0 < η < δR}

where L denotes the arclength of ∂Ω1. Denote by κ1(s) the curvature of the boundary of Ω1, which must

be uniformly bounded in [−L/2, L/2]. For sufficiently large R we have δR > 1 and then, in view of (3.4) we



Non-linear surface superconductivity for type II superconductors in the large domain limit 11

have

∫ 1

0

∫ LR/2

−LR/2

−∂uR
∂η

(
1− κ1

R
η
)
dsdη =

∫ LR/2

−LR/2

−
(
1− κ1

R
η
)
uR(s, η)

∣∣∣1
0
ds

−
∫ 1

0

∫ LR/2

−LR/2

κ1
R
uR(s, η)dsdη ≤ CR

Hence, there exists 0 < α(R) < 1 such that∫ LR/2

−LR/2

−∂uR
∂η

(s, α)
(
1− κ1

R
α
)
ds ≤ CR

or equivalently, ∃0 < α(R) < 1 such that ∫
η=α

∂uR
∂n

≤ CR

Denote by Ω′
α the domain enclosed in η = α. We now integrate (2.7) on Ω′

α to obtain∫
Ω′

α

ρ2RuR +

(
κ− 1

2κ

)∫
Ω′

α

ρ4R ≤
∫
∂Ω′

α

∂uR
∂n

≤ CR (3.11)

Let

vR = hR − κ+
1√
2
ρ2R.

Upon substituting in (3.11) we utilize (3.4) to obtain∫
ΩR

ρ2RvR ≤ CR (3.12)

The energy functional (1.1) can be written, for (ψR, AR) which solve (2.1a,b) and (3.2), in the form

ER =

∫
ΩR

|hex − hR|2 −
1

2
ρ4R

Since ρR ≡ 0, hR ≡ hex is a solution of (2.1a,b) and (3.2) we obtain that at the global minimizer∫
ΩR

|hex − hR|2 −
1

2
ρ4R ≤ 0 (3.13)

The above inequality may be written in the form∫
ΩR

|hex − κ− vR|2 +
√
2

∫
ΩR

ρ2R(hex − κ− vR) ≤ 0 (3.14)

Substituting (3.12) in the above relation, and then using (3.13) we prove both parts of (3.10).

The next lemma is perhaps the core of the analysis in this section.
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Lemma 3. Let hex > κ and {xR}R≥R0 denote a family of points such that xR ∈ ΩR. Let sR = d(xR, ∂ΩR).

Then,

∀n ∈ N, ∃1
2
< βn < 1 :

∫
B(xR,βnsR)

κu+R

∣∣∣ĴR∣∣∣2 + ρ2R
(
u+R
)2

+
∣∣∇u+R∣∣2 ≤ Cn

sαn

R

(3.15)

where αn = 4
(
1−

(
4
5

)n)
and ĴR is defined in (2.5) with (ψR, AR) instead of (ψ,A).

Proof: We prove the lemma by invoking inductive arguments. First, we prove (3.15) for n=1. Let

FR(x, r) =

∫
B(x,r)

κu+R

∣∣∣ĴR∣∣∣2 + ρ2R
(
u+R
)2

+
∣∣∇u+R∣∣2 . (3.16)

In a similar manner to the proof of (2.11) it is possible to show that∫ sR

1

FR(xR, r)

r
dr ≤ 1

2

∫ 2π

0

[(
u+R(sR, θ)

)2 − (u+R(1, θ))2] dθ ≤ C (3.17)

In the following we use C to denote a constant which is independent of both R and xR. As FR is monotonically

increasing in r,

∃1
2
< β0 < 1 : FR(xR, β0sR) < C (3.18)

and in particular ∫
B(xR,β0sR)

κu+R

∣∣∣ĴR∣∣∣2 + ρ2R
(
u+R
)2 ≤ C . (3.19)

It is easy to show that 1/2 < β < β0 exists such that∫
∂B(xR,βsR)

κu+R

∣∣∣ĴR∣∣∣2 + ρ2R
(
u+R
)2 ≤ C

sR

∫
B(xR,β0sR)

κu+R

∣∣∣ĴR∣∣∣2 + ρ2R
(
u+R
)2

(3.20)

Let ξ1, ξ2 ∈ ∂Bβ
def
= ∂B(xR, βsR). Then,∣∣∣(u+R)5/2 (ξ1)− (u+R)5/2 (ξ2)∣∣∣ ≤ C

∫
∂Bβ

(
u+R
)3/2 |∇uR|

By (2.7) |∇uR| = ρR

∣∣∣ĴR∣∣∣ whenever ρR ̸= 0. When ρR vanishes ∇uR vanishes too in view of (2.1b) and (2.3).

Hence,

∣∣∣(u+R)5/2 (ξ1)− (u+R)5/2 (ξ2)∣∣∣ ≤ C

[∫
∂Bβ

u+R

∣∣∣ĴR∣∣∣2]1/2 [∫
∂Bβ

ρ2R
(
u+R
)2]1/2 ≤

≤ C

∫
∂Bβ

κu+R

∣∣∣ĴR∣∣∣2 + ρ2R
(
u+R
)2 ≤ C

sR
. (3.21)
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Let 0 < s < βsR, and let (r, θ) denote a polar coordinate system centered around xR. Then,∫ 2π

0

∫ βsR

s

(
u+R
)3/2 ∂u

∂r
drdθ ≤ C

[∫
A

κu+R

∣∣∣ĴR∣∣∣2]1/2 [∫
A

ρ2R
(
u+R
)2 1

r2

]1/2
(3.22)

where A
def
= B(xR, βsR) \B(xR, s). Hence, by (3.19),∫ 2π

0

(
u+R
)5/2∣∣∣βsR

s
≤ C

s
.

Since uR cannot have a positive maximum, we obtain from (3.21)

(
u+R
)5/2

(s, θ) ≤
(
u+R
)5/2

(βsR, θ) +
C

sR

Utilizing the above inequality together with the inequality

∣∣x5 − y5
∣∣ ≥ ∣∣x4 − y4

∣∣5/4 (3.23)

and Hölder inequality we obtain

∫ 2π

0

(
u+R
)5/2∣∣∣βsR

s
dθ +

2πC

sR
=

∫ 2π

0


[(

u+R
5/2 (βsR) +

C

sR

)1/5
]5

− u+R
5/2 (s)

 dθ ≥

≥
∫ 2π

0

{(
u+R

5/2 (βsR) +
C

sR

)4/5

− u+R
2 (s)

}5/4

dθ ≥

≥ C

{∫ 2π

0

[(
u+R

5/2 (βsR) +
C

sR

)4/5

− u+R
2 (s)

]
dθ

}5/4

.

In view of (3.17) ∫ 2π

0

(
u+R
)2∣∣∣βsR

s
dθ ≥ 0 .

Consequently, {∫ 2π

0

[(
u+R

5/2 (βsR) +
C

sR

)4/5

− u+R
2 (s)

]
dθ

}5/4

≥
{∫ 2π

0

(
u+R
)2∣∣∣βsR

s

}5/4

Combining the above inequalities yields ∫ 2π

0

(
u+R
)2∣∣∣βsR

s
dθ ≤ C

s4/5

and by (3.17) we have ∫ βsR

s

FR(xR, r)

r
dr ≤ C

s4/5
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Thus, since FR is monotone increasing

∃1
2
< β1 < β : s < βsR ⇒ FR(xR, s) ≤

C1

s
4/5
R

(3.24)

which is exactly (3.15) for n = 1.

We now make the inductive assumption

∃1
2
< βn < 1 : s < βnsR ⇒ FR(xR, s) ≤

Cn

sαn

R

.

By (3.20) and (3.21) we obtain that for some 1/2 < β < βn we have for each ξ1, ξ2 ∈ ∂Bβ∣∣∣(u+R)5/2 (ξ1)− (u+R)5/2 (ξ2)∣∣∣ ≤ C

sαn+1
R

.

By (3.22) we have ∫ 2π

0

(
u+R
)5/2∣∣∣βsR

s
≤ C

sαn+1
.

Consequently, ∫ βsR

s

FR(xR, r)

r
dr ≤

∫ 2π

0

(
u+R
)2∣∣∣βsR

s
dθ ≤ C

s4(αn+1)/5

Hence,

αn+1 =
4

5
(αn + 1)

from which the lemma immediately follows.

□

Lemma 3 allows us to obtain uniform convergence in Ω of uR to a constant, except for a boundary layer

of O(1) size (as R→ ∞).

Lemma 4. For any family of points {xR}R>R0

∃ũR :
∣∣u+R(xR)− ũR

∣∣ ≤ C

d(xR, ∂ΩR)1/2

Proof: Let again sR = d(xR, ∂ΩR). Let x
1
R ∈ B

(
xR,

1
2sR

)
. We first argue that, in view of (3.15), there must

exist a contour C connecting xR and x1R which is embedded in B
(
xR,

1
2sR

)
, such that∫

C

κu+R

∣∣∣ĴR∣∣∣2 + ρ2R
(
u+R
)2 ≤ C

s
5/4
R

. (3.25)
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To prove the latter statement consider the set of paths, enclosed in B(xR,
1
2sR) composed of two straight

lines: the first of them connects xR with the vertical median of the line connecting xR and x1R, and the

second line connect the end of the first line with x1R. Then, in view of (3.15) we must have along at least one

of these paths

∫ s̄

0

[
κu+R

∣∣∣ĴR∣∣∣2 + ρ2R
(
u+R
)2]

x=xR+rê

rdr +

∫ s̄

0

[
κu+R

∣∣∣ĴR∣∣∣2 + ρ2R
(
u+R
)2]

x=x1
R+rê1

rdr ≤ C

s
5/2
R

(3.26)

where ê and ê1 are unit vectors in the direction of the segments composing the path from xR to x1R and

s̄ < sR/2.

In view of (3.26) and (3.4) we have

∫ s̄

0

[
κu+R

∣∣∣ĴR∣∣∣2 + ρ2R
(
u+R
)2]

x=xR+rê

dr ≤
∫ t

0

[
κu+R

∣∣∣ĴR∣∣∣2 + ρ2R
(
u+R
)2]

x=xR+rê

dr+

+
1

t

∫ s̄

t

[
κu+R

∣∣∣ĴR∣∣∣2 + ρ2R
(
u+R
)2]

x=xR+rê

rdr ≤ C

(
t+

1

ts
5/2
R

)

Choosing t = s
−5/4
R yields

∫ s̄

0

[
κu+R

∣∣∣ĴR∣∣∣2 + ρ2R
(
u+R
)2]

x=xR+rê

dr ≤ C

s
5/4
R

.

The integral along the second part of the path of can be esimated in the same manner, which completes the

proof of (3.25).

In view of (3.25) we have,

∫
C

(
u+R
)3/2 |∇uR| ≤ C

[∫
C

u+R

∣∣∣ĴR∣∣∣2]1/2 [∫
C

ρ2R
(
u+R
)2]1/2 ≤ C

s
5/4
R

Consequently, ∣∣∣(u+R)5/2 (xR)− (u+R)5/2 (x1R)∣∣∣ ≤ C

s
5/4
R

(3.27)

Using the inequality ∣∣∣x5/2 − y5/2
∣∣∣2/5 ≥ |x− y|

yields ∣∣(u+R) (xR)− (u+R) (x1R)∣∣ ≤ C

s
1/2
R

(3.28)
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Let zR be the closest point on ∂ΩR to xR. Let yR denote the center of the maximal ball embedded in ΩR

which is tangent to ∂ΩR at zR. Let rm denote the radius of the minimal ball which is both embedded in Ω1

and tangent to ∂Ω1 . Then clearly, d(yR, ∂ΩR) ≥ rmR. We now define a finite sequence of points {xnR}
NR

n=0

located on the line connecting xR and yR in the following way

x0R = xR, xNR

R = yR

d(xnR, ∂ΩR) =
3

2
d(xn−1

R ) 1 ≤ n ≤ NR − 1

(
3

2

)NR−1

sR < d(yR, ∂ΩR) ≤
(
3

2

)NR

sR

By (3.28) we have

∣∣(u+R) (xnR)− (u+R) (xn−1
R

)∣∣ ≤ C

s
1/2
R

(
2

3

)(n−1)/2

∀1 ≤ n ≤ NR

and thus,

∣∣(u+R) (yR)− (u+R) (xR)∣∣ ≤ NR∑
n=1

∣∣(u+R) (xnR)− (u+R) (xn−1
R

)∣∣ ≤
≤

∞∑
n=1

C

s
1/2
R

(
2

3

)(n−1)/2

≤ C

s
1/2
R

. (3.29)

Let then ũR
def
= u+R(yR). We need to show that

∣∣(u+R) (x̃R)− ũR
∣∣ ≤ C

s̃
1/2
R

for any x̃R ∈ ΩR, where s̃R = d(x̃R, ∂ΩR). Let z̃R be the closest point on ∂ΩR to x̃R. Let ỹR denote the

center of the maximal ball embedded in ΩR which is tangent to ∂ΩR at z̃R. Clearly, there is a curve C̃

connecting yR and ỹR whose distance from the boundary is strictly greater than rmR, and whose length is

bounded by LR where L is the arclength of ∂Ω1.



Non-linear surface superconductivity for type II superconductors in the large domain limit 17

Let then {ynR}
ÑR

n=0 denote a sequence of points along C̃ such that

y0R = yR ; yÑR

R = ỹR

∣∣ynR − yn−1
R

∣∣ = 1

2
rmR 1 ≤ n ≤ ÑR − 1,

∣∣∣yÑR

R − yÑR−1
R

∣∣∣ ≤ 1

2
rmR

Clearly,

ÑR ≤ 2L

rm
≤ C .

Furthermore, for all 1 ≤ n ≤ ÑR − 1 we have

∣∣(u+R) (ynR)− (u+R) (yn−1
R

)∣∣ ≤ C

R1/2
.

Hence, following the same steps in (3.29), and taking advantage of the uniform boundedness of ÑR with

respect to R, we obtain ∣∣(u+R) (yR)− (u+R) (ỹR)∣∣ ≤ C

R1/2
.

By (3.29) we have ∣∣(u+R) (x̃R)− (u+R) (ỹR)∣∣ ≤ C

s̃
1/2
R

,

and hence, ∣∣(u+R) (x̃R)− ũR
∣∣ ≤ C

s̃
1/2
R

∀x̃ ∈ ΩR.

□

We now find the value of the constant ũ by using the energy estimates in lemma 2.

Lemma 5. Let hex > κ. Then,

|ũR − (hex − κ)| ≤ C

R1/2
(3.30)

Proof: Let x1 ∈ Ω1 such that ∂B(x1, r) ⊂ int(Ω1). Denote by xR the image of x1 in ΩR under the

transformation (3.1). Clearly, B(xR, rR) ⊂ ΩR. By lemma 2 we have

∥hex − κ− uR∥L2[B(xR,rR)] ≤ ∥hex − κ− uR∥L2[ΩR] ≤ ∥hex − hR∥L2[ΩR] +
1

2κ

∥∥ρ2R∥∥L2[ΩR]
≤ CR1/2.
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However, by the previous lemma |u+R − ũR| ≤ C/R1/2 in B(xR, rR), and hence

∥hex − κ− ũR∥L2[B(xR,rR)] ≤
∥∥hex − κ− u+R

∥∥
L2[B(xR,rR)]

+
∥∥ũR − u+R

∥∥
L2[B(xR,rR)]

≤ CR1/2,

from which the lemma immediately follows.

□

We can now obtain better estimates for the rate of decay of |u+R − ũR| away from the boundaries as

R→ ∞.

Lemma 6. Let hex > κ and {xR}R≥R0
denote a family of points such that xR ∈ ΩR. Let sR = d(xR, ∂ΩR) −−−−→

R→∞

∞. Then,

∀n ∈ N ∃1
2
< βn < 1, Cn > 0 : FR(xR, s) ≤

Cn

snR
(3.31a)

where FR is defined in (3.16)

∃ũR :
∣∣u+R(xR)− ũR

∣∣ ≤ Cn

snR
(3.31b)

Proof: Clearly, by lemma 3

∃1
2
< β1 < β, C1 > 0 : s < βsR ⇒ FR(xR, s) ≤

C1

sR

Suppose, then, that

∃1
2
< βn < 1 Cn > 0 : s < βnsR ⇒ FR(xR, s) ≤

Cn

snR
.

By (3.20) and (3.21) we obtain that for some 1/2 < β < βn we have for each ξ1, ξ2 ∈ ∂Bβ where Bβ
def
=

B(x, βsR) ∣∣∣(u+R)5/2 (ξ1)− (u+R)5/2 (ξ2)∣∣∣ ≤ C

sn+1
R

.

By (3.22) we have ∫ 2π

0

(
u+R
)5/2∣∣∣βsR

s
≤ C

sn+1
R

.
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Instead, however, of using (3.23) we write

x5 − y5

x4 − y4
=
x4 + x3y + x2y2 + xy3 + y4

x3 + x2y + xy2 + y3
≥ 1

6
(x+ y)

which is correct when both x and y are positive. Consequently,

∫ 2π

0

(
u+R
)5/2∣∣∣βsR

s
dθ +

2πC

sn+1
R

=

∫ 2π

0


[(

u+R
5/2 (βsR) +

C

sn+1
R

)1/5
]5

− u+R
5/2 (s)

 dθ ≥

≥ 1

6

∫ 2π

0

[(
u+R

5/2 (βsR) +
C

sn+1
R

)1/5

+ u+R
1/2 (s)

][(
u+R

5/2 (βsR) +
C

sn+1
R

)4/5

− u+R
2 (s)

]
dθ

However, from lemma 5 we can conclude that for sufficiently large R

u+R(βsR) ≥
1

2
(hex − κ) .

Hence,

∫ 2π

0

(
u+R
)5/2∣∣∣βsR

s
dθ +

2πC

sn+1
R

≥ C

∫ 2π

0

[(
u+R

5/2 (βsR) +
C

sn+1
R

)4/5

− u+R
2 (s)

]
dθ ≥ C

∫ 2π

0

(
u+R
)2∣∣∣βsR

s
dθ

from which we obtain

∃1
2
< βn+1 < β : s < βn+1sR ⇒ FR(xR, s) ≤

Cn+1

sn+1
R

.

completing the proof of (3.31a).

The proof (3.31b) is almost identical with the proof of lemma 4.

□

The last auxiliary result we need is the uniform decay, away from the boundary, of ρR.

Lemma 7. Let hex > κ. For any family of points {xR}R>R0

∀n ∈ N ∃Cn > 0 : ρR(xR) ≤
Cn

d(xR, ∂ΩR)n
.

Proof: Let sR = d(xR, ∂ΩR). By (3.31a)

∃1
2
< βn < 1 :

∫
B(xR,βsR)

ρ2R
(
u+R
)2 ≤ Cn

snR
.
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Writing

(hex − κ) ∥ρR∥L2[B(xR,βnsR)] ≤
∥∥ρRu+R∥∥L2[B(xR,βnsR)]

+

+
∥∥ρR (u+R − ũR

)∥∥
L2[B(xR,βnsR)]

+ ∥ρR (hex − κ− ũR)∥L2[B(xR,βnsR)] ,

we obtain, in view of (3.30) and (3.31b),

∥ρR∥L2[B(xR,βnsR)] ≤
Cn

s
n/2
R

. (3.32)

Consequently, for sufficiently large R, we may conclude the existence of 1
2 < β̄n < βn for which

∫
∂B(xR,β̄nsR)

ρ2R ≤ Cn

snR
. (3.33)

We now multiply (2.1a) by ψ∗
R and integrate over B(xR, r) to obtain

1

κ2

∫
∂B(xR,r)

ρR
∂ρR
∂r

+

∫
B(xR,r)

ρ2R
(
1− ρ2R

)
= GR(xR, r)

where

GR(xR, r) =

∫
B(xR,r)

∣∣∣∣( iκ∇+A

)
ψ

∣∣∣∣2
Then, multiplying by 1/r and integrating between s and β̄nsR we obtain

1

κ2

∫ 2π

0

ρ2R
∣∣β̄nsR

s
dθ +

∫ β̄nsR

s

dr

r

∫
B(xR,r)

ρ2R
(
1− ρ2R

)
=

∫ β̄nsR

s

dr

r
GR(xR, r)

Using (3.32) and (3.33) yields ∫ β̄nsR

s

dr

r
GR(xR, r)dr ≤

Cn

snR

and since GR is monontonically increasing we have

∀n ∈ N ∃1
2
< β̃n < β̄n < 1, Cn > 0 : GR(xR, βnsR) ≤

Cn

snR
.

Furthermore, ∣∣∣∣( iκ∇+A

)
ψ

∣∣∣∣2 =
1

κ2
|∇ρR|2 + ρ2R

∣∣∣∣ 1κ∇ϕ−A

∣∣∣∣2
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when ρR ̸= 0. When ρR = 0 we simply drop the second term on the right-hand-side, and hence,

1

κ2
|∇ρR|2 ≤

∣∣∣∣( iκ∇+A

)
ψ

∣∣∣∣2 .
Consequently,

1

κ2

∫
B(xR,β̃nsR)

|∇ρR|2 ≤ Cn

snR

Using the estimate ∫
B(xR,β̃nsR)

|∇ρR| ≤ CsR

[∫
B(xR,β̃nsR)

|∇ρR|2
]1/2

≤ Cn

s
n/2−1
R

we can now complete the proof of the lemma by following the same steps as in the proof of lemma 4

□

Proof of Theorem 3.1: We use standard blow-up arguments in order to prove the theorem (cf. [11]). Let

Ω(R, k, s) = {x ∈ ΩR| d(x, ∂ΩR) ≥ ks} .

We prove exponential rate of decay by showing that

∃R0, s0 : ∥ψR∥L∞[Ω(R,k+1,s)] ≤
1

2
∥ψR∥L∞[Ω(R,k,s)] ∀s > s0, R > R0, k ∈ N (3.34)

Suppose, for a contradiction, that (3.34) does not hold. Then, there exist sequences {Rj}∞j=1, {sj}
∞
j=1,

and {kj}∞j=1 satisfying Rj ↑ ∞, sj ↑ ∞, kj ∈ N, and

∥ψR∥L∞[Ω(R,k+1,s)] ≥
1

2
∥ψR∥L∞[Ω(R,k,s)]

def
=

1

2
mj (3.35)

Let

ψ̃Rj

def
=

ψRj

mj
.

By (3.34) there exists xj ∈ Ω(R, k+1, s) such that ψ̃Rj
(xj) ≥ 1

2 . Furthermore, since B(xj , sj) ∈ Ω(Rj , kj , sj)

we have

1

2
≤
∥∥∥ψ̃Rj

∥∥∥
L∞[B(xj ,sj)]

≤ 1.

Define

fj = ψ̃Rj
(xj + x)eiARj

(xj)·x.
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It is easy to show that (
i

κ
∇+ Ãj

)2

fj = fj

(
1−m2

j |fj |
2
)

x ∈ B(0, sj) (3.36a)

wherein

Ãj(x) = ARj
(xj + x)−ARj

(xj) (3.36b)

We have seen in lemma 5 and 7 that

∥∥∥∇× Ãj − hexîz

∥∥∥
L∞[B(0,sj)]

→ 0

and that

mj → 0.

In a similar manner to the one used in (3.4c) we now define a cut-off function

ηr =


1 in B(0, r)

0 in R2/B(0, r + 1)

|∇ηr| ≤ C in R2

It is not difficult to show (cf. [19]) that

∫
B(0,r+1)

∣∣∣∣( iκ∇+ Ãj

)
(ηrfj)

∣∣∣∣2 =

∫
B(0,r+1)

η2rf
2
j

(
1−m2

j |fj |
2
)
+

1

κ2
|∇ηr|2 f2j

Consequently, ∫
B(0,r)

∣∣∣∣( iκ∇+ Ãj

)
fj

∣∣∣∣2 ≤ Cr (3.37)

We now rewrite (3.36) in the form

1

κ2
∇2fj = 2Ãj ·

(
i

κ
∇+ Ãj

)
fj − fj

(
1−m2

j |fj |
2
+
∣∣∣Ãj

∣∣∣2)

As the right-hand-side of the above equation is uniformly bounded in L2[B(0, r)] for all sufficiently large j

(such that r < sj − 1), we can apply standard elliptic estimates to prove first that fj is uniformly bounded
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in H2
loc(R2), and then that a subsequence {fjk}∞k=1 which converges in H1

loc(R2) to a limit f0 must exist.

The limit is the (weak) solution of (
i

κ
∇+ hexÂ

)2

f0 = f0 x ∈ R2

wherein ∇× Â = îz. However, it has been proved in [19,11], that no bounded solution can exist to the above

equation in R2 when hex > κ. Hence, (3.35) has been contradicted and we must have,

|ψR| ≤ C0e
−βd(x,∂ΩR) (3.38)

where C0 and β are independent of R.

To prove (3.3a) for α = 0 we write (2.1b) in the form

∇2AR = ∇× hR = ℑ
[
ψ̄R

(
i

κ
∇+AR

)
ψR

]
(3.39)

Hence,

|∇hR|2 ≤ |ψR|2
∣∣∣∣( iκ∇+AR

)
ψR

∣∣∣∣2
Hence, by (3.37) and (3.38) we have∫

B(x, 12d(x,∂ΩR))
|∇hR|2 ≤ C0e

−2βd(x,∂ΩR).

Using the above inequality we can prove, following the same steps in the proof of lemma 4, the existence of

a constant h̃R, such that ∣∣∣hR − h̃R

∣∣∣ ≤ C0e
−βd(x,∂ΩR)

Using bootstraping and Sobolev embedding we can prove (3.3a,b) for α ≥ 1. (3.3c) follows immediately from

lemma 5.

□

Pan [22] demonstrates that in the limit κ→ ∞ (where Ω is fixed) we have∫
Ω

{
|ψ|2 +

∣∣∣∣ 1κ∇ψ − iAψ

∣∣∣∣2
}
eβ
√

κ(hex−κ)d(x,∂Ω)dx ≤ C√
κ(hex − κ)

whenever hex − κ ≫ 1, for some β > 0 which is independent of κ. Pan’s result is weaker than theorem 3.1

in the following senses:
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1. The exponential rate of decay is in L2 sense whereas here pointwise decay is proved.

2. Our results are valid for all hex > κ and not only for hex ≫ κ (this advantage may be attributed to the

difference between the limits).

3. We prove exponentially fast convergence of the magnetic field to a constant which is close to hex.

We mention again that Pan [22] approximates the behaviour of the solution near the boundary. This impor-

tant problem has not been addressed in the present contribution.
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2000.

22. X. B. Pan, Surface superconductivity in applied magnetic fields above hC2 . Preprint.

23. J. Rubinstein, Six lectures on superconductivity, in Boundaries interfaces and transitions, M. Delfour, ed., vol. 13

of CRM proceedings and lecture notes, Amer. Math. Soc., 1998, pp. 163–184.

24. D. Saint-James and P. de Gennes, Onset of superconductivity in decreasing fields, Phys. Let., 7 (1963),

pp. 306–308.

25. V. Schweigert and F. Peters, Influence of the confinement geometry on surface superconductivity, Phys. Rev.

B, 60 (1999), pp. 3084–3087.

26. C. H. Taubes, Arbitrary n-vortex solutions to the first order Ginzburg-Landau equations, Commn. Math. Phys.,

72 (1980), pp. 277–292.

Faculty of Mathematics, Technion - Israel Institute ofTechnology, Haifa 32000, Israel.

e-mail: almog@math.technion.ac.il


