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Abstract

We analyze one-dimensional charge conduction within an ionic solution in the presence of sup-

porting electrolytes that do not discharge on the electrodes. For thin Debye layers, numerical

simulations predict current abatement, in agreement with existing experimental observations; in

addition, they reveal unconventional features absent from classical analyses of binary solutions,

such as high cation concentration near the electrodes. We derive a companion asymptotic de-

scription of the problem in the singular thin-Debye-layer limit, reproducing these attributes. The

asymptotic analysis reveals a nested boundary-layer structure about the reactive electrodes and

furnishes a universal current–voltage relation.
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Introduction.— The analysis of ionic currents driven by reactive electrodes is a classical

problem in electrochemistry [1]. When analyzed using a continuum description [2], the elec-

trodes are conceptually represented as ion-selective membranes that generate and consume

only one ionic species. Classical analyses of the one-dimensional transport process have typ-

ically considered the simplest case of a dilute binary solution bounded by cation-exchange

membranes. At steady-state the solution is approximately electro-neutral, except for two

narrow Debye layer adjacent to the membranes. At the electro-neutral region, the (identical)

concentrations of the two ionic species are nonuniform, decreasing toward the cathode; the

associated diffusive flux guarantees zero anionic current. This generic picture also applies to

transport through other ion-selective obstacles, such as porous granules [3] and nano-channel

arrays [4]; it leads a universal current–voltage (j–V ) relation at the thin-Debye-layer limit,

which agrees well with numerical simulations.

In most realistic scenarios, however, the dissolved salt ions do not discharge on the elec-

trodes and act as supporting electrolytes; charge is then carried by an additional reactive

ionic species. The transport in these ternary solutions is significantly different from that

in their binary counterparts. Indeed, it is well known that the presence of supporting elec-

trolytes significantly reduces the electric field and reactive ions concentration, resulting in

weak currents [2]. Since the active species is generated and consumed at the electrodes, its

concentration cannot be “prescribed” in any manner; it is therefore a priori unclear what

would render its concentration “small” — what does this small concentration scale with?

In the early electro-neutral models of transport in the presence of supporting electrolytes

[1, 2], small reactive-species concentration was assumed at the outset, allowing for straight-

forward linearization. Employing a more realistic Poissonn–Nernst–Planck model, the trans-

port problem was recently analyzed using singular perturbations in the thin-Debye-layer

limit [5], with integral “memory” conditions on the ionic concentrations (cf. [6]). By as-

signing different weights to the initial concentrations, the authors obtain a generalization of

the binary-solution description [7] to ternary systems. Since this generalization is naturally

associated with comparable concentrations of active and inert species, it cannot explain the

underlying cause of concentration disparity. Our goal here is to present a systematic model

which undertakes this task.

Problem formulation.—Consider a prototypical electrochemical cell comprising an elec-

trolyte solution (permittivity ε∗) flanked between two cation exchange membranes spaced a
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distance L∗ apart. The salt in the solution is dissolved into two univalent ionic species (of

identical global concentration c∗); these “inert” species do not interact with the electrodes.

Charge flow occurs through transport of a third (positive) univalent ionic species which can

discharge on the electrodes — the “reactive” species.

At time zero, the cell is exposed to an externally imposed voltage, applied to the two elec-

trodes. Our interest lies in steady-state transport in the system. We employ a dimensionless

notation wherein the coordinate x and electric potential ϕ are respectively normalized by

the cell width L∗ and the thermal voltage k∗T∗/e∗ (k∗T∗ being the Boltzmann factor and e∗

the elementary charge). The inert species concentrations c± and the reactive species con-

centration r are normalized by c∗. The cathode (x = 0) is maintained at a negative electric

potential, −V , relative to the anode (x = 1).

Due to the one-dimensional geometry, steady-state ionic conservation implies uniform

fluxes for all ionic species. Since the two inert species do not discharge at the membranes,

their respective fluxes must vanish. The active cations, on the other hand, experience a

uniform flux, say j (normalized with D∗c∗/L∗, D∗ being their diffusivity) directed towards

the cathode. Thus, the Nernst–Planck equations possess the following integrals:

∓dc
±

dx
+ c±e = 0, −dr

dx
+ re = −j. (1)

The electric field e = −dϕ/dx, in turn, is governed by the Poisson equation

c+ − c− + r = 2δ2 de

dx
. (2)

Here, δ = λ∗/L∗ is the dimensionless Debye thickness, in which λ∗ is the Debye width,

λ2
∗ = ε∗k∗T∗/2e

2
∗c∗.

In addition to the differential equations (1)–(2), the pertinent fields are also governed

by kinetic boundary conditions, representing cation exchange. Following [3, 7], we adopt

the simplest model of ideal cationic selectivity, whereby the reactive-species concentration

is specified at the electrodes:

r = p at x = 0, 1. (3)

Supplementing the preceding equations are three integral conditions. The first reflects

the imposed voltage: ∫ 1

0

e dx = −V. (4)
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The other two represent “memory conditions” [5, 6], specifying the invariance of the total

amount of inert cations and anions,∫ 1

0

(c± − 1) dx = 0. (5)

This invariance reflects membrane impermeability to the dissolved salt ions.

When employing the alternative variables, c = c++c−+r and q = c+−c−+r, the Nersnt–

Planck equations become dc/dx − qe = dq/dx − ce = j. Following [7], these equations (in

conjunction with (2)) are integrated to yield c = jx + δ2e2 + D as well as an independent

differential equation for the electric field

2δ2 d
2e

dx2
− e

(
jx+ δ2e2 +D

)
= j. (6)

The integration constant D is found from the normalization conditions (5) in conjunction

with (2):

D = 2− j

2
+ δ2

[
2e(x = 1)− 2e(x = 0)−

∫ 1

0

e2 dx

]
. (7)

The potentio-static problem (1)–(5) determines j (together with the pertinent field vari-

ables) as a function of V , δ, and p. Note that j constitutes the electric current towards

the membrane (normalized with e∗D∗c∗/L∗). No closed-form solution is available for this

problem; note however that (1) implies the Boltzmann distributions c± ∝ e∓ϕ, whereby

c+c− = const.

The thin-Debye-layer limit.—We focus upon the limit δ � 1 at moderate voltages, V =

O(1). Poisson’s equation (2) then suggests approximate electro-neutrality, just as in the

comparable case of binary solutions. While in that case one expects j = O(1), the situation

here is more delicate. Indeed, electro-neutrality implies r ≈ c− − c+; but then the integral

constraints (5) and the positivity of r indicate that it must be asymptotically small:

r ∼ µ(δ)r0 + · · · , (8)

where µ(δ)� 1 is a (yet unknown) pre-factor. This minute concentration results in compa-

rably small currents (see (10)), in agreement with the experimental observations.

The smallness of r is supported by numerical solution of the problem (1)–(5), which

can be reduced to a boundary-value problem. In all numerical simulations we use p = 2

(cf. [3, 7]). Figure 1 presents the numerically evaluated concentration profiles for V = 1

and δ = 0.01; it indicates that r is indeed small (and that c± constitute small perturbations
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FIG. 1. Numerically evaluated c+, c− and r (V = 1, δ = 0.01).

to the unity equilibrium value). The numerical results clearly show the emergence of two

boundary (“Debye”) layer, familiar from the comparable binary case. Surprisingly, Fig. 1

indicates large cation concentration at these layers; this feature is unfamiliar from the binary

case, where ionic concentrations are O(1) in the Debye layer [7]. Moreover, the numerically-

evaluated electric field in the layers reach extremely high values, much larger than the

familiar O(1/δ) scaling of the binary case.

Another departure from the binary case is revealed in Fig. 2 which depicts the current–

voltage correlation, evaluated numerically for several δ-values. While this correlation ap-

proaches a universal limit in the binary case, it fails to do so in the present problem; rather,

the figure indicates diminishing currents as δ → 0.

In what follows we devise an analytic approximation that explains the non-conventional

features of the problem; inter alia, it provides the scaling factor µ(δ) and the j–V correlation.

Asymptotic approximations.—In view of (8), we postulate the following expansions for
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FIG. 2. Numerically evaluated j as a function of V for the indicated δ values.

the two inert species and the electric field,

c± ∼ 1 + µ(δ)c±0 + · · · , e ∼ µ(δ)e0 + · · · ; (9)

in view of (1), these Poincaré series approximation suggest the parametric expansion

j ∼ µ(δ)j0 + · · · . (10)

The solution of the transport problem readily gives the linealry-varying concentrations

(cf. Fig. 1):

c±0 = ∓1

2
j0(x− x±), r0 =

1

2
j0 (2x− x+ − x−) (11)

(where x± are integration constants) and the uniform electric field

e0 = −1

2
j0. (12)

The preceding approximations cannot satisfy the boundary conditions (3); this non-

uniformity originates at the singular nature of the limit δ → 0 reflected in the Poisson
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equation (2). Indeed, this equation suggests the existence of two O(δ)-thick boundary layers

about x = 0 and x = 1, where the preceding electro-neutral approximations constitute

an “outer” solution outside them. The “left” layer about x = 0 is descried by the inner

variable X = x/δ. Following the well known Debye-layer structure in the binary case [7],

the concentrations c± are assumed O(1) and the electric field O(1/δ):

c± ∼ C±0 (X; δ) + · · · , e ∼ δ−1E0(X; δ) + · · · . (13)

The scaling of the reactive concentration r, on the other hand, must be compatible with (8):

r ∼ µ(δ)R0(X; δ) + · · · . (14)

We tacitly assume, subject to a posteriori verification, that D ∼ 2 (see (7)). Substitution

into (6) then yields

2
d2E0

dX2
− E3

0 − 2E0 = 0. (15)

Two successive integrations, in conjunction with the decay of E0 at large X (necessitated

by the required matching with the outer solution) yield

E0 = − 2

sinh(X +X0)
, (16)

where X0 is a constant of integration.

With the electric field known, the leading-order Nernst–Planck equations (1) readily yield

C+
0 = tanh−2 X +X0

2
, C−0 = tanh2 X +X0

2
, (17)

wherein matching with the outer solution is already accounted for. In addition, since R0

satisfies the same differential equation as C+
0 , it has a similar solution

R0 = Γ0 tanh−2 X +X0

2
, (18)

wherein matching with the “left” end of the outer solution (11) yields Γ0 = −j0(x+ +x−)/2.

A similar boundary layer exists about x = 1, where the electric field is positive. Defining

now X = (1 − x)/δ, and using expansions comparable to (13)–(14) we readily obtain the

electric field Ē0 = 2/ sinh(X + X̄0) (cf. (16)). The concentrations C̄±0 and R̄0 in that layer

are provided by (17) (with X0 and Γ0 respectively replaced by X̄0 and Γ̄0), wherein matching

with the “right” end of the outer solution yields Γ̄0 = j0[1− (x+ + x−)/2].
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Direct application of condition (3) to (18) yields

tanh
X0

2
= µ1/2

(
Γ0

p

)1/2

, (19)

with a similar expression for X̄0.

Scaling and j–V relation.—Consider now the integral condition (5). Assuming (subject

to a posteriori verification) µ� δ we readily find that the leading-order contribution to the

integral appearing in the constraint on c− is O(µ) and is provided only by the outer region.

Equation (11) then yields x− = 1/2.

Since (19) implies c+ ∼ O(µ−1) � 1 near x = 0, the situation is different when consid-

ering the constraint (5) on c+. Here, one needs to consider both the outer leading-order

contribution

µ

∫ 1

0

c+0 (x) dx, (20)

and the combined leading-order contributions from the boundary layers,

δ

∫ ∞
0

{
C0(X; δ) + C̄0(X; δ)− 2

}
dX. (21)

Using (19), the latter are readily evaluated as O(δµ−1/2). The dominant balance then implies

µ(δ) = δ2/3, (22)

which indeed satisfies µ � δ. (Note that the scaling of the outer and Debye-layer fields

immediately implies D ∼ 2, thereby confirming our a priori assumption.) Evaluation of

(20)–(21) with the aid of (11), (17), and (19) yields

1

2
j0

(
x+ −

1

2

)
+ 2p1/2

(
Γ
−1/2
0 + Γ̄

−1/2
0

)
= 0. (23)

Consider now the leading-order balance of the voltage condition (4):∫ ∞
0

{
E0(X; δ) + Ē0(X; δ)

}
dX → −V as δ → 0.

Performing the integration in conjunction with (19) yields Γ̄0/Γ0 = eV . Using (23) we then

obtain the desired relation between j0 and V :

j
3/2
0 = 4p1/2(eV − 1)1/2

(
e−V/2 + 1

)
tanh

V

2
. (24)

Results and discussion.—The combination of electro-neutrality and memory conditions

(5) with equal amounts of cations and anions is naturally translated to a small current whose
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scaling is a priori unknown. This was entirely missed in previous analyses of the problem

[5, 6], where a greater weight is assigned to c− in their counterparts of the integral conditions

(5). This imposed asymmetry leads to a straightforward extension of the binary-solution

scheme. It is therefore hardly surprising that these analyses have overlooked the highly

singular nature of the present problem which leads to low concentrations of the reactive ions

away from the boundaries and, consequently, to an asymptotically small O(δ2/3) current.

The weak current scaling, as well as the additional unconventional features of the present

problem, are all related to (19) which implies a transition to an O(δ4/3)-thick sub-layer

wherein e ∼ O(δ−4/3) and c+ ∼ O(δ−2/3); this is consistent with the numerically-observed

exceptional values attained by c+ and e near x = 0, 1. The sub-layer adjacent to x = 0 is

described by the inner variable x = δ4/3ξ. At that sub-layer, the electric field is

e ∼ − δ−4/3

1
2
ξ + (Γ0/p)1/2

. (25)

The emergence of the sub-layer originates from the similarity in the transport of the two

positive species, see (1). To leading order, c+ and r satisfy the same first-order equation in

the Debye layer (where the effect of the net current opon r is relegated to higher orders) and

are therefore proportional. At the electro-neutral outer edge of the layer, where r ∼ O(δ2/3),

c+ is O(1); the kinetic condition (3) then necessities O(δ−2/3) large c+-values near x = 0.

The diffusive flux on the short O(δ4/3) scale is subsequently countered by strong electro-

migration.

The asymptotic results agree favorably with numerical solutions of the potentiostatic

problem (1)–(5) for V = 1. In Fig. 3 we show the electric field near x = 0; because of its

intense values (see (25)) we use logarithmic scales. For x . δ4/3 the exact solution agrees

with the sub-layer approximation (25). The Debye-layer approximation (16) is in good

agreement with the numerical simulation up to the edge of electro-neutral region, at about

x ≈ 10δ, whereupon the outer approximation (12) becomes useful.

The lumped description of the transport process is provided by the j–V relation. The

electric-current scaling (10) with δ2/3 clearly explains the spurious scatter in the numerically

evaluated data in Fig. 2. In Fig. 4 we re-plot the same data with j normalized by δ2/3, where

they collapse on a single curve. This curve agrees with the universal relation (24).

Conclusions.—Numerical simulation of one-dimensional ionic currents in the presence of

supporting electrolytes predicts small currents, as in experimental data. In addition, it also
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FIG. 3. Electric field in the left boundary layer for V = 1 and δ = 0.001: numerical solution (solid),

Debye-layer approximations (dashed), electro-neutral approximations (dashed-dotted), sub-layer

approximation (thin).

reveals a number of features unfamiliar from conventional analysis of binary solutions, the

most remarkable being high cation concentration near the electrode. Asymptotic analysis of

the problem reveals a highly singular behavior, wherein internal sub-layers emerge within the

Debye layers. This nested structure results in electric current that scales as the 2/3-power

of the Debye width. The analytic and numerical results agree favorably.
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