
The interface between the normal state and the
fully superconducting state in the presence of an

electric current

Y. ALMOG ∗

Abstract

We consider the time-dependent Ginzburg-Landau equations, in the pres-
ence of electric current and the absence of magnetic field. We first study one-
dimensional equilibrium solutions on a semi-infinite domain, describing a layer
of transition from the normal state at one edge to the fully superconducting
state at infinity. We find that the normal conductivity has a significant effect
on the maximal current that can pass through such a transition layer. The
global stability of the purely superconducting state in a finite domain is also
considered, assuming zero potential drop between the conducting surfaces.

1 Introduction

When a superconductor is placed in a temperature lower than the critical one, it looses
its electrical resistivity. This means that a current can flow through a superconducting
sample and generate a vanishingly small voltage drop. If one raises the current above
a certain critical level, superconductivity will be destroyed and the material will revert
to the normal state, even if the temperature is kept fixed below the critical one.

The model we use in this work to study the above phenomena is the time-
dependent Ginzburg-Landau model [10, 4], presented here in a dimensionless form
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∂ψ

∂t
+ iφψ = (∇− iA)2 ψ + ψ

(
1− |ψ|2) in Ω× R+ , (1.1a)

−κ2∇×∇× A+ σ

(
∂A

∂t
+∇φ

)
= ={ψ̄∇ψ}+ |ψ|2A in Ω× R+ , (1.1b)

ψ = 0 ; −σ
(
∂A

∂t
+∇φ

)
· ν = J on ∂Ωc × R+ , (1.1c)

(i∇+ A)ψ · ν = 0 ;

(
∂A

∂t
+∇φ

)
· ν = 0 on ∂Ωi × R+ , (1.1d)

ψ(x,0) = ψ0 in Ω , (1.1e)

A(x,0) = A0 in Ω . (1.1f)

In the above ψ is the superconducting order parameter, so that |ψ| represents the
number density of superconducting electrons. Superconductors for which |ψ| = 1
are said to be purely superconducting, and those for which ψ = 0 are said to be
at the normal state. We denote the magnetic vector potential by A, so that the
magnetic field is given by h = ∇ × A, and by φ the electric scalar potential. The
constant σ represents the normal conductivity of the superconducting material so
that −σ(At +∇φ) is the normal current, and κ is the Ginzburg-Landau parameter.
Length has been scaled with respect to the coherence length ξ, which is the length-
scale characterizing variations in ψ. The domain Ω ⊂ Rn (n ∈ {1, 2, 3}) where the
superconducting sample resides has interface, denoted by ∂Ωc, with a conducting
metal which is at the normal state. The rest of the boundary, denoted by ∂Ωi is
adjacent to an insulator. The function J : ∂Ωc → R represents the normal current
entering the sample. The average current density flowing through the wire’s cross-
section will be denoted later by J̄ . It is possible to prescribe the electric potential on
∂Ωc instead of the current.

Except for the initial conditions, (1.1) is invariant to the gauge transformation [4]

A→ A+∇ω ; ψ → ψeiω ; φ→ φ− ∂ω

∂t

for some smooth ω,. Thus, we fix the Coloumb gauge (∇ · A = 0, A · ν|∂Ω = 0) in
the following. Finally, one has to prescribe h at a single point on ∂Ω for all t > 0, for
reasons detailed below.

Figure 1 presents a schematic description of a circuit, composed of two supercon-
ducting wires, a DC power source and a resistor. Consider first a two-dimensional
setting, where h is perpendicular to the plane. Then ∇× h = −∇⊥h, and hence by
(1.1b) and (1.1c) we have that ∂h/∂s = J/κ2 along the interface with the resistor and
the power source, where ∂/∂s denotes the tangential derivative. Outside the circuit,
the Maxwell equation ∇× h = 0 should be satisfied, and hence h must be constant
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h = − J̄d
2κ2 h = J̄d

2κ2

d

(a) An example of a 2D circuit: A
power source is connected to a re-
sistor by two superconducting wires,
h, J̄ and κ are defined above and
below. Note the different magnetic
field values inside and outside the
circuit.

∂Ωi:
(
∂ψ
∂ν

,∂φ
∂ν

)
=(0,0)

∂Ωc:




ψ = 0

−σ∂φ
∂ν = J

(b) Magnification
of the interface
between the power
source and the
left wire in fig.
1(a) at the outer
boundary. The left
wire assumes the
role of Ω in (1.1).

inside and outside the circuit. We choose the field inside and outside the circuit to
be of equal magnitude opposite directions. This choice can be justified by consider-
ing an infinite cylindrical wire with a circular cross section in R3: in the absence of
applied magnetic field, the Maxwell equation ∇ × h = 0 outside the wire possesses
the solution

h =
hd
r
eθ r > d ,

where hd is a constant. Looking at a planar cross-section along the wire’s axis of
symmetry, we see that the magnetic field on both sides of this cross-section are of
equal magnitude and opposite direction.

To avoid discussing the complex multi-connected circuit we consider a single wire
separately. Accordingly, Ω in (1.1) may represent any of the wires in figure 1. Con-
sequently, instead of assigning a fixed potential drop over the power source, we need
to prescribe the normal current density J on ∂Ωc . Finally, let x0 ∈ ∂Ωi. Then, if x0

is on the outer boundary, we set

h(x0, t) = − J̄d

2κ2
∀t > 0 . (1.2)

Otherwise, if x0 lies on the inner part of ∂Ωi, then h(x0, t) = J̄d
2κ2 .

We now let κ→∞ in (1.1). Denote the leading order behaviour of the magnetic
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field by h0. From (1.1b) together with (1.2) we formally obtain that
{
∇× h0 = 0 in Ω× R
h0 = 0 on ∂Ωi × R

.

Consequently, h0 = 0. Similarly, since we have chosen the Coloumb gauge, we also
have A0 = 0 for the leading order vector potential.

The above formal expansion gives rise to a simplified model, where the magnetic
field is assumed to be negligible, i.e., A ≡ 0. Note, that given that spatial coordinates
in (1.1) were scaled with respect to the coherence length ξ, in the limit κ = λ/ξ À 1,
the domain’s size is much smaller than the penetration depth λ which is the length-
scale characterizing variations in the magnetic field (cf. [3]). The domain size need
not be fixed, as long as J̄d/κ2 ¿ 1 we obtain A0 = 0 for the leading order vector
potential.

Note, that while we expect h → 0 as κ → ∞, κ2∇ × h need not vanish in that
limit. Rather, it tends to a divergence-free vector, representing the overall current in
the wire. As this current is a priory unknown, we proceed by taking the divergence
of (1.1b) and then setting A = 0. We obtain

∂ψ

∂t
+ iφψ = ∆ψ + ψ

(
1− |ψ|2) in Ω× R+ (1.3a)

σ∆φ = ∇ · [=(ψ̄∇ψ)] in Ω× R+ (1.3b)

ψ = 0 on ∂Ωc × R+ (1.3c)

− σ
∂φ

∂ν
= J on ∂Ωc × R+ (1.3d)

∂ψ

∂ν
= 0 on ∂Ωi × R+ (1.3e)

∂φ

∂ν
= 0 on ∂Ωi × R+ (1.3f)

ψ(x,0) = ψ0 in Ω . (1.3g)

Consider now the steady-state version of (1.3) in a one-dimensional setting. A
one-dimensional wire is assume to lie in R+. Then,





−ψ′′ + iφψ − ψ(1− |ψ|2) = 0 in R+

−σφ′′ + ={ψ′ψ̄}′ = 0 in R+

ψ(0) = 0 −σφ′(0) = J

|ψ| → ρ∞ as x→∞
φ→ 0 as x→∞ .

(1.4)

In the above, the current J is a constant. The boundary condition at x = 0 repre-
sents an interface with the normal state. As x→∞ a fully superconducting state is
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prescribed. For this simplified model it is well-known [20] that the perfectly super-
conducting state is given by

ψs = ρ∞eiαx ; φ ≡ 0 , (1.5)

with α = [1− ρ2
∞]1/2, and

J2 = ρ4
∞(1− ρ2

∞) . (1.6)

Thus, in (1.4), J and ρ∞ must satisfy (1.6). It is easy to show, as 0 ≤ ρ∞ ≤ 1, that
the values of J for which (1.6) can be satisfied are limited to the interval J ∈ [0, Jc]
where

Jc = max
ρ∞∈[0,1]

ρ2
∞

√
1− ρ2∞ =

[ 4

27

]1/2

, (1.7)

where for J = Jc we have ρ2
∞ = 2/3. This critical current is well known to Physicists

and has been noted in various textbooks [20, 9].
Using the polar representation ψ = ρeiχ we obtain that whenever ρ 6= 0.

−ρ′′ + (σφ′ + J)2

ρ3
− ρ(1− ρ2) = 0 in R+ (1.8a)

−σφ′′ + ρ2φ = 0 in R+ (1.8b)

ρ(0) = 0 (1.8c)

ρ −−−→
x→∞

ρ∞ (1.8d)

φ′(0) = −J
σ

(1.8e)

φ −−−→
x→∞

0 (1.8f)

In a similar manner, if (ρ, φ) is a solution of (1.8) then for any χ satisfying

χ′ =
(σφ′ + J)

ρ2
,

(ρeiχ, φ) is a solution of (1.4). In the sequel, we shall therefore confine the discussion
to (strong) solutions of (1.8) for which ρ > 0 for all x > 0. We note, however, that
for a solution (ρ, φ) of (1.8), if for some x0 > we have ρ(x0) > 0, then ρ must be
positive for all x > x0. This is because by (1.8c,d) we have that σφ′ + J > 0 for all
x > x0, and hence the positivity of ρ in (x0,∞) follows from (1.8a).

With different domains and boundary conditions (1.3) has attracted significant
interest among Physicists [12, 13, 5, 21] and Mathematicians alike [17, 15, 18, 18, 3].
A different simplification of (1.1) was derived by Du & Gray [6], for the same limit
(κ → ∞) but with J and σ of O(κ2). The focus of this work is mainly on solutions
of (1.8). Any such solution represents a transition layer between the normal state at
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x = 0 and the purely superconducting state, or (1.5), as x →∞. It is reasonable to
expect that for large domains of higher dimensions, the behaviour near an interface
with the normal state would be similar in the long-time limit of (1.3).

The first question we raise in this work is: for which values of J and σ will solutions
of (1.8) exist? For an infinite wire residing in R, with boundary conditions similar
to (1.8d,f) satisfied as x→∞, solutions exist whenever J ∈ [0, Jc] for all positive σ.
However, besides the obvious point that (1.5) does not include the necessary effect of
the interface with the normal state, the fact that Jc is independent of σ seems odd.
First, it lies in stark contrast with the linear dependence on σ of the critical current at
which the normal state looses its stability[12][3]. Furthermore, it is very unlikely that
metals of very small normal conductivity would be able to carry the same amount of
superconducting current as a metal with much higher conductivity. Such a current is
expected to generate a large potential drop between x = 0 and x ∼ O(1). This large
potential drop, as we demonstrate here, destroys superconductivity altogether.

Once the existence of solutions of (1.8) for some J and σ is established, the
question of their stability naturally arises. Due to technical difficulties we resort here
to the simpler problem of studying the stability of (1.5). The stability of (1.5) has
been briefly addressed in [12], where without much explanation the authors arrive at
the conclusion that it is stable for ρ2 > 2/3 and unstable for ρ2 < 2/3. It is not clear
in which setting this statement is true (if it is true at all).

We take here an alternative approach, prescribing zero potential drop, but in
return allow for a time-dependent current. We first obtain global stability results
for a problem similar to (1.3), but instead of (1.3d) require φ = 0. In addition,
we prescribe ψ = f in (1.3c) with f 6= 0. The values of ψ (or f) on ∂Ωc should
match those of the fully superconducting state. We then apply the results for general
domains to long (though finite) wires. We prove that if there is a global attractor, it
is not (1.5) but another equilibrium solution of (1.8) corresponding to a vanishingly
small current in the long wire limit.

In the next section we deal with the small σ limit. We show that the maximal
current for which solutions of (1.8) exist is of O(σ1/4). We also evaluate formally the
leading order term of the critical current. In § 3 we consider the large σ limit. We
prove existence of solutions for (1.4), when σ is sufficiently large, for any fixed J . In
§ 4 we prove existence of solutions for (1.4) for sufficiently small J , and in § 5 we
consider the stability of (1.5) in a bounded domain with zero potential drop between
the conducting surfaces. Finally, in the last section we summarize the main findings
of this work, and offer a few additional insights into the problem.
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2 Small σ

In the following we demonstrate that as σ → 0 the maximal current for which solutions
for (1.8) exist diminishes together with σ. To this end we first prove the following
uniform bounds on ρ and ρ′

Lemma 2.1. Any solution (ρ, φ) of (1.8) must satisfy

ρ(x) < 1 ∀x ∈ R+ (2.1a)

|ρ′(x)| <
√

2

3
∀x ∈ R+ . (2.1b)

Proof. By (1.8a), ρ cannot have a maximum greater or equal than 1. The proof of
(2.1a) then follows from (1.8c,d). To prove (2.1b) we set

H =
1

2

[
|ρ′|2 +

(σφ′ + J)2

ρ2
+ ρ2 − 1

2
ρ4

]
. (2.2)

It is easy to show that
H ′ = (σφ′ + J)φ . (2.3)

By (1.8b,d) we have that φ > 0 and φ′ > φ′(0), and hence H ′ > 0 for all x ∈ R+.
In view of (1.6) and (1.8b,c,d) we have that

lim
x→∞

H(x) =
J2

ρ2∞
+ ρ2

∞ −
1

2
ρ4
∞ = 2ρ2

∞ −
3

2
ρ4
∞ . (2.4)

Since H is increasing we obtain

|ρ′|2 +
(σφ′ + J)2

ρ2
≤ 2ρ2

∞ −
3

2
ρ4
∞ − ρ2 +

1

2
ρ4 .

With the aid of (2.1a) the lemma easily follows.

We now prove the main result of this section

Proposition 2.1. Let

S(σ) = {J ∈ R+ | ∃(ρ, φ) ∈ C2(R+)× C2(R+) satisfying (1.8)} .

Then, ∃C > 0 such that
supS(σ) ≤ Cσ1/4 . (2.5)
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Proof. Let J ∈ S(σ) and let (ρ, φ) denote the solution of (1.8) corresponding to J
and σ. Let δ > 0. Set

xδ = inf{t ∈ R+ | inf
x∈(t,∞)

ρ(x) ≥ δ} .

Clearly, xδ is finite for every δ < ρ∞ in view of (1.8c). Furthermore, in view of (1.8b,d)
we have

−J
σ
< φ′(xδ) < 0 .

Consider then the problem

{
−φ′′m + δ2φm = 0 x > xδ

φ′m(xδ) = −J
σ

φ −−→
x→0

0
. (2.6)

From the maximum principle and (1.8b,d) it follows that φ′m < φ′ < 0. Hence,

0 < J2 − (σφ′ + J)2 < J2 − (σφ′m + J)2 .

We can now solve (2.6) to obtain

0 < J2 − (σφ′ + J)2 ≤ J2
[
1− (

1− e−δσ
−1/2(x−xδ)2

)2]
.

Substituting in (1.8a) we then obtain

0 < −ρ′′ + J2

ρ3
− ρ(1− ρ2) <

2J2

ρ3
e−δσ

−1/2(x−xδ)2 . (2.7)

Multiplying (2.7) by ρ′ and integrating over (xδ,∞) we obtain

−1

2

[
|ρ′|2 +

J2

ρ2
+ ρ2 − 1

2
ρ4

]∞
xδ

≤ 2J2

∫ ∞

xδ

|ρ′|
ρ3
e−δσ

−1/2(x−xδ)2dx .

By (2.1) and the fact that ρ(xδ) = δ < ρ∞ < 1 we obtain that

J2

δ2
≤ J2

ρ2∞
+ ρ2

∞ −
1

2
ρ4
∞ +

2
√

2σ1/2

δ4
J2 .

Hence, we obtain that

J2 ≤
(
2ρ2

∞ −
3

2
ρ4
∞

)
δ2 +

2
√

2σ1/2

δ2
J2 . (2.8)

We now choose

δ2 =
1

2
min(ρ2

∞, 8
√

2σ1/2) .
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If ρ2
∞ < 8

√
2σ1/2 the proposition is proved in view of (1.6). Otherwise, we have by

(2.8) that

J2 ≤
√

2
(
2ρ2
∞ −

3

2
ρ4
∞

)
σ1/2 ,

from which (2.5) easily follows.

We conclude this section by formally obtaining the leading order term of the
critical current in the limit σ → 0 [1]. Formally, we assume the existence of a
boundary layer near x = 0 where φ converges exponentially fast to 0. Unlike φ, there
is no reason to expect that ρ would vary along an accelerated length scale, especially
in view of (2.1b).

Thus, we assume that ρ ∼ αx within the boundary layer where α = ρ′(0). The
equation for φ (1.8b) assumes then the form

{
−σφ′′ + α2x2φ = 0 in R+

φ′(0) = −J
σ

φ −−−→
x→∞

0
. (2.9)

We then introduce the scaled coordinate ξ = α1/2σ−1/4x and function

Φ(ξ) =
α1/2σ3/4

J
φ(x) .

The rescaled form of (2.9) is then

{−Φ′′ + ξ2Φ = 0 in R+

Φ′(0) = −1 Φ −−−→
ξ→∞

0
. (2.10)

One can easily express Φ in terms of the parabolic cylinder function U(0, ξ) (cf. [2]
for the precise definition). Hence, we shall treat Φ as known in the sequel.

To obtain an approximate solution of (1.8) it is necessary to obtain α which in
turn, depends on J . With the aid of (2.2), (2.3), and (2.4) we obtain that

∫ ∞

0

(σφ′ + J)φ dx =
J2

ασ1/2

∫ ∞

0

(Φ′ + 1)Φ dξ = 2ρ2
∞ −

3

2
ρ4
∞ − α2 .

Define the following constant, which can be evaluated in principle,

A =

∫ ∞

0

(Φ′ + 1)Φ dξ ,

to obtain

α2 +
AJ2

ασ1/2
= 2ρ2

∞ −
3

2
ρ4
∞ ∼ 1

2
. (2.11)
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Where the last asymptotic approximation relies on the fact that J ∼ O(σ1/4) in view
of (2.5), considering the solution of (1.6) for which ρ2

∞ > 2/3 [ (2.11) can be applied
to obtain the asymptotic behaviour of this critical current for the other solution of
(1.6) as well]. The left hand side of (2.11) is minimal for

α =
[ AJ2

2σ1/2

]1/3

.

It follows that as σ → 0

supS(σ) ∼
√

2

A

(1

6

)3/4

σ1/4 .

Of interest is also the potential drop for this maximal current which can be easily
calculated to obtain

φ(0) = [3Aσ]−1/2Φ(0) .

3 Large σ

In the following we prove that for every J ∈ (0, Jc) , for sufficiently large σ, there
exists a solution for (1.8) . This result lies in stark contrast with the case of small σ
presented in the previous section, where the maximal value of J for which solutions
of (1.8) can exist diminishes as σ tends to zero. For every J ∈ (0, Jc) there are two
values of ρ∞ for which (1.6) is satisfied. We prove in this section existence of solutions
for solutions of (1.6) satisfying ρ∞ >

√
2/3.

Existence of solutions is proved in the following by applying an iterative scheme.
To prove existence of solutions for each step in the scheme we use shooting arguments.
As a first step consider then the following modified version of (1.8b,e,f)

{
−σv′′ + f 2v = 0 x > 0

v′(0) = −J
σ

v −−−→
x→∞

0
, (3.1)

where f must satisfy

f(0) = 0 ; 0 < f ′(0) ≤ 1√
2

; ‖f ′‖L∞(R+) ≤
√

2

3
(3.2a)

f ≥ ρ∞ ∀x ≥ x0(ρ∞) (3.2b)

0 < f < 1 ∀x ∈ R+ . (3.2c)

It is easy to show that (3.1) possesses a unique solution. The following lemma
lists a few of the properties of this solution
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Lemma 3.1. Let f satisfy (3.2). Then the solution of (3.1) satisfies

− J

σ
< v′ < 0 ∀x > 0 (3.3a)

0 < v(0) ≤ J

ρ∞σ1/2
+
J

σ
x0 (3.3b)

|σv′ + J | ≤ C(ρ∞, σ)x3 for sufficiently small x > 0 . (3.3c)

Proof. (3.3a) is an immediate consequence of the maximum principle. To prove (3.3b)
we construct an upper bound for v

{
−σv̄′′ + ρ2

∞v̄ = 0 x > x0

v̄′(x0) = −J
σ

v̄ −−−→
x→∞

0
.

The solution of the above problem is given by

v̄(x) =
J

ρ∞σ1/2
exp{−σ−1/2ρ∞(x− x0)} , (3.4)

and hence by (3.3a), (3.2b) and the maximum principle we have that

v(x0) ≤ v̄(x0) =
J

ρ∞σ1/2
.

To complete the proof of (3.3b) we use (3.3a) once again.
The proof of (3.3c) follows from the bound

|(σv′ + J)′| = |σv′′| = |f 2v| ≤ 2v(0)|f ′(0)|2x2 ,

which is valid in some sufficiently small semi-neighborhood of x = 0. Integrating the
above between 0 and x yields (3.3c). Note that by (3.3b) the upper bound of v(0) is
independent of the specific form of f and depends only on ρ∞ and σ.

Consider now the following problem

{
−u′′ + (σv′+J)2

u3 − u(1− u2) = 0 in R+

u(0) = 0 u −−−→
x→∞

ρ∞
, (3.5)

where v is a solution of (3.1). The next step on our way to establish existence of
solutions of (1.8) for sufficiently large σ is to prove existence of solutions for (3.5) in
the same range of σ values.

Proposition 3.1. For sufficiently large σ, there exists a solution of (3.5) satisfying
(3.2) (with f replaced by u).
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We prove proposition 3.1 using shooting arguments. To this end we consider
solutions of the following initial value problem





−u′′α + (σv′+J)2

u3
α

− uα(1− u2
α) = 0 for x > 0

uα(0) = 0

u′α(0) = α

. (3.6)

The above problem possesses a unique solution in some positive semi-neighborhood
of x = 0 in view of (3.3c). We attempt now to prove that there exists α ∈ R+ such
that uα → ρ∞ as x→∞.

We start by demonstrating that we can confine α to an appropriate subset of R+.

Lemma 3.2. Let

g(s) = s2 − 1

2
s4 .

and

α0 = g(s0) where s0 =
1 + ρ∞

2
. (3.7)

Then, for all α > α0 there exists x1(α) for which the solution of (3.6) satisfies
uα(x1) = ρ∞ and u′α(x1) > 0. Furthermore, let

x0 =
ρ∞√

g(s0)− g(ρ∞)
. (3.8)

Then, x1(α) ≤ x0 for all α ≥ α0.

Proof. Let uα be the solution of (3.6) for some α ≥ α0. By (3.6) we have that

u′′α + uα(1− u2
α) ≥ 0 .

Hence, as along as u′α > 0 we have that

(|u′α|2 + g(uα)
)′ ≥ 0 .

Consequently,
|u′α|2 + g(uα) ≥ α2 > g(s0) (3.9)

as long as u′α > 0. In view of the above and since g(s) is increasing on (0, 1), it follows
that u′α > 0 in some right semi-neighborhood of x = 0 where uα < s0. In particular,
this is true when uα ∈ (0, ρ∞]. Furthermore, by (3.9) we have that

uα ∈ (0, ρ∞] ⇒ u′α ≥
√
g(s0)− g(ρ∞) , (3.10)

from which the lemma easily follows.
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We now define two subsets of (α0,∞). Let

S1 =
{
α ∈ (α0,∞)

∣∣ ∃x2 > x1 : uα(x2) = 1, u′α(x2) > 0, uα
(
(x1, x2)

)
= (ρ∞, 1)

}

and

S2 =
{
α ∈ (α0,∞)

∣∣ ∃x2 > x1 : uα(x2) = ρ∞, u′α(x2) < 0, uα
(
(x1, x2)

) ⊂ (ρ∞, 1)
}
.

In the above definitions x1 denotes, as before, the first point where uα(x1) = ρ∞.
Next, we derive a few properties of S1 and S2.

Lemma 3.3. The sets S1 and S2 are both open and satisfy S1 ∩ S2 = ∅.
Proof. Openness of S1 and S2 follows immediately from continuity of solutions of
ordinary differential equations with respect to the initial conditions. The proof that
S1 and S2 are disjoint follows from the fact that uα cannot have a maximum where
uα ≥ 1.

Lemma 3.4. S1 6= ∅.
Proof. We show that (1/

√
2,∞) ⊂ S1. Let α > 1/

√
2. Then, in every right semi-

neighborhood of x = 0 where u′α is positive we have by (3.9) that

u′α ≥
√
α2 − 1

2
.

Hence, there exists

x2 <
[
α2 − 1

2

]−1/2

at which uα(x2) = 1. Since uα is increasing on (x1, x2) we obtain that α ∈ S1.

Note that lemmas 3.2, 3.3, and 3.4, are correct for any value of σ. The next lemma
is the only place in the proof of proposition 3.1 where we need to assume a sufficiently
large value of σ.

Lemma 3.5. For every fixed α ∈ (α0, 1/
√

2) there exists σ0(α) such that for all
σ > σ0 we have α ∈ S2 (hence S2 6= ∅).
Proof. We first obtain a lower bound for uα/f . Clearly by (3.2) we have that

f ≤
√

2

3
x .

Let x1 denote the leftmost point where uα = ρ∞. By the above and (3.10) we have
that

x ≤ x1 ⇒ uα ≥ f

√
3

2
[g(s0)− g(ρ∞)] . (3.11)

13



For x > x1, as long as uα > ρ∞ we have that

uα ≥ ρ∞f . (3.12)

Note that if there exists x2 > x1 such that uα(x2) = ρ∞ then the lemma is proved
if we show that u′α(x2) < 0. In such a case, without any loss of generality we assume
that x2 is the leftmost point where uα = ρ∞. Clearly, we must then have u′α(x2) ≤ 0.
However, if u′α(x2) = 0 then by (3.6), (1.6), and (3.3a) we have that u′′α(x2) < 0, or
that x2 is a local maximum - a contradiction.

Suppose then, for a contradiction, that there exists {σk}∞k=1 such that σk ↑ ∞
ukα(x) = uα(x, σk) > ρ∞ for every x > xk1 (where ukα(x

k
1) = ρ∞ and x < xk1 ⇒ ukα <

ρ∞) in the maximal right interval of existence. Let then xk2 denote the point where
ukα(x

k
2) = 1. Otherwise, if ρ∞ < ukα < 1 for all xk1 < x we set xk2 = ∞. Combining

(3.11) and (3.12) we thus have

x < xk2 ⇒ ukα ≥ C0f where C0 = min(
√

2[g(s0)− g(ρ∞)], ρ∞) . (3.13)

We next obtain an upper bound for (σkv
′
k + J)|ukα|−2, where vk(x) = v(x, σk). By

(3.1) and (3.13) we have

x < xk2 ⇒ σkv
′
k + J =

∫ x

0

f 2vk dt ≤ 1

C2
0

∫ x

0

(ukα)
2vk(t) dt .

By (3.10) ukα is increasing on (0, xk1]. Consequently, we have that

x ≤ xk1 ⇒
σkv

′
k + J

(ukα)
2

≤ 1

C2
0

∫ x

0

vk(t) dt .

For x ∈ (xk1, x
k
2) we have ukα(t) ≤ ukα(x)/ρ∞ for all t ∈ (0, x), which, combined with

the above inequality, yields

x < xk2 ⇒
σkv

′
k + J

(ukα)
2

≤ 1

C2
0ρ

2∞

∫ x

0

vk(t) dt .

We now employ (3.3b) to obtain that

x < xk2 ⇒
σkv

′
k + J

(ukα)
2

≤ C

σ
1/2
k

x , (3.14)

where C is independent of σk and x.
Let U denote the solution of

{
U ′′ + U(1− U2) = 0 in R+

U(0) = 0 U ′(0) = α
. (3.15)

14



It is easy to show that for all α ∈ (α0, 1/
√

2), U is periodic and satisfies U = ρ∞
infinitely many times in R+. Denote the leftmost two of them by x̃1 and x̃2 (naturally,
both of them are independent of σ). By (3.14) we have that

x < xk2 ⇒ |(ukα)′′ + ukα(1− |ukα|2)| ≤
C

σ
1/2
k

x .

Set w = ukα − U . We obtain
{
x < xk2 ⇒ |w′′ + w(1− |ukα|2 − Uukα − U2)| ≤ C

σ
1/2
k

x

w(0) = w′(0) = 0
. (3.16)

We argue from here by bootstraping. For some fixed α ∈ [α0, 1/
√

2) let ak = a(σk)

be the leftmost point in R+ where |w| = σ
−1/4
k . Clearly ak > 0 since w(0) = 0. Note

that by (3.15) we have that

|U ′|2 − 1

2
(1− U2)2 = α2 − 1

2
,

and hence
1− U2 ≥ (1− 2α2)1/2 .

Consequently, since α is fixed it follows that for sufficiently large k we have ak ≤ xk2.
We can now use (3.16) and lemma 4.1 in [11] to obtain

x ≤ ak ⇒ |w(x)| ≤ e2x
C

σ
1/2
k

x2 .

For x = ak we obtain, since w(ak) = σ
−1/4
k , that

a2
ke

2ak ≥ Cσ
1/4
k ,

which clearly implies that ak → ∞. For sufficiently large k we thus obtain that
x̃2 +1 ≤ ak ≤ xk2. This leads, however, to a contradiction since it is easy to show that
for sufficiently large k, ukα must obtain the value ρ∞ at least twice in [0, x̃2 + 1/2], a

fact which follows from the inequality |ukα − U | ≤ σ
−1/4
k .

Proof of proposition 1. Since S1 and S2 are two open disjoint sets, we conclude that
S1 ∪ S2 6= (α0,∞). Consequently, there exists α̃ ∈ (α0,∞) such that the solution of
(3.6) must satisfy at least one of the following requirement

∃x2 > x1 : uα(x2) = 1 , u′α(x2) = 0 , uα([x1, x2]) = [ρ∞, 1] (3.17a)

∃x2 > x1 : uα(x2) = ρ∞ , u′α(x2) = 0 , uα
(
(x1, x2)

) ⊂ (ρ∞, 1) (3.17b)

ρ∞ < uα < 1 ∀x1 < x (3.17c)

15



It is easy to show that neither (3.17a) nor (3.17b) can exist: a solution of (3.6)
satisfying uα(x2) = 1, u′(x2) = 0 must have a local minimum at x2 in view of (3.6a),
and hence (3.17a) is impossible. In a similar manner, by (3.6a), (3.3a), and (1.6), if
u(x2) = ρ∞ and u′(x2) = 0, then x2 must be a local maximum point of u. Therefore,
no solution of (3.6) can satisfy (3.17b) as well.

It follows then, that a solution of (3.6) satisfying (3.17c) must exist. Denote it
by ũ. To complete the proof of the proposition we need only show that ũ → ρ∞ as
x→∞. Denote by uv : R+ → (ρ∞, 1) the solution of

u4
v − u6

v = (σv′ + J)2 .

Since (σv′+J) is monotone increasing on R+ and tends to J as x→∞, it follows that
uv ↓ ρ∞ as x→∞. Suppose then, for a contradiction that ũ has a local minimum at a
point ξ where ũ(ξ) ≥ uv(ξ). Since uv is strictly decreasing, and since ũ cannot have a
maximum where ũ > uv, ũ must be monotone increasing for all x > ξ. Furthermore,
we must also have by (3.6a) that ũ′′ > 0 for all x > ξ, which clearly contradicts
(3.17c).

By (3.6a) ũ cannot have a minimum where ρ∞ < ũ < uv. Consequently, we must
have either that u is monotone increasing in (x1,∞), or else that it must have a single
maximum point ξ > x1 and then decrease for all x > ξ. It is easy to rule out the
former: if ũ is increasing for x > x1, then, since uv is decreasing, there must exist
some x3 > x1 such that ũ > uv for all x > x3. Then ũ must be convex in (x3,∞),
contradicting (3.17c).

The above discussion proves by elimination that ũ is decreasing for sufficiently
large x and hence must converge to a value greater or equal than ρ∞. Thus, since
v′ → 0 as x→∞, and since u′′ must tend to zero as well in that limit, we must have
that

lim
x→∞

ũ = ρ∞ .

Before proving existence of solutions for (1.8) for sufficiently large σ we need to
establish the following bound

Lemma 3.6. Any solution of (3.5) satisfies ‖u′‖L∞(R+) ≤
√

2/3.

Proof. The proof is similar to that of (2.1b). Set

Hv =
1

2

[
|u′|2 +

(σv′ + J)2

u2
+ u2 − 1

2
u4

]
.

It follows then that

H ′
v =

f 2

u2
v(σv′ + J) > 0 .

We proceed from here in exactly the same manner as in the proof of (2.1b).
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We prove existence of solutions for (1.8) by considering the limit of an iterative
scheme. We thus define {uk, ṽk}∞k=1 as the solution of

u0 =

{
1
2
ρ∞x 0 ≤ x ≤ 2

ρ∞ x > 2
, (3.18a)

and 



−u′′k +
(σṽ′k+J)2

u3
k

− u(1− u2) = 0 in R+

−σṽ′′k + u2
k−1ṽk = 0 in R+

uk(0) = 0 uk −−−→
x→∞

ρ∞

ṽ′k(0) = −J
σ

ṽk −−−→
x→∞

0

, (3.18b)

for all k ≥ 1.
Before we can consider the limit as k →∞ we need to show first that the definition

of {uk, ṽk}∞k=1 is proper.

Lemma 3.7. For sufficiently large σ there exists a solution of (3.18b) for all k ≥ 1.

Proof. Since u0 satisfies (3.2), we obtain the existence of u1 from proposition 3.1.
We then need to show that u1 satisfies (3.2) as well. Recall that by the shooting
arguments we have applied in order to establish that existence we have

1. u′1(0) ∈ (α0, 1/
√

2] by lemmas 3.2 and 3.4.

2. By lemma 3.6 we have ‖u′1‖L∞(R+) ≤
√

2
3
.

3. u1 < 1 by the maximum principle.

4. 0 < u1 since by lemma 3.2 u′1 > 0 for all x < x1, and u > ρ∞ for all x > x1 by
(3.17c).

5. x1 < x0 where x0 is given by (3.8).

Invoking inductive arguments we assume that uk−1 exists and satisfy (3.2). Ex-
istence of (uk, ṽk) then follows from proposition 3.1. The fact that uk must satisfy
(3.2) is proved in exactly the same manner as in the case k = 1.

We can now prove existence of solution for (1.8).

Theorem 1. For sufficiently large σ there exists a solution of (1.8) with ρ2
∞ ≥ 2/3.
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Proof. We first prove that {uk, ṽk}∞k=1 is compact in [L∞(0, a)]2 for every positive
a. It follows from the maximum principle, lemma 3.6, and (3.3) that {uk, ṽk}∞k=1 is
bounded in [C1(0, a)]2 for every a > 0. Compactness then follows from the Arzela-
Ascoli Theorem.

By (3.18b) we obtain that a a subsequence of {uk, ṽk}∞k=1 which is a Cauchy
sequence in [L∞(0, a)]2 must be a Cauchy sequence in [C2(0, a)]2 as well. Denote
then a partial limit of {uk, ṽk}∞k=1 by (ρ, φ). In view of the afore-mentioned [C2(0, a)]2

convergence, (ρ, φ) must satisfy (1.8a), (1.8b), (1.8c) and (1.8e) .
Clearly, the ṽ′ks are all positive and bounded from above for x > x0 by v̄ which

is given by (3.4). Consequently, φ ≤ v̄ for all x > x0 and since φ is positive it must
satisfy (1.8f). By (3.17c), uk ∈ (ρ∞, 1) for all x > x0. Hence, ρ ∈ [ρ∞, 1] for all
x > x0. We proceed in a similar manner as in the proof of proposition 3.1. By the
same arguments used there, ρ cannot have a local minimum for all x > x0 and hence
must converge to ρ∞ as x→∞. The theorem is proved.

We conclude this section by presenting a formal asymptotic approximation of the
leading order behaviour of (ρ, φ) in the limit σ →∞. We assume an O(1) boundary
layer, and an outer solution which varies along an O(σ−1/2) length scale. Consider
first the outer solution. Introducing the scaling

η = x/σ1/2 ; Φ = σ1/2φ

into (1.8a,b) we obtain
{
−σ−1 d2ρ

dη2 + (dΦ/dη+J)2

ρ3
− ρ(1− ρ2) = 0

−d2Φ
dη2 + ρ2Φ = 0

.

Let then
ρ = ρ0 +O(σ−1) ; Φ = Φ0 +O(σ−1) .

The equations for the leading order (ρ0, φ0) assumes the form
{
ρ4

0(1− ρ2
0) = (dΦ0/dη + J)2

−d2Φ0

dη2 + ρ2
0Φ0 = 0

.

The boundary conditions satisfied by φ0 are

φ′0(0) = J ; φ0 −−−→
η→∞

0 .

It follows that either ρ0(0) = 0 or ρ0(0) = 1. We avoid the former case, as the unique
solution is (ρ0, φ0) = (0, Jη + A), where A is an undetermined constant. In the case
where ρ0(0) = 1, however, one can easily prove the existence of (ρ0, φ0) which must
clearly satisfy

ρ0 −−−→
η→∞

ρ∞ .
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Denote the inner solution by (ρi, φi). It follows from (1.8b) that φ′i ∼ J/σ. conse-
quently, to leading order we have

ρ′′i + ρi(1− ρ2
i ) = 0 , ρi(0) = 0

To match the inner solution with the outer one, we obtain that

ρi −−−→
x→∞

1 .

From here it is easy to show that ρi must satisfy
{
ρ′i = 1√

2
(1− ρ2

i )

ρi(0) = 0
.

A uniformly valid approximation can thus be written in the form

ρ ∼ ρ0 + ρi − 1 φ(x) ∼ σ−1/2Φ0(η) .

4 Small J -existence

Another case where existence of solutions for (1.8) can be proved for all values of σ
is the limit J → 0. Consider first the case J = 0. From the maximum principle it
follows that φ ≡ 0 in this case. It is easy to show that the solution in this case, which
we denote by ρ0 must satisfy

{
ρ′0 = 1√

2
(1− ρ2

0)

ρ0(0) = 0
. (4.1)

Set now φ0(x) ∈ H2(R+) to be the solution of
{
−σφ′′0 + ρ2

0φ0 = 0

φ′0(0) = −J
σ

. (4.2)

Clearly, for J = 0 we have φ0 ≡ 0. We then set in (1.8)

ρ = ρ0 + u ; φ = φ0 + v ,

where (u, v) ∈ H and

H = {(u, v) ∈ H2(R+)×H2(R+) | u(0) = 0 ; v′(0) = 0} .
Finally, let F : H× [0, Jc] → L2(R+) be given by

F (u, v, J) =

{
F1

F2

}
=

{
−u′′ + |σ(v′+φ′0)+J |2

(ρ0+u)3
− u(1− 3ρ2

0 − 3ρ0u− u2)

−σv′′ + (ρ0 + u)2v + [(ρ0 + u)2 − ρ2
0]φ0

}
.
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Theorem 2. There exists ε(σ) > 0, such that for all 0 ≤ J < ε a unique family
(u(J), v(J)) ∈ H exists, satisfying u(0) ≡ v(0) ≡ 0, and F (u(J), v(J), J) = 0.

Proof. It is easy to show that F (0, 0, 0) = 0. To prove existence of solutions of F = 0
in some right semi-neighborhood of J = 0 we use the implicit function theorem. To
this end we evaluate the Frechet derivative of F at (0, 0, 0)

DF
∣∣
(0,0,0)

=

{− d2

dx2 − (1− 3ρ2
0) 0

0 −σ d2

dx2 + ρ2
0

}
.

Then, we show that DF is an isomorphism from H to L2. It is enough to show
then that each of the main diagonal elements of DF is invertible. Consider then the
operator

D11F = − d2

dx2
− (1− 3ρ2

0) ,

whose domain is H2(R+) ∩ H1
0 (R+). By Persson’s Theorem [8] and the fact that

ρ0 → 1 as x→∞ the bottom of the essential spectrum of D11F is at 2. Hence, it is
suffices to prove that D11F is injective.

Consider then the problem
{
−d2w

dx2 − (1− 3ρ2
0)w = 0

w(0) = 0 w −−−→
x→∞

0
. (4.3)

Multiplying the above by ρ′0 and integrating by parts, we obtain with the aid of the
identity

ρ′′0 + ρ0(1− ρ2
0) = 0 ,

that
w′(0) = 0 .

Consequently, w ≡ 0 is the unique solution of (4.3).
Consider next the operator

D22F = −σ d2

dx2
+ ρ2

0 ,

whose domain is the space of all w ∈ H2(R+) such that w′ ∈ H1
0 (R+). To prove

that D22F is an isomorphism we first observe that inf σess(D22F ) = 1, and hence it
is sufficient to show that D22F is injective in order to prove its invertibility. The
injectivity of D22F , however, follows immediately from the maximum principle.

In view of the above, we have established that DF is an isomorphism of H onto
L2(R+) × L2(R+). Since ∂F/∂J is continuous, we obtain the existence of (u, v),
satisfying F (u, v) = 0, that are continuously differentiable in J in some right semi-
neighborhood of J = 0.
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5 global stability of the fully superconducting state

We start by considering a generalized version of (1.3), allowing for higher dimensions

∂ψ

∂t
+ iφψ = ∆ψ + ψ

(
1− |ψ|2) in Ω× R+ (5.1a)

σ∆φ = ∇ · [=(ψ̄∇ψ)] in Ω× R+ (5.1b)

ψ = f on ∂Ωc × R+ (5.1c)

φ = 0 on ∂Ωc × R+ (5.1d)

∂ψ

∂ν
= 0 on ∂Ωi × R+ (5.1e)

∂φ

∂ν
= 0 on ∂Ωi × R+ (5.1f)

ψ(x,0) = ψ0 in Ω . (5.1g)

In the above f ∈ H2(Ω) satisfies ‖f‖L∞(∂Ωc) ≤ 1. The domain Ω may be an open
bounded subset of R, R2, or R3. The boundary consists of ∂Ωc, through which current
may enter the sample, and ∂Ωi which is adjacent to an insulator. The boundary is
assumed to be C2, and ∂Ωc 6= ∅.

Let

H =
{
u ∈ H2(Ω)

∣∣∣u
∣∣∣
∂Ωc

= 0 ,
∂u

∂ν

∣∣∣
∂Ωi

= 0
}

As ∂Ωc 6= ∅ the operator ∆−1 : L2(Ω) → H is well defined. Thus, φ is obtained from
ψ via

φ[ψ] =
1

σ
∆−1

(∇ · [=(ψ̄∇ψ)]
)
. (5.2)

Substituting (5.2) into (5.1) yields

∂ψ

∂t
+ iφ[ψ]ψ = ∆ψ + ψ

(
1− |ψ|2) in Ω× R+ (5.3a)

ψ = f on ∂Ωc × R+ (5.3b)

∂ψ

∂ν
= 0 on ∂Ωi × R+ (5.3c)

ψ(x,0) = ψ0 in Ω . (5.3d)

Assuming that ∂f/∂ν = 0, existence of a unique solution ψ − f ∈ C([0, T ],H) for
some T > 0, can then be proved using standard fixed point arguments: By the
maximum principle any solution of (5.1) satisfies |ψ| ≤ 1 in Ω× (0, T ), provided that
‖ψ0‖∞ ≤ 1 (where ‖ · ‖p denotes the Lp(Ω) norm). Thus, truncating the functions
φ[ψ] and ψ(1−|ψ|2) must appropriately for |ψ| > 1 we may apply the same technique
used in § 9.2.1 of [7] (cf. also [16]).
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Let

E(ψ) =
1

2

∫

Ω

[
|∇ψ|2 +

1

2
(1− |ψ|2)2

]
dx . (5.4)

For ψ which solves (5.1), and φ = φ[ψ] we easily obtain

dE

dt
= −

∫

Ω

[
|ψt + iφψ|2 + σ|∇φ|2

]
dx . (5.5)

Obviously, E(t) is a strict Liapunov function of (5.9), which must converge as t→∞.
In the following we prove convergence of ψ as well.

Proposition 5.1. Let ψ0 ∈ H2(Ω) satisfy (5.1c,e) and ‖ψ0‖∞ ≤ 1. Then for any
solution of (5.9) we have that

⋃
t>0

(ψ(·, t), φ(·, t)) is precompact in H2(Ω). Furthermore,

any point on the ω-limit set of (ψ(·, t), φ(·, t)) is given by an equilibrium solution
(ψ∞, 0) of (5.1).

Proof. Since E ≥ 0 is decreasing, it must converge to some E∞ ≥ 0 as t→∞. Hence,
there exists {τk}∞k=1 such that τk ↑ ∞ and |dE/dt(τk)| < M for all k ≥ 1. It follows
then by (5.5) and (5.1) that

∫

Ω

∣∣∣∆ψ − ψ(|ψ|2 − 1)
∣∣∣
2

dx
∣∣
t=τk

≤M .

Let ψk = ψ(τk). Combining the above with the fact that |ψ| ≤ 1, we obtain from stan-
dard elliptic estimates that {ψk}∞k=1 is bounded in H2(Ω). Consequently by choosing
an appropriate subsequence we can say that ψk → ψ∞0 in H1(Ω), where ψ∞0 −ψ0 ∈ H.

Denote by St the semigroup associated with (5.1) (so that ψ = St(ψ0)). Let
ψ∞(·, t) = St(ψ

∞
0 ) and let φ∞(·, t) denote the corresponding potential. Suppose, for

a contradiction, that for some t∗ > 0 we have E(ψ∞(t∗)) < E∞. Since solutions of
(5.1) are continuous with respect to initial conditions, it follows that

∃δ > 0 : ‖ψ̃ − ψ∞0 ‖H1(Ω) < δ ⇒ E
(
St∗(ψ̃

)
) < E∞ .

For sufficiently large k, however, ‖ψk−ψ∞0 ‖H1(Ω) < δ and since by (5.5) E
(
St∗(ψ̃

)
) ≥

E∞ we obtain a contradiction. Hence, E(ψ∞)(t) ≡ E∞ for all t > 0.
Since dE/dt ≡ 0 for (ψ, φ) = (ψ∞, φ∞), we immediately obtain that φ∞ ≡ 0 and

hence that ψt ≡ 0 as well. Therefore, (ψ∞, 0) is an equilibrium solution of (5.9).
It remains necessary to show that the above compactness holds for every diverging

monotone sequence of instances. Let then {tn}∞n=1 satisfy then tn ↑ ∞. Set

δn = E(tn − 1)− E∞ .

Then, for sufficiently large n
∫ tn

tn−δ1/2
n

|dE/dt| dt ≤ δn .

22



Consequently, for all n ∈ N there exists τn ∈ [tn−δn, tn] such that |dE/dt(τn)| ≤ δ
1/2
n .

By the above established compactness there exists a subsequence {τnk
}∞k=1 and an

equilibrium solution (ψ∞, 0) such that (ψ(·, τnk
), φ(·, τnk

) → (ψ∞, 0) in H1(Ω). As
|dE/dt(τnk

)| → 0 the convergence is also in H2(Ω).
Standard continuity arguments for the heat operator (cf. theorem 5 in § 7.1 in

[7] for instance), taking into account that both φ and ψ are uniformly bounded in
H1(Ω), in view of (5.2) and the fact that E is decreasing, imply that

‖ψ(·, tnk
)− ψ(·, τnk

)‖H2(Ω) −−−→
k→∞

0 .

Consequently,
‖ψ(·, tnk

)− ψ∞(·)‖H2(Ω) −−−→
k→∞

0

Precompactness of φ(·, tnk
) easily follows from (5.2).

Once precompactness is established, it is possible to prove that the ω-limit set of
any solution of (5.1) consists of exactly one point. Before we prove this result we
mention here the following result, which follows immediately from the Lojasiewicz-
Simon theorem [19, 14].

Lemma 5.1. Let (ψ∞, 0) denote an equilibrium solution of (5.1). Then, there exists
θ ∈ (0, 1/2) and r > 0 such that for all ψ ∈ B(ψ∞, r) in H2(Ω) we have

‖∆ψ − ψ(|ψ|2 − 1)‖2 ≥ |E(ψ)− E(ψ∞)|1−θ . (5.6)

We can now prove convergence as t→∞
Theorem 3. Let ψ0 ∈ H2(Ω) satisfy (5.1c,e) and ‖ψ0‖∞ ≤ 1. Then the solution of
(5.1) satisfies

‖φ‖2 + ‖ψ(·, t)− ψ∞‖2 −−−→
t→∞

0 , (5.7)

where (ψ∞, 0) is an equilibrium solution of (5.1).

Proof. Denote by ω(ψ0) the ω-limit set of ψ0. It is well-known that ω(ψ0) is a non-
empty compact, connected set of equilibrium solutions of (5.1). Let ψ∞ ∈ ω(ψ0)
(obviously by proposition 5.1 we have φ(ψ∞) = 0). Since ψ∞ ∈ ω(ψ0) there exists
{tn}∞n=1 such that

ψ(tn, ·) → ψ∞(·) in L2(Ω) .

We argue from here by bootstraping. Let 0 < ε ¿ r, where r is the same as in
lemma 5.1. For sufficiently large n we have

‖ψ − ψ∞(·)‖H2(Ω) ≤ ε
[E(ψ(·, tn))− E∞]θ

θ
≤ ε ,
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where θ is the same as in (5.6). Let then

t̄ = sup{t ≥ tn | ‖ψ(·, s)− ψ∞(·)‖H2(Ω) ≤ r , ∀s ∈ [tn, t]} ,

and suppose, for a contradiction that t̄ is finite.
Unless ψ0 is itself an equilibrium solution, we must have E(ψ(·, t)) > E∞ for

all t > 0, for otherwise it would mean by backward uniqueness that E ≡ E∞ and
ψ(·, t) ≡ ψ∞(·). Hence, we can write by (5.5) that

− d

dt
[E(ψ(·, t))− E∞]θ = −dE(ψ(·, t))

dt
[E(ψ(·, t))− E∞]θ−1 ≥

θ

2

(‖ψt+iφψ‖2+σ‖∇φ‖2

)‖∆ψ−ψ(|ψ|2−1)‖2[E(ψ(·, t))−E∞]θ−1 ≥ θ

2

(‖ψt+iφψ‖2+σ‖∇φ‖2

)
.

Integrating the above between tn and t̄ yields

θ

∫ t̄

tn

(‖ψt + iφψ‖2 + ‖∇φ‖2

)
dt ≤ 2[E(ψ(·, tn))− E∞]θ .

By Poincare inequality we then have (recall that ∂Ωc 6= ∅) that

∫ t̄

tn

‖φ‖2 dt ≤ C[E(ψ(·, tn))− E∞]θ

Hence,

∫ t̄

tn

‖ψt‖2 dt ≤
∫ t̄

tn

‖ψt + iφψ‖2 + ‖φ‖2

)
dt ≤ C[E(ψ(·, tn))− E∞]θ . (5.8)

However,

‖ψ(·, t̄)− ψ∞(·)‖2 ≤
∫ t̄

tn

‖ψt‖2 dt+ ‖ψ(·, tn)− ψ∞(·)‖2 ≤ Cε .

For sufficiently small ε we have, in view of the precompactness proved in proposition
5.1, that ‖ψ(·, t̄)− ψ∞(·)‖H2(Ω) ≤ r/2 – a contradiction. Hence t̄ = ∞. It follows by
(5.8) that ∫ ∞

tn

‖ψt‖2 dt ≤ C[E(ψ(·, tn))− E∞]θ .

Convergence as t→∞ can now easily be proved.
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We return back to a one-dimensional setting. Consider the following version of
(5.1) in [−L,L] [18, 12].





∂ψ
∂t
− ψxx + iφψ − ψ(1− |ψ|2) = 0 in (−L,L)× R+

σφxx = 1
2i

(ψ̄ψx − ψψ̄x)x in (−L,L)× R+

ψ(x, 0) = ψ0(x) on (−L,L)

ψ(−L, t) = ρ∞e−iαL ; ψ(L, t) = ρ∞eiαL in R+

φ(−L, t) = φ(L, t) = 0 in R+

. (5.9)

In the above ρ∞ ∈ [0, 1], α =
√

1− ρ2∞, and ψ0 ∈ H1([−L,L],C) satisfies the bound-
ary conditions at x = ±L.

As in the stationary case (1.4), the overall current is given in this case by

J = −σφ′ + ={ψ̄ψx} . (5.10)

However, in contrast with the stationary case J may depend on t.
It follows from theorem 3 that (ψ, φ[ψ]) converges to an equilibrium solution

(ψ∞, 0). It is easy to show that (1.5)) is an equilibrium solution of (5.9). For the
stationary case (1.4), there exist two different values of ρ∞ which satisfy (1.6) for any
given J ∈ [0, Jc). Therefore, the question which of them is related to a stable solution
of (5.9) naturally arises. In [12] it is stated that (ψs, 0) is stable when ρ2

∞ > 2/3 and
unstable when ρ2

∞ < 2/3.
It is not clear how this conclusion is derived in [12]. For solutions of (5.9) it is

simply wrong. As we demonstrate in the sequel (ψs, 0) is not the unique equilibrium
solution of (5.9). As a matter of fact, for sufficiently large L, ψs is never the global
minimizer of E over all ψ − ψs ∈ H1

0 (−L,L). This is exactly what the next lemma
shows

Lemma 5.2. Let
EL = inf

ψ−ψs∈H1
0 (−L,L)

E(ψ) .

Then, there exists C > 0, which is independent of L such that EL ≤ C for all L ≥ 2.

Proof. We obtain an upper bound for E by using the following test function

ψ̃ =





−ρ∞(x+ L− 1)e−iαL −L ≤ x < −L+ 1

0 −L+ 1 ≤ x < −L+ 2

(x+ L− 2)eiαL −L+ 2 ≤ x < −L+ 3

eiαL −L+ 3 ≤ x ≤ L− 1

[1− (1− ρ∞)(x− L+ 1)]eiαL L− 1 < x ≤ L

.

Clearly, ψ̃ − ψs ∈ H1
0 (−L,L) and since E(ψ̃) is independent of L for all L ≥ 2 the

lemma is proved.
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Let JL = limt→∞ J(t, L). We conclude this section by obtaining the asymptotic
behaviour of JL in the limit L → ∞, in the case where the long-time equilibrium
solution of (5.9) is the global minimizer of E.

Lemma 5.3. Let ψL = ρLe
iχL denote the global minimizer of E over all functions ψ

such that ψ − ψs ∈ H1
0 (−L,L). Let JL = ρ2

Lχ
′
L. Then there exists C > 0 such that

JL ≤ C

L
.

Proof. By (5.10), and since for an equilibrium solution we have φ ≡ 0, we obtain

JL = ρ2
Lχ

′
L .

Since ∫ L

−L

JL
ρ2
L

dx = 2αL ,

We have

EL = E(ψL) = 2αLJL +

∫ L

−L
|ρ′L|2 +

1

2
(1− ρ2

L)2 dx ≥ 2αLJL

The lemma is then proved from lemma 5.2.

6 Concluding Remarks

In the following we briefly summarize the main results of this work, and illuminate a
few points that may have escaped the reader’s attention.

In the limit σ → 0 we have demonstrated in § 2 that for J > Cσ1/4 for some
C > 0, no solution can exist for (1.8). We have also formally evaluated C. It is clear
from § 4 that for sufficiently small J a solution for (1.8) does exist. It is not clear,
however, whether a critical value J+(σ) exists such that no solution of (1.8) exists for
J > J+, but existence is guaranteed for every J < J+. Alternatively we may say that
it is not clear whether the set S(σ) is connected.

In the limit σ → ∞ we have, in § 3, established existence of solutions for (1.8)
for every fixed J < Jc, in the case where ρ2

∞ > 2/3. We have also obtained formally
the leading order behaviour of ψ in this asymptotic case. If we assume the existence
of the above critical current J+, the above existence result means that J+ → Jc as
σ → ∞. It is probably possible to show that σc > 0 exists such that J+(σ) ≡ Jc
for all σ > σc. A more difficult task is showing that J+ < Jc for all σ < σc (and
perhaps also that J+ is decreasing there). Further research is necessary: at least one
can numerically obtain the value of σc and the dependence on σ of J+
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Finally, in § 5 we have proved convergence as t → ∞ of solutions of (5.1) to
an equilibrium solution, by first establishing that the Ginzburg-Landau energy is a
strict Liapunov function. Then we showed, for a one-dimensional setting in (5.9),
that the global minimizer for the energy functional, for long wires, corresponds to
a vanishingly small current. Note that (5.9) assumes zero potential drop along the
wire. An important question that has to be addressed is whether for fixed current (and
time-dependent potential drop) the solution converges, as t → ∞ to an equilibrium
solution. If so, it is easy to show that the unique equilibrium in such a case would be
(1.5). However, (5.4) is no longer a Liapunov function [16]. Therefore, it is possible in
this case that one can establish that the statements in [12] regarding the stability of
(1.5) are correct. Linear stability analysis can provide some insight into this problem.
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