SUPERCONDUCTIVITY NEAR THE NORMAL STATE IN A HALF-PLANE
UNDER THE ACTION OF A PERPENDICULAR ELECTRIC CURRENT

AND AN INDUCED MAGNETIC FIELD II : THE LARGE
CONDUCTIVITY LIMIT

YANIV ALMOG, BERNARD HELFFER AND XING-BIN PAN

ABSTRACT. We consider the linearized Ginzburg-Landau equation in the half-plane, in the pres-
ence of an electric current, perpendicular to the boundary, and the magnetic field it induces. In
a previous work we have considered the same problem in the limit of small normal conductivity.
In the present contribution we consider the large normal conductivity limit, which is more fre-
quently encountered in experiments than the other limit. Like in the previous work we obtain
an approximation of the critical current where the normal state looses its stability. We find that
this critical current is determined by the ground state of the anharmonic oscillator
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1. INTRODUCTION

1.1. Former results.
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Consider a superconductor placed at a temperature lower than the critical one. If an
electric current is applied through the sample it will induce a magnetic field, and as is well-
understood from numerous experimental observations, a sufficiently strong current will
force the superconductor to arrive at the normal state. If the current is then lowered, the
normal state would lose stability and the sample would become superconducting again.
In addition to experimental observations a similar pattern of behaviour has also been
obtained theoretically by analyzing the stability of the normal state for the time dependent

Ginzburg-Landau system, but with the induced magnetic field neglected [13, 3].
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In a previous contribution [4] we analyzed the stability of the normal state in the
presence of an electric current which induces a magnetic field, but in the absence of
boundaries. We offered an analysis of a two-dimensional setting, i.e, in R?, which is the
simplest case where one can consider the effect of a magnetic field induced by a current,
with boundary effects ignored. We found in [4] that the normal state is always stable,
irrespectively of current intensity. This result is in line with those obtained for a reduced
model where the induced magnetic field has been neglected [13, 3] .

The effect of boundaries in the absence of magnetic field has been first analyzed by
considering a one-dimensional problem on R, with a Dirichlet boundary condition which
stands for a normal/superconducting interface [13, 3]. Due to the boundary’s effect the
normal state looses its stability for currents that are weaker than a certain critical value.
It has been proved in [3] that the critical current for a large bounded three-dimensional
domain is bounded from above by the one-dimensional value. Furthermore, for currents
below the critical one a short-time instability was proved [3] (the question whether the
normal state is unstable for such domains and currents is still open).

In another contribution [5] we introduced the effect of boundaries in the limit of small
normal conductivity. We showed that it has a similar effect to the one found in [13, 3],
i.e., the normal state looses its stability for currents lower than a critical value. Moreover,
it was found that as the normal conductivity tends to 0, the critical current converges
to the value obtained for the simplified model, where the magnetic field is neglected
(13, 3, 17, 16, 18|.

Assuming that a magnetic field described by H¢ is perpendicularly applied to the sam-
ple, the time-dependent Ginzburg-Landau system can be written as follows (see for in-
stance [6, 7, 8, 9, 13, 19, 21]):

O +ik®Y = Vi a0h + k2 (1 = [P[)), in Ry x R,
rZeurl*A + 0 (9,A + V) = kIm (YV,a10) + r2curl H, in Ry x R, (1.1)
v=0  -Z2= on JR?

where 9 is the order parameter, A is the magnetic potential, ® is the electric poten-
tial, the Ginzburg-Landau parameter of the superconductor is denoted by k, the normal
conductivity of the sample is denoted by o, the magnitude of the dimensionless electric
current is denoted by J, and the magnetic field is symbolized by H¢. We note that spa-
tial coordinates are scaled with respect to the coherence length, and not, as one often
encounters, with respect to the penetration depth. This is why a factor of x? appears in
the second equation of (1.1). The half-plane R% is defined in the following manner

R2 = {(z,y) e R* : y > 0}.

The triplet (¢, A, ®) should also satisfy an initial condition at ¢ = 0.

A solution (¢, A, ®) is called a normal state solution if ¢ = 0. From (1.1) we see that
if (0, A, @) is a time-independent normal state solution then (A, ®) satisfies the following
equation

k2curl A + oV® = x?curl H*  in R? . (1.2)
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By taking the divergence of (1.2) we obtain

AP =0 in Ri
N ’ 1.3
{%—‘S:—%" on OR?. (13

Since we expect solutions of (1.3) to represent the electric potential at the normal state
near the boundary of a large bounded domain, we look for solutions with bounded gradient
(or [V®| € L*>*(R?%)). Assuming that the current is of constant magnitude J along 9R?,
and that its direction is always perpendicular to it, we obtain that the unique solution
which obeys these assumption is given by
2
K=J
b=—y. (1.4)
o
Assuming further that the applied magnetic field is, like the current, of constant mag-
nitude as well, we obtain

HC = hi,,
throughout the entire sample. Here ix, iy and i, denote the canonical basis in R3. Hence,

we consider an applied magnetic field which is perpendicular to the sample. Under these
additional assumptions equation (1.2) admits the following solution

1
2J
Thus, (0, A, ®) is a normal state solution of (1.1). Note that the magnetic field

A= _—(Jr+h)4,. (1.5)

H = curl A = (Jz + h)i.,

is the sum of the constant applied magnetic field hi, and a linear term induced by the
electric current.

The linearization of (1.1) near the normal state solution (0, A, ®) obtained above yields
a linear equation

{aﬂp IS = A = BT+ RO — (5P Ry iR xR o
b =0 on IR? .
Applying the transformation
(t,2,y) = (t,z— g,y)
we obtain
{% I = Ay im0y = (P - w)0 R xR
b =0 on JR?.

We assume J > 0 in the sequel. Otherwise we may consider the complex conjugate of
(1.6). Hence, we can rescale x,y and t by applying

t— (/@J)Q/3t, (x,y) — (KJ)1/3($,y), (1.8)
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yielding
Ou=—(Ap.—ANu in Ry x Ri, (1.9)
uw=0 on 8Ri, '
where A4, . is the differential operator defined by
1
Ave= D2+ (Dy = 502 +icy, (1.10)
with
D, = —i0,, D, = —i0,, ceR,,
and
K R 1/3 1/3 2/3
c= ;7 A= >\0 = mv u(:c,y,t) = w((’%‘])i / z, (KJ‘])i / Y, (K‘])i / t) : (111)

The operator Ao will be denoted by Ay for simplicity.
While the operator Ay is defined on smooth functions only, we have already proved in
[5] that it can be extended into an operator Al whose domain is given by

DAN) ={ueV : Afuec [*(R%,C)}, (1.12)
where
V = Hy™®(R2,C) N LAR?, ydady),

L*(R%,C) denotes the L? space of complex-valued functions, and Hy™*¥(R%,C) is the
closure of C5°(R%, C) under the norm

T2
u— \/IIUII2 I Dsull® + [(Dy = - )ul®

Here and thereafter | - || and (-,-) denote the L? norm and inner product on R2:
L\ 12 )
Jull = Vs = ([ fuPdz) ™ tw) = [ wods.
R? R?
¥ ¥
The L? norms and the associated inner products in both L*(R) and L?(R, C) are denoted

by ”||L2(R) and <', '>L2(R)‘
Once the definition of the extended operator A} has been formulated, we may write

1
A =D2+ (D, — §x2)2 +icy . (1.13)
Note that Al is not self-adjoint. Furthermore, we have that

(AD)" = A%,

In the present contribution we analyze the spectrum of A7, denoted by o(AY), in the
limit ¢ — 0. The following proposition, whose proof is straightforward, has already been
stated in [5]:
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Proposition 1.1. For any c # 0, A" has a compact resolvent. Moreover, if Ey(s) denotes
the ground state energy of the anharmonic oscillator

d2 ZL‘2 2
Ms = —@ + (? - S) y (114)
and if
Ey = inf Eo(s), (1.15)
then
o(AT) c{ e C,ReX > E}}. (1.16)

1.2. Main result.
Our main result is the following:

Theorem 1.2. There exists ¢y > 0 such that if 0 < |c| < ¢y, then

o(AD) #0.
Furthermore, there exists u(c) € o(Al) which admits, as ¢ — 0, the following expansion:
ple) = By + [c[FPx +o(|e*) (1.17)

where E§ is introduced in (1.15), and Ay is a spectral invariant which will be given by
(3.24).

Remark 1.3. We expect that p(c) corresponds to the eigenvalue with smallest real part.
Note further that the proof we bring for (1.17) provides a more precise error estimate for
it.

Relying on (1.11), (1.16), and (1.17) we can estimate the critical current.
Corollary 1.4. Let J. denote the critical current, such that for |J| < J. in (1.7), the
normal state is unstable. Then, for all |c| < ¢y we have

K2 3\ K2

1— 2/3 2/3> <J < 1.18
e (1= gl o) < < s (1.18)
From the results of [5] we thus obtain that
K2 J. a |
Jo ~ ——= asc—0; — ~ — asc— o0,
(E5)*? o 2

where a; is the rightmost zero point of the Airy’s function [1]. Hence, the critical current
is determined, to leading order, in the limit ¢ — 0, by setting ¢ = 0 in (1.10). In contrast,
in the limit ¢ — oo the leading order is obtained by erasing the magnetic potential z%/2
from (1.10). In the language of Physics, the normal state looses its stability, in the large
conductivity limit, since the magnetic field generated by the current reaches a critical
level, whereas in the small conductivity limit it is the drop in the electric potential that
produces the instability. Nevertheless, although (1.18) is highly intuitive from a physical
point of view, considerable effort is necessary, as can be seen later, to derive it even
formally.

Since a standard perturbation expansion fails near the boundary, we first need to derive
the behaviour of eigenfunctions of A7 for y = O(1). We obtain this behaviour in Section 2.
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In Section 3 we obtain an approximation for an eigenvalue and an eigenfunction formally,
relying on the results of Section 2. Section 4 includes some preliminary estimates we need
in order to prove the formal expansion. In Section 5, we prove the “outer” expansion, i.e.,
the behaviour of the eigenmode for y = O(|c|71/?), whereas in Section 6 we prove some
“Inner” estimates for y = O(1). Finally, in Section 7 we complete the proof of (1.17).

2. THE BOUNDARY LAYER

Consider the operator AT defined in (1.13). Let (A\,v) denote an eigenpair, i.e. an
eigenvalue A of AT and one corresponding eigenfunction v. For bounded y and small ¢, it
appears reasonable to estimate (A, v) by (E§, u), where Ej is the bottom of the spectrum
of the self-adjoint operator A{ (which is defined in (1.13) by setting ¢ = 0 and A\ = E}} ),
and u(x,y) = ¢*(x)e™™? is an associated L “eigenfunction”.

In this section we obtain an auxiliary result that provides us with the asymptotic
behavior of u as y — oo. In addition, with the notation introduced around (1.15), let
Ey(s) and E;(s) denote the first and second eigenvalues of the operator My (see (1.14)).
Let s* be the unique point where Fy(s) is minimal (cf. [12])

Ey(s*) = Ej . (2.1)
Let ¢o(z, s) denote the corresponding normalized positive eigenfunction associated with
Ey(s), i.e.,
Mo(z,s) = Eo(s)do(z,s). (2:2)
Set
¢"(x) = ¢o(z,s") (2.3)
and
Ef = ;gﬂf{ Ei(s).

Let i, and iy denote the unit vectors in the positive z- and y-axes. For convenience, we
introduce a new Aj*" deduced from Ay by using a conjugation by exp(iys*):

x? 2\ 2

Ay = —(V=i(5 =) (2.4)

To simplify notation, we omit from now on the reference “new” and write simply Ay .
Theorem 2.1. Let f € S(R,C). Then there exists a unique pair (u, ) € H2 (RZ,C)x C

such that
(i) u satisfies

(Ao — Ej)u=0 inR?, (2.5a)
u=f ondR%; (2.5b)

(ii) u — ag* € L*(R2,C) and for any k > 1, there exists a constant C(k) > 0 such
that, fory > 1,
C(k)
yh

[u(-,y) — ad™ ()| r2m) < (2.5¢)
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To prove the existence of a solution for (2.5) we convert it first to an inhomogeneous
problem in HZ_(R2,C) with trace 0 at y = 0. To this end we define the cutoff function
x € C*(R4,[0,1]) such that

1 ify<a,
x(y) = {0 iy >0, (2.6)
Set then
u=w+x(y)f(z). (2.7)

For the equivalent inhomogeneous problem we thus look for w € H{ (R%,C) and a € C,

loc
which satisfy
2.8
w=0 on IR? , (28)

together with (2.5¢). One can obtain the precise form of g by substituting (2.7) into
(2.5a). Nevertheless, in the sequel, we need only the fact that g € L*(R2,C) and that it
is supported on the set

{(Ao —Ej)w=g inR%,

{(z,y) eR*: 0 <y < 2}.
Let Sg = R x (0, R) and denote by || - ||2 the L?(Sg) norm. Let A{ denote the Dirichlet
realization (obtained by application of Lax-Milgram’s theorem) in Sg of the differential

operator
2

X a2 )2
—(V - z(? -5 )1y) .
We construct such a function w which solves (2.8) for some a € C, as a limit, as R tends
to infinity, of solutions w® in the domain of Af of

(AF — Ej)w = g. (2.9)
We first need to make the obvious observation that solutions for (2.9) do exist for R > 2.

Lemma 2.2. Given g € L*(R%, C) which vanishes on R3\ Ss, there exists, for all R > 2,
a unique solution w* € L*(Sg,C) for (2.9).

Proof. Tt is easy to show, using for instance Theorem 4 in [15] and the compactness of
[0, R], that the Dirichlet realization AZ of Ay in Sg has a compact resolvent, and hence,
has a discrete spectrum in Ry = {z € R : z > 0}. Introduce

_ R
po(R) = inf o(A7).
To complete the proof of the lemma we now show that

puo(R) > Ej, forall R>0. (2.10)

As a quick aside, we mention that by domain monotonicity and comparison with the
problem in R? it easily follows that po(R) is decreasing with R and that

po(R) > Ef forall R > 0.

Furthermore, strict monotonicity can be proven employing the Hadamard formula (which
provides an explicit expression for pg(R)). Below we give a direct proof, avoiding the use
of the Hadamard formula.
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Denote by wy the eigenfunction of A associated with pg(R) with unity L? norm.
Clearly,

0 =(wo, (Ao — Mo)w0>L2(SR)

) (2.11)
= (v~ i[5 = 5T woagsyy — Ho(R) [l Fags,y -
Set then
fO0<y<R
Do(w,y) = {gO(x’y)’ s gs (2.12)
, otherwise,

and let its partial Fourier transform in y be given by

wo(r, ) = Flig] = \/%/ wo(z,y)e “Ydy . (2.13)

Moreover since wy € Hy™*(Sk) we have that 87,170(37, s) = isuwy. Hence in terms of the
partial Fourier transform, (2.11) takes the form

. 2 N )
/ {|w0|2+ (5—3 —s> |w0|2—u0(R)|w0|2}dxds:0,
R2

where W) = 0wy /0 .
Next we set

W(s) = [[do(- 8)l| 2y # 0.

Since
2

2
/ [t + (5 — 0 ) ool } de > Bols* + 5)W2(s)
R
we have that

/R[Eo(S* +5) — po(R)W?(s)ds < 0.

From the above inequality and the fact (cf. [12]) that Ey(s) has a unique minimum £
at s*, we see that

(Ey — po(R)) /sz(s) ds < /R[EO(S* +8) — po(R)]W?(s)ds < 0.

Hence, po(R) > E§ and the lemma is proved. &

Next we prove some bounds on w? that are uniform in R.

Lemma 2.3. There exists a constant C > 0 such that, for any R > 2 and g € L*(R%,C)
which vanishes on R2 \ Sy, then the solution w? of (2.9) admits the following decompo-
sition:

wh(z,y) = vz, y) + br(y)¢*(z), (2.14a)
where ¢* is given in (2.3), and v and by satisfy the estimates
[0 25y < Cllgllz2(ss) » (2.14D)

1622 0.7) < Cllgllz2(s) - (2.14c)
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Furthermore,
Ouwh

<C 2.14d

|5, < Clglzzes (2.14)
and, for all L > max{1,2/s*},
ow™r

<cr . 2.14
H ay Lz((—L,L)X((),R)) —_— ||g”L2(82) ( e)

Finally, for alll > 0, we have
w25y < C (L4 12) lgllzzs,) - (2.14f)

Proof. The construction of v and by will be provided in Step 4 below. To simplify our
notation we drop the superscript R throughout the proof. For instance w’ is denoted by
w.
Multiplying (2.9) by w and integrating over Sg yields
2

|(v - il5 - #T0)w|

* 2 o
L2(Sh) EGllwllzz sy = Re (w, g)r2(s,) - (2.15)

The right hand term is an integral over S; because g is supported only there. Denote by
w(z, s) the partial Fourier transform of w(zx,y) as defined above. In Fourier space, the
above identity takes the form

A 2, NE - L
||w’|]%2(R2) + H (7 — 5" — s)w‘ - E0||w|]%2(R2) = Re (0, §) 12 (r2) - (2.16)

L2(R2)
We next introduce the following orthogonal decomposition in L?(R?) for w:

'li](l’, S) = wH7s($, 8) + UA)L’S(QZ, 8) )
Wys(z,8) = b(s* + s)do(z, 5" + 5) , (2.17)

~

b(S* + S) = 1[_171}(8) <1j)(, S), ¢0(‘, s* + 8)>L2(]R) R

where 1[_1 ;1)(s) is the characteristic function of the interval [—1,1]. The notation w, g
and ) s indicates the orthogonality of the two components in L*(R) for all s € [—1,1],
ie.,

/ Wy (2, 8)w 1 s(x,5)dr = 0. (2.18)
R

We save the notation w; and w) for a different type of decomposition employed in Sec-
tion 5. Since W 4(x, s) is supported in R x [—1, 1], we obtain using (2.18) that

/ ’UA)”’s + UA}LS’Q dxds = / {’ﬁ)||7s‘2 + ’?I)J_75‘2 + 2Re UA}‘LSUTJJ_,S} dzds
R2 R2

1 1
:/ /|1Z}||75|2dl‘d8—|-/ |UA)L78|2d£L‘dS+2Re/ /’LZ}||7SI@J_,Sde‘dS (219)
—1JR R2 —1JR
1
:/ /yw,,,sﬁdmw/ W) | dads .
—1JR R2
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Step 1. We first prove that

1
[ Bl 4 5) = Bl o) e

1 (2.20)

+ min ((E{ — Ey), |i]|f1f1(E0(s + %) — E;;)) / |y ||* ds
s[> R
< ‘Re <wag>L2(R2)’7

which can alternatively be phrased, using some of the properties of Ey which were derived
n [12], in the form

1 . R

JolEo(s™ + 5) = Egllly,s (5 )72z

+ [min (EY, Eo(1 + s*), Eo(—1
< |Re (W, §) r2(re)| -

By (2.16) and (2.17) we have

ds
2(®)
+5%) = Eg) [y oo || ds (2.21)

2
' By + || (5 =5 = 9) w\ e

2

:/R2 {’ﬁ)ﬂ,s(%s)’? + (% — 5 — S) ’wn,s(l',s)’Q} dids

, (2.22)
+ /2 {|1i1is(x, )2+ (% — 5" — 3)2\1@75(1’, s)|2} dzxds
R
_ 7?2 2 _
+ 2Re /R2 {wf‘,s(a;, s)w' (z,s) + (5 — 5" = 8) W s(, )1 s(x, s)} dxds .

From the definition of Ey(-) and its positivity, we obtain

2

. x . 2, .
RQ{!wﬂ,s(x, )+ (T =" =) |dy(x, )]°} duds

1
:/ Eo(s*+s)|1b||7s(x,s)|2d:vds:/ /Eo(s*+s)|w7s($,3)|2dxds.
R? —1JR

For each fixed s € [—1, 1], we see from (2.17) and (2.18) that w, 4(-,s) is orthogonal to
the eigenfunction ¢o(-, s* + s) associated with the first eigenvalue Fy(s* + s) (recall that
E;(s* + s) is the second eigenvalue). Hence, we have

2
/ {10 (@, 5) 2+ (5 = " = 5) sl ) fdo = Ba(s" + s>/ i1 o(x,5)|* da.
R R

Consequently,
2
[ Al o + (5 =5 = 8)fisa(o. o) pdads
]RQ
1
2/ E1(5*+5)/ W) o(,8)|* deds
- R

1

—i—/ Eo(s*+s)/]wL,S(:c,s)Fdxds.
|s|>1 R
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From (2.17) and (2.2) we see that

1‘2

) _ s )
Re /R2 {wﬂ,s(x, s)w' (z,s) + (7 — 8" = 8) "y 5 (7, )01 (s 5)} deds

1 B 2 B

=Re / b(s* + s)ds/ {d)g(x, s+ s)w' (x,5) + (% -5 = s)2¢0(3:, s* 4 s)w s(z, s)} dx
-1 R

=0.

Substituting the above into (2.22) yields

R @, Nk
||w'||%2(R2) + H (? — S — s)w‘

L2(R2)

1
> / / {Eo(s* + s)|wy,s(z, $)]* + Er(s* + s) |1 s(z,5)|*} duds
—-1Jr
- / Eo(s* +s) / W) o(,8)|* duds .
|s|>1 R

We can now use the above inequality in conjunction with (2.16) and (2.19) to obtain

1
/1[E°(8* + ) = Bl 9) | Toqey + [Br(s™ + 5) — Bl Ls]l r2e ds

—|—/ (Eo(s* +8) — E) ||y |* ds
[s|>1
< |Re <w7g>L2(R2)’7

implying that

1
t/UW§+@—EmWMﬁW%m%

1
i (55 = Bo). nf (Bals + %) = £9)) [ P
< |Re(w, §) L2m2)|

which readily yields (2.20).

Step 2. Next we show that there exists a constant C such that:

lsb(s* + Mo + ldrslliams) < Cllwlisyllglizes, - (2.23)
Recall that g is supported in S;. Hence,
Re (0, §)r2e2)| = |Re (w, g) 22y | = [Re(w, g)12(s,)| < [[wllL2(sy)llgllc2sy) -

From [12] we learn that there exists Cy > 0, such that we have

Ey(s*+5) — Ef > Cys® forall s e[-1,1]. (2.24)
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Consequently, we have

1 1
/ /[Eo(s* + 8) — B3y s(z, 8)|* deds > Cy / / s°|) s(x, 8)|? duds
~1Jr ~1Jr

1 1
:co/ /52|b(3*+3)¢0(a:,5*+s)|2d:cds:C’O/ Ish(s* + 5)[2 ds
—-1JR —1

=Co [|sb(s™ + )1 Z2r)
Let
C1 = min{Cy, E] — Ej, Eo(—1+ s*) — Ej, Eo(1 + s*) — Ej} .
Then we use (2.21) to get
Cr [llsb(s™ + Miam) + 1w slFome)] < lwllz@)lgleess,
from which (2.23) follows.

Step 3. Let w) s and w, , respectively denote the inverse partial Fourier transform of
w),s and w, ;. We next attempt to control %\wL,A )
Computing the left-hand-side of (2.16) as in (2.22) we obtain that

A (G = = 9o = Bilios ) dads < J(w,g)szes |-
Note that, unlike w, the support of w, s extends beyond Sg to the entire plane. Thus,
H(x——s*—s)u? Hawls —i(x—z—s*)w
2 Lol pamey 2 L8] 2 ey
Consequently, we have
8U)L ,8 . 2 *
|5 =i = iy < N0 Do | + B sl (225)
With the aid of Kato’s mequality we then obtain
8|U)L s 6wL )8 . 2
175 ey < |55 = 1 =
L2(R2) L2(R2) (226)

< ||w||L2(52)||9||L2(32) + Eg 16|22 pe) -
Combining the above inequality with (2.23) yields

G\wl 5’ 2
L2(R2)

Isb(s* + Maey + ol + || =5 < Gyl gl - (2:27)

Note that a—y’s is in L*(R?,C). In fact, as its partial Fourier transform is given by
Ow) s s
]-"{ i } =1isb(s" + s)po(x,s" + s),
Iy
it follows by (2.27) that

aw s 7/ % * T (%
[0 e gy = IB5" 4000 5° 4 gy = lbs™ + ) aoeey - (228)

L2(R2)
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We now use the continuity of the trace on y = 0 of |w, ;| € H'(R?) in order to obtain

8’wj_73‘ 2
||U}L75(',O)||%Q(R) < ||wl,s||%2(R2) H 3y

L2(R?)
As
w) s(2,0) +wy s(z,0) =0,

we also have that

6|wL | 2
2 _ 2 2 ,S
e, O ey = 0 OEegey < o alages) + T
Let [ > 0. As for all y € [0, ]
v 9wy | 2 9172
o] = ool O+ [ 258 )y < (o0 (a9 ] ",
we have, for all y € [0,1], that
Olwys| |12
s . 22 < 2 5 ZQ H ” S
s 9l72@y < 2Mw)s(- 0|72y + .
Consequently
ale5| 2
I llesy < {QHMMHLQ(RQ 2 H L2(R?) (9y sy (2:29)
Using (2.28) we have
owy s . .
75 gy = ey = Wil = sb(s” ey (230)

Thus combining the above inequality and (2.29) yields

lwllz2s) < lwysllzoesy + lwesllzes)

Olw. | 3/2|| B o (2.31)
S(\/Z—F 1) ||"LUJ_78”L2(R2) —F\/Q_lHa—y LQ(RQ) —|—l ||Sb(8 + ')HLZ(R)
Substituting the above, with [ = 2, into (2.27) we obtain that
A 8|wL | 2
* 2 ~ 2 »S
IB(5" + M + Nbwalloey + | 7|
Olwy s ~
e e e A il ey [ P
from which we easily obtain that
a‘wl s
sb(s* + Mz + oalzzeny + | T Ly < Collollizsy - (232

From (2.32) and (2.31), we then get (2.14f).



14 Y. ALMOG, B. HELFFER, X. B. PAN

Next we use (2.15) to obtain

|5
<(B; + Dl + 3190y
From the above and (2.14f) we get (2.14e).
Step 4. We now prove (2.14b,c). To this end we decompose w yet another time

W(x,s) =Wy (2, 5) + b(s* + )" (x) + b(s* + s)[do(x, s* + 5) — ¢*(2)]. (2.33)

As there exists C' such that
[67() = do(-; 8" + s)llL2@) < Cls| forall s € [-1,1],

we obtain using (2.32) that

lb(s* + $)[@o(w, 5" + 5) — & ()] | 2@y < Cs [[sb(s™ + ) 2@y < CClullgll (s, -
Thus, by setting v to be the inverse Fourier transform of
0 (x,5) = Wi s(w,5) + b(s" + 5)[go(w, 5" + 5) — ¢*(2)],

v
(2.14b) is readily satisfied.
Reintroducing the reference to R, let bgr(y) denote the inverse Fourier transform of

b(s* +5). As

2

<@ il ~ i

L2(SRr)

_ * 2
L2(SR) - EO HwHLQ(SR) + Re <w, g)LQ(SQ)

1051l 20.8) < VR L2@) = [lsb(s™ + )l 2
(2.14c) readily follows from (2.32).

Step 5. To complete the proof of the lemma, we make the obvious observation that, by
(2.25) and (2. 32)

|52 =15 = Vsl = el + (B sl
Hence,
ow, s
Oy NL2((~L,L)x(0.R))

1 1 x?
<Z - E* 1/2 Yok )
<slwllrasy + 5lgllzzs,) + (Ep) [ sl 22y + I 5 Jwi s (LD (0.5

Then we use (2.32) and (2.14f) to obtain the existence of a constant C' such that, for any

L > max{1,2/s*},

<CrL?
oy < C EPlgllizsy

The above, together with (2.30) a d (2.32), proves (2.14e) and thus completes the proof
of the lemma. g

H(?uus

Once (2.14) is obtained, there is no further necessity to discuss (2.9) in Sg. We consider
then the limit R — +o0.
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Lemma 2.4. With the notation of Lemma 2.3, there exist C > 0 and, for any g €
L*(R%, C) which is supported on Sy, a sequence {Ry}yen tending to +oo and functions
Weo 5 Voo aNd by such that the following claims are true:

(i) We have wfs — w., and vr, — voo strongly in H\ (]RT?H C), and bg, — by strongly

loc
in HL (R,C) as k — co.

loc
(i) weo is a solution of

(2.34)

(Ao — Ej)wee =g inRZ,
Weo =0 on JR3 .

(iil) we admits the representation

Woo(7,Y) = Voo (T, ) + oo ()67 (1) , (2.35a)

where vy and by (y) satisfy the estimates

||Um||L2(R1) < Cllgllrzss) (2.35b)

1 llr2e ) < Cllgllrzss) - (2.35¢)
(iv) For all L > 1 we have
ow

—= <CL? : 2.35d

| iy, < € Elaliziss (2.354)

Proof. By (2.14), the family {|w®| : R > 2} is uniformly bounded in H._(R%,C), and

hence, by standard elliptic estimates, since g € L?(R3, C) and wg is a solution of (2.9) , the
R|: R > 2} is uniformly bounded in H}

2 .(R2, C). Hence there exists a sequence
{Ry.}52, with R, — +00 as k — +oo such that w'* converges weakly in H?

IOC(RT?H C) and
strongly in H (R2,C) to some function w., € H}

family {|w

ive 2 (RZ,C). In particular wa(-,0) = 0
holds in the sense of trace in Hﬁf(@Ri, C). Hence wy, solves (2.34).

In view of (2.14b,c,f), b is bounded in H._(R,) and, by moving to a subsequence
(still denoted by {Ry}), there exists some by, € HL (R, ) such that b — b, weakly in
H} _(R,) and strongly in L (R, ). Furthermore, for every [ > 0 we have that

loc loc
< liminf ||p .
[1Doolrr1 (0,0 < limin 07 [ 10
Hence, in view of (2.14c), there exists C' > 0 such that for every [ > 0

105N 2200y < Cll9gllz2(ss) -

The proof of (2.35a,b,c) now follows from the strong convergence in L{ (R?%) of w and

loc
bl g*. To prove (2.35d) we use the H,._ convergence of w! and (2.14e). §

Remark 2.5. Note that, in view of (2.14f), we € L*(S;) for any I > 0. In fact, there
exists C' > 0 such that for every | > 0 we have

[Wos|lr2(sy < C(1+ )| gll12(ss) - (2.36)
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For convenience we drop the subscript oo in the sequel and represent w,, by w. Let
f € S(R) and x be given by (2.6). Let further w denote a solution of (2.8) with

9= (Ao — E5)(x(w) f(x)),

which satisfies (2.35) and (2.36). Then, u — the corresponding solution of (2.5) — which is
obtained via (2.7), satisfies (2.35) and (2.36) as well. In the following we show that this
u satisfies (2.5¢). To this end we need to prove that b(y) converges to a positive constant
as y — +oo. Note that the estimates of ||b'|| 2m2) we currently have are insufficient
in order to prove such a convergence. To close this gap we need a decay estimate of
||%_Z||L2((7L,L)><(R,oo)) as R — 4o00. The following lemma — a rather standard estimate for

solutions of (2.5a) — constitutes a preliminary step towards this end.

Lemma 2.6. There exist C' and, for any k > 1, C(k) such that any solution u of (2.5a)
satisfies, for any l > 2 and any L > 2,

||xku||L2(Rx(l—1,z+1)) < C(k) [Jull L2rx 1—2,42)) - (2.37a)
C(k)
s Dllze@-r.oy < 75 lullz@xa-zaez) (2.37b)
<C - . 2.37
Hay‘ L2Rx(-1,141)) [l 22 (' 1-2,42)) ( c)

Proof. The arguments we apply here are similar to those used in the proof of Lemma 5.2
n [5]. Let x be given by (2.6). Then, set

|z|
@ =x(), nley) == xel = Ly~ 1)
Let [ > 2. Multiplying (2.5a) by 22*x2n?u, which vanishes near 9R? , and integrating over
R? yields

2

2 2

L *1% k o k 2

H(V —i[5 —s"iy) (@ XTW)‘ . HW Xri n)‘ pezy Lo )LQ(R%- (2.38)
We now use [15, Theorem 4] with
72

A:(O,E—s*), B=curlA =1z
to get, for any ¢ € Hg(R%,C),
x? s 2
/ (V =il 5'1i,)9| dudy > ‘/ 2[6[? dedy| (2.39)
®} 2 R

We first choose in (2.39)
¢ = & (2)z o,
where £, is a Heavyside function, i.e.

w)—{o vl

1 z>0
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to obtain
2’ ¥13 ),k 2 k 2
‘(V — 1[5 — s*)iy)z Xmu‘ dxdy > x|z x,nu|* dedy .
R2 N{z>0} R3 N{z>0}
We next substitute into (2.39) a different choice of ¢
¢ - _g— (m)karU%
where £ (z) =1 — &, (), to obtain
2 R 2
/ ‘(V — z[% — s*}iy)xkxmu‘ dxdy > / || |2* xnu|? dedy .
R2 N{z<0} R2 N{z<0}

Summarizing the above pair of inequalities together yields
x? . 2
/ (V — z[— — s*]iy)xernu‘ dxdy > / Faas
Ri 2 2

RJr
Substituting the above inequality into (2.38) leads to

Xenul? dady .

2
Hl’kﬂmun’ S/ |z nul? dedy
L2(R><(lfl,l+1)) RZ
) 2
<||luv (x, + Ej|luzty, <07faHk )
H“ (vt sy 0| X ey S OB iy

where C(k,r) is uniformly bounded for r > 2. Taking the limit » — oo we obtain (2.37a)
by invoking inductive arguments.
To prove (2.37b) we let r — +o0 in (2.38) to obtain
2

H (0, — z[x— — s*])(xknu)‘ i

2

< H (V — z[% — s*}iy)(xknu)‘

2

2 L2(R2 L2(R%)
2 2
—||uv (¥ B < Cy(k H k .
Hu (ar; 77) L?(R2)+ L2(R%) 2( ) we L2(Rx (1-2,l+2))
Hence

d(nu) |2 P 2 x? 2

k * k * k

|5 ey <21 @ = il = D m0ley, + 2] 15 = 71w,

2 2

S2Cg(k‘)HUZL‘k‘ + ZH [%2 — s*] (z*nu)

L2(Rx (1—2,1+2)) L2(Rx(1-2,1+2))

Then, by (2.37a) it follows that

O(nu) |2
' < Cy(k)|[ull 2.40
Hx Ay ‘LQ(Ri) < Cs( )HUHLQ(RX(Z—2,I+2))7 ( )
where C3(k) = 2[C2(k) + 2][C (k) + C(k + 2)] . Hence,
C%(k> 2
= : 2.41
Hay L2(R\[-L,L]x(I-1,4+1)) — L2k ullZ2mx—2,442)) (2.41)

Let y; € [l — 1,1+ 1] satisfy

. _ = i . _ ) 2.42
[ ( ,?/1)||L2(R\[ L,L)) ye[glgll—f—l] [Ju( ,y)HL2(R\[ L,L)) ( )
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Clearly, there exists Cy, such that for any L > 2,1 > 2, and y € [ — 1,1 + 1] we have

- dr < C H ‘ . 2.43
/{ac|>L}‘ u(e,y) — (e, ) de < Gy Ay 1 L2(®\[- L] x (1-1,1+1)) (2:43)
Furthermore, by (2.37a)
C(k)
Ju( y) | 2@y < lulle@y o) < 5 lullizmx -2 - (2.44)
L

Combining (2.42), (2.43), and (2.44) yields (2.37b).
The proof of (2.37c) easily follows from (2.40) with & = 0, by letting L — oco. 1

We can now prove the decay estimate of ‘?)—Z’. Recall that we have omitted the subscript
oo in (2.35a) and thus
w(z,y) = v(z,y) + b(y)¢"(z) .
Lemma 2.7. There ezists ly > 0 and for any k > 1 a constant C(k) such that, for every
[ > 1y and L > 2, we have

k)L*
H < GBI (2.45)
8y L2((=L,L) x (kl+2,400)) [k
Proof. Step 1. Let [ > 8, and let K denote the integer part of [/8. Clearly,

K-1

/ (6@ PIF W + lo(e. )] drdy
0 JRX(1/2+44k,1/2+4(k+1))

3/ [!¢*(x)!2\b’(y)|2 + !v(a:,y)]Q] dady .
Rx(1/2,0)

Then, applying (2.35) to b and v in order to estimate the right hand side of the above
inequality, yields the existence of C; such that, for any [,

[16° @) PIV @) + o, ) dedy < Ci lgllzqea)

K min /
0sk<K—1 JRy(1/244k,1/2+4(k+1))

Consequently, for any [, there exists yo € (1/2,1) such that

* CI C’2
/ 16" @) P @) + o, )] dedy < Hlglliees) < gl (2:46)
X (yo—1,90+3)

with Cy = 8C}.
Step 2. Next we set
w(z,y) = w(z,y) — b(yo)d*(z) . (2.47)
Clearly, u; must satisfy
(Ao — Eg)ur = 0 in R x (yo, +00),
ui(x,y0) = w(x,y0) — b(yo)ep* in R.
In order to facilitate the application of the estimates (2.35) we decompose w even further

by writing
uy(z,y) = wi(z,y) + x(y — yo)[w(z,y) — b(yo) o™ ()], (2.48)



LARGE CONDUCTIVITY LIMIT 19

to obtain
(Ao — E5)wr = g1 in R x (yo, +00),
{w1 (x,y0) =0 in R, (249)
where
g (z,y) I[ —X"(y — o) + 2ix'(y — o) (% - 8*)] (w(z,y) — b(yo)d" (x))
-2y - w20,

and y is the cut-off function defined in (2.6).
We now estimate ||¢; ||L2(Rz+). Note that x'(y — yo) and x”(y — yo) are supported in the
interval [yo + 1,yo + 2|. Hence
H91”L2(R3_) = llg1ll 2@ (yo,w0-+2))-

Clearly, by (2.46), there exist C3 and Cy, such that, for any [,

I *7]|2 *
X" (y = yo)[w — b(yo)¢*] ®2) S Callw = b(y0) 0" |1 22 (& (yo.w012))

Cy

We apply the estimates in Lemma 2.6 to u;. Then using the exponential decay of ¢*,
as r — 0o, we have that

Xy = 90)(5 = ) (w = b(yo)s")

2

(B2)
2

<Cs[(5 = 5)(w = b))

2

L2(Rx (yo+1,90+2))
2

e [ < Callu |} <&
N2 @ ortgorzy = 0L EX o Luo) = Ty
Finally, again applying Lemma 2.6 to u; we have
ow ||2 p 0 2
v — o o) — bl
HX y— y°>ay o Hx(y yo)ay[w(x y) — b(yo)o" ()] L2 (0t Lo 2)

2

<G| 55 w(e.9) = bun)e o)

L2(Rx (yo+1,90+2))

(9u1 C
=C H <G <22
5 LQ(RX(y0+1 y0+2)) 8||u1 ||L2 RX(yofl’y0+3)) -~ l
Consequently,
Cho

For the function w; defined in (2.48) which is a solution of (2.49) with g = g, we apply
the estimate (2.35d) to w; and use (2.50) to obtain the existence of Cy; such that, for any
L,

Fa <

L2((—L,L)x (yo,+00)) [

(2.51)
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Finally by (2.47) and (2.48) we obtain that for y >

w(z,y) = b(yo)¢"(x) + x(y — yo)lw(z, y) — b(yo)™ (x)] + wi(z,y) .
Hence, for all y > [ + 2 we have
ow  Ow
%~
which, with the aid of (2.51), completes the proof of the lemma for k£ = 1.

The proof of (2.45) for all £ > 1 can be easily obtained by invoking inductive argu-
ments. 1

Proof of Theorem 2.1.

Let u be the solution of (2.5a,b) obtained via (2.7) from a solution w of (2.8) which
satisfies (2.45). Recall that to complete the proof we need to show that there exists a
unique o € C such that u — a¢* € L*(R2, C) and obeys the condition (2.5¢).

Step 1. We first show that |lw(-,y)||12(r) is convergent in L*(—L, L) for every finite L
as y — +o0o. Let then z > kl 4 2 for some k € N, and let M denote the integer part of

z—kl —2. Set
z—kl—2

M+1
For z > kl + 3, we clearly have, 1/2 < ¢ < 1. Using (2.45) with [ =

sz 40) ~wt M= [ | [ o]

5:

dx

5C(k)L* v, 2 0Lt 8C"(k)L*
—— =[C(k)k <
H@y‘L?( (—L,L)x(2,2468)) (%)k [C( ) <Z—2) ] k= k )
where C’(k) depends only on k. Consequently,
lw(; 2) —w(, kl 4+ 2)|[2(-,p)
M
< lw(, kL4 24 (n+1)8) — w(-, kL + 2 + nd) | r2—1.1) 252
n=0 .

sai( VOCIRL®  _ Ci(k)L?

— (kI +2+nd)k/2 = k2

It follows from (2.52) that w(-,y) is convergent in L*(—L, L) as y — oo. Denote its limit
by W(z). By (2.52) there exists, for all m > 1, a constant Cy(m) such that

CQ (m) L2
ym

IN

lw(y) = WOllez-ro (2.53)

To obtain W we make use of (2.35a). Set

{a(y) = b(y) + (v,9"),
V(l‘, y) - U(l‘, y) - <U('7y)7 ¢*('>>L2(—L,L)¢*(x)'
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Decompose then W in the form
W=a¢p*"+W,,
where
a= (W, ¢*>L2(—L,L) .
Clearly,
IV y) = Wol)llz-rp

=[[[w(,y) = W) = (wly) =W(), 0" ()" Ol r2(-r.1)

<) = WO 2y < S
Since V' € L*(R3, C), there exists a sequence {yx }ren such that

IV y)lle2-r) =0 ask — +o0.
Consequently, we have W, = 0. Thus,
W = agd*. (2.54)

Step 2. To complete the proof of (2.5¢) we need to prove the convergence of w(-, y)—W(-)
in L?(R,C) and its L? norm decays as y — +oo. Since w — W is a bounded solution
of (2.5a), we apply Lemma 2.6 to © = w — W and find that for any k& > 1 there exist
constants C'(k) > 0 and L(k) such that, for L > L(k),

C(k)
lo(y) = WOllz@\ - <757 1w = Wiz royx-24+2) <

Co(m)C (k) L?
(2.55)
Combining (2.53) and (2.55) with L = y and with k£ = 2 we have, for sufficiently large y
that
Cs(m)
ym
This proves the convergence of w(-,y) — W (-) to 0 in L*(R,C) as y — ~+oc.

lw(-y) =WEllze <

Step 3. We now prove uniqueness of the solutions of (2.5). Suppose that there exists
some 4 satisfying (2.5a,b), but it tends to S¢* in (2.5¢) for some f € C. Then U =u —1
satisfies (2.5) with f = 0 in (2.5b) and v = a — 8 instead of « in (2.5¢). Let

w:{,%w—ws*) if 7 #0,

U ify=0.
Then, ¢ € H*™*8(R3, C) and satisfies
(Ag— E)yY =0 inR%, (2.56a)
Y = |y|o* on OR? . (2.56b)

Let further

Y(-y) ify<o0.
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Clearly, ¢ € H'm28(R2 C). Denote then
Va=V-— i(% — )i, |
and
Xr(y) = x(%),
where x is defined in (2.6). Evidently,
IXRD (172 2y = 20X 22
and
IV A Ocrt) 7202 = 2||VA(XR1/J)||%2(R3)
ZQUWA(XRU)H%?(Rg + ||7VA(XR¢*)||2L2(R1 ] —4Re(Va(xrU),"Va(Xr$")) 22)

We now compute the various terms on the right hand side of the above equality. Since
U satisfies (2.5a,b) with U = 0 on R%, we integrate by parts to obtain

IVaARU) 22y = IUVXRI 22 + EolIXRU I 282 -

From the definition of ¢* and the orthogonality of ¢* and (%2 —s%)¢* in L*(R, C) we learn
that

1946 ey = 16"V xalagee, + Eillxrd 2aces,

and that
Re (Va(XrU), Va(Xr$")) 2@2)
2
=EgRe (xrU, Xr") 22 ) — Re (XrU, [XR — 2i(5 —s IXRIO) L2 w2y -
Since
"ok < C’4
}Re (XrU, Xr® >L2(R§r)’ =R
and since
. ZEQ * / *
|Re (xrU, 21(? — 8" )XR® >L2(R3_)|
72 72

S‘Re <XR¢*72i( 9 s )XR®") 12 IRQ)} + WHRQ XRY, 2Z( 5*>X}%¢*>L2(R1)‘
<C;R7'?,
it then follows the existence of Cg, such that, for R > 2,
1940t sy — EallxadlZageey
From the above estimate, we easily obtain that
IV (W) 2y — Bs 9l 722y = 0.

In Fourier space the above identity yields

/ (Bo(s) — B2 deds < 0,
RZ

< CgR7Y2.
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therefore 1) = 0, and hence ¢ = 0.

In the case where v = 0 it follows that U = 0. If v # 0 then since ¥ = 0, it follows
that U = v¢*. However, since U = 0 on JR? we must have 7 = 0, hence a contradiction.
Thus, the uniqueness of solutions of (2.5) is proved.

Step 4. Finally, from (2.36) we get, for all [ > 0 and 8 € C, that w — ¢* € L*(S;,C).
By (2.7) we thus have that u — a¢* € L*(S;,C). Hence, in view of (2.5¢), it is readily
verified u — ag* € L*(R%,C) . n

Remark 2.8. Let (u,«) be as in (2.5). Then,
u—ag* € H'™E(R2,C). (2.57)
Proof. Let Py = (z9,y0) and set w0 = (u — a¢*). Then,
1 .\2
D20 + (Dy - 5:)52) W=0. (2.58)

Multiplying (2.58) by x2(]z — Py|)w, where the cutoff function y is defined by (2.6), we
obtain via integration by parts, the fact that w € L*(R%,C), and (2.5¢), that for every
k > 1 there exists C, > 0 such that, for any F,

C

H( ) xzy> B(Po,1),C) — y’g’

where B(Fp, 1) denotes the disk with center PO and radius 1. Hence
H s

< Zk (2.59)
H1.mag(B(Py,1),C) yO

Similarly (2.37b), (2.58) and the fact that ¢* € S(R) permit us to obtain the existence,

for every k > 1, of some D, > 0, such that, for any Fy,

Dy,

) 2.60
H Hlmag(B(Py,1),C) |x0|k ( )
Combining (2.60) and (2.59) yields
2 Ciy Dy,
o - | 2.61
H“ g Himes(B(Po,1),C) — yk|wolk 200

Now, we take k large, and cover R? with countably many balls {B(P;;, 1)}, where P;; =
(x;,y;) and both x; and y; are non-zero, and such that on each ball we have (2.61) with
Py = P,;. Taking sum in 7, j we find that

Here We have chosen the integer k and the sequence of points (x;,y;) such that the series
S mr and > e m |k converge. Consequently, we obtain (2.57). 1

zl\x

2
i Cr.Dy, E
= k
H1mag(R2) \xll y]
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3. CONSTRUCTION OF THE QUASIMODE

We now return to the analysis of the spectrum of the operator A7 as ¢ — 0. In the
following we write Al as
Az_ = .Ao + Z’cy s
where Ay is the operator defined in (2.4). Since the resolvent of Al is compact, we need
only consider the existence of an eigenpair (A, v), v # 0, which solves the equation

Afv =)o, (3.1)

with v € D(AT). An obvious lower bound for Re {o(AF)} is Ef (see (1.15) and (1.16)).
This follows easily from the fact that

Re (u, AT u) = Re (u, Agu) .

Formal perturbation theory (keeping in mind that for ¢ = 0 the spectrum is continuous)
suggests that the leftmost eigenvalue, in C, of A} tends to Ej as ¢ — 0. Based on
this natural guess, we look for a formal asymptotic expansion of this eigenvalue in frac-
tional powers of ¢, with Ej as its leading order term and a corresponding approximate
eigenfunction or quasimode. Set then

c=é. (3.2)
We construct the quasimode separately in two different zones. In the outer zone we have
y~! = O(e) , whereas inside the inner zone is y = O(1). Naturally, we expect the two

asymptotic expansions to match through an intermediate domain (or the overlap domain
as it is often called [14]). Thus, for every term (or order) in the expansion, we present
first the outer expansion which is then followed by the corresponding inner expansion.

Outer expansion: O(1) balance.
We first apply the gauge transformation

v — vexp(—is'y)

where s* is introduced in (2.1), and rewrite the equation (3.1) as
z? x? 2
—dv — Ov + 22(5 — s*)ayv + (7 — s*> v+ ity = M.
Then, we adopt the outer zone scaling

n=ey (3.3)
and write (3.1) in the form
0% 2 \?2 [0 st N\ Ov
—@—F(?—S)v—/\v—e[a—nz—mv}—me(?—s)a—n. (3.4)

Presuming the formal expansion

v =1y + €vy + vy + O(e3),
A= )\0 + 6)\1 + €2>\2 + 0(63) s

we obtain the leading order balance

(Mg — Ag)vg =0,
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where, for s € R, M, is defined (see (1.14)) by

It readily follows from the equality

Mo(z,8") = Ejdo(x, s™), (3.6)
(see (2.2) and (2.3)) that we can look for a pair (vg, Ag) in the form
vo(, 1) = ¢olw, 8" )tho(n), Ao = Ey - (3.7)

Inner expansion: O(1) balance.
In the inner zone we keep the original coordinates (z,y). We denote the inner solution
by u, and assume for it the analogous of (3.5) with v; replaced by u;

u = up + eup + uy + O(e%) . (3.8)
Write (3.1) in the form
Ao — Mu = —ie® yu.
Using the above-obtained \g = Ej, we obtain the leading order balance
(Ao — Ef)ug =0 in Ri ,
up =0 on JR? , (3.9)
ug ~ o(0)p*(x) asl<y.

The last condition is obtained by matching ug with vy in the overlap zone. Here we recall
from (2.3), that ¢*(x) = ¢y(z, s*) . Obviously, for n < 1,

vo ~ Po(0)9" .
Hence, the leading order terms would match for
1

From the uniqueness part of Theorem 2.1 (namely if (u,«) is a solution of (2.5) with
u =0 on JR? , then (u,a) = (0,0)), it follows that
up=0 and Y(0)=0. (3.10)

Outer expansion: O(e) balance.
The outer O(e) balance takes the form

2 ov
o — A =\ — 2 m_ st =2
(M 0)U1 =A10g 2( 5 % ) 8277 (3.11)
=" (@)o(n) = 2i( G — 5" (@)

Here we have used (3.7). We now multiply the above by ¢*(z), integrate over z, then
integrate by parts, and use (3.7) to obtain, for any n > 0,

Ao (1) — 2it(n) /

R

2

(5 —)l0"@)dz=0. (3.12)
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It is well known (see [10]) that the integral on the left-hand-side of (3.12) vanishes and
hence we must have A\; = 0. Moreover, we obtain by differentiating the equality (2.2)
with respect to s, letting s = s* and using the fact that E{(s*) =0,

2

x
(Mor — )6, =25 — 56", (313)
where
ain_ Odo,
61(r) = S0z, 7). (3.14)
We thus obtain that the general solution of (3.11) in L*(R) is given by
vi(z,n) = =iy (n)di(x) + i (n)o7 () , (3.15)

where 11 (n) is any function of 1, to be determined later. Notice that, unlike vy, v; cannot
satisfy the boundary condition at y = 0 unless ¥{(0) = 0. From the next order balance we
derive, however, that this would mean that ¢y = 0 for all positive n, turning the leading
order balance into the trivial solution. To avoid the failure of our asymptotic scheme it
is therefore essential that a proper inner expansion is introduced at this order.

Inner expansion: O(e) balance.
For the inner expansion we obtain at the O(e) order the problem

(Ao — E3)uy =0 in R? | (3.16a)
up =0 on OR? (3.16b)
ur ~ P1(0)¢"(x) + 1o (0)[ye™ (x) —idi(z)] asy>1. (3.16¢)

The last condition is obtained by matching the inner expansion, through the overlap zone,
with the outer expansion. In fact, since for n of order ¢, the outer solution admits, using
(3.7) and (3.15), the expansion

0
vz, ) + €va () =vp(,0) + 15 1, 0) + €01 (2, 0) + O(?)

=€ [5(0) (y¢" (2) — id () + 11 (0)¢" ()] + O(€7) ,

we readily obtain (3.16¢).
It is easily verified that

(z,y) = yo'(x) — ig3(x)
is a solution of (3.16a). (More generally it is the consequence of the commutation of the
operators (y + Dy) and D? + (& — s — D)%) We thus define

wi(z,y) = u(z,y) — Y(0)[ye"(x) — idi(x)], (3.17)

to obtain the following problem for w;
(Ag— Ej)w; =0 in R% | (3.18a)
wy = i)(0)¢(z) on ORZ, (3.18b)

wy ~ P1(0)¢"(x) asy — +oo. (3.18c¢)
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It is easy to show that ¢f € S(R,C) and hence we can use Theorem 2.1 to deduce the
existence of some o € C, such that if

P1(0) = ia11(0), (3.19)
then there exists w, € H?

2 (RZ,C) satisfying (3.18).
Once (wy, aq) is obtained, then we have determined u; (by (3.17)) and a relation be-
tween 11(0) and ¢;(0) (by (3.19)). We emphasize that «; is independent of {(0).

Outer expansion: O(€%) balance.
The next order outer balance is given by

2 o a2
(Ms* — )\0)’(}2 = )\27}0 — 22(% — S*) ainl —+ 87;}20 — ’iT]'UO (3 20)
72 72 ’
= | O = imo(m) — 2i( 5 =5 )i () + v ()| 6" (0) — 2( 5 — ) wi(m)e.

In deriving the second line in (3.20) we used (3.7) and (3.15). Multiplying it by ¢*(x),
integrating over x and then integrating by parts we obtain, after some manipulation, the
solvability condition

1)+ (a — im)ebo(n) — 200, () /

R

2

(5 - )¢ @) da

2

=24 [ (5 - )0 @i dr.

The integral on the left-hand-side is zero (see (3.12) above). To obtain the integral on
the right-hand-side one needs to differentiate

El(s) = — /(%2 — 8)do(x, 5)%dx (3.21)

and set s = s*:

2 /R <$—2 - 8*>¢*($)¢:([B> dr = —lEg(s*) +1.

2 2
Let )
b= 5 6’(8*) ) (3.22)
and recall from [12] that § is positive. Then, we have
o " . _
Bubg(n) + (in — A2)vo(n) =0, n>0, (3.23)
p(0) =0.
Applying the transformation
m ="
to (3.23), we obtain (cf. [3])
)\2 = 51/3(—011)6”/3 s (324)

and the corresponding eigenfunction is given by

Yo(n) = Co Ai(ﬁl/?’e”/ﬁn +ay), (3.25)
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where a; € R_ is the rightmost zero of Airy’s function. The constant Cy > 0 is determined
by requiring ||[¢o| 2,y = 1. Once Cj is obtained, we can evaluate v(0) which, in turn,
determines v (0) (via (3.19)) and w; .

Next, we look for the general solution in L*(R) of (3.20). Let

82
Si() = T2z, ).

We have the identity
2

(M = M), = 4( 5 = ")t =21 = B)o" (3.26)

which is obtained by differentiating (2.2) twice with respect to s and then letting s = s*.
Using (3.7), (3.15), (3.23) and (3.26), we can show that the general solution of (3.20) is
given by

e, m) = — 0% (@) () — 163 ()0 (n) + )6 (x) (327

where 15 is any function (1o = 0 is, therefore, a legitimate choice for our approximate
solution). In fact since 1 satisfies (3.23), we can write (3.20) as

2 2

x x

(M = XoJvs = [ = 2i( 5 = " )u () + (1 = B ()] ¢ (2) — 2( 5 — " )i (m)s
Write

va = 2 — SO () — i3 ()4 ).

Using (3.13) and (3.26) we reduce (3.20) to
(Mg — Xg)z2 = 0.
Hence zo = 19(n)¢*(x), which validates (3.27).
Inner expansion: O(€?) balance.
From the outer expansion we obtain the following problem for us
(Ag — Ej)uz = Aaug , in R?, (3.28a)
uy =0, on OR%,  (3.28Db)

wy e () [570° — 96T — J05] + O i+ (0067, asy> 1. (3280)

Again, the last condition (3.28c¢) is obtained by matching the inner expansion, through
the overlap zone, with the outer expansion. In fact, since for n ~ O(e), the outer solution
admits, using (3.7), (3.10), (3.15) and (3.27), the expansion
Eul(xa y) + €2U2(l’, y) + 0(63) = UO('T7 77) + EUl([E, 77) + EQU?(J;’ 77) + O(€3>
Ovoy n? 0%vy
=vo(,0) + 778_77<$’ 0) + 2 o
=e[15(0) (yo* (2) — ii(2)) + ¢1(0)¢" (x)]

yQ

(x,0) + €[vy(z,0) + 7788—12(1’, 0)] + 2va(z,0) + O(€*)

+ @ {U(O)[L6° (@) — b () — 561 0)] + U 0)y6* (1)) — i63(0)] + a(0)6"(2) } + O().
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By matching the terms of order €* we readily obtain (3.28c).

It is easy to show (see the previous footnote) that the function

(r,9) > L0°(2) — (@) — 56, (2)

solves (3.28a). Thus, as we did for the O(¢) inner balance, we set

w(,) = e, ) — U4(0) [ 376" () — iy @) — 56%,(0)] — 4 (O)[uo" (2) — i85 (2],

and substitute it into (3.28) to obtain

(Ao — Eg)wy =0 in R, (3.29a)
1

wa = ) (0)d; + 5%’@)@1 on OR?, (3.29b)

wa ~ 1P2(0)¢" as y — +00. (3.29¢)

We now observe that by (3.23) 1 (0) = 0. Hence we can rely on Theorem 2.1 to show
that if

12(0) = i1 (0) (3.30)
then there exists wq satisfying (3.29).

A uniformly valid quasimode.

One can continue the above process to obtain higher order terms up to the desired
accuracy. Once we have obtained the outer and the inner expansions we can combine
them into a quasimode which would approximate the eigenfunctions in both the inner
and the outer zones. Denote this uniform approximation by U.. The standard manner,
by which the uniform quasimode is constructed (see [14, 20]) is by setting

Ue(z,y) = u(z,y) +v(z, ey) — u(+00),

where u(+00) stands for the asymptotic behaviour of u as y — 400 (it can be exchanged
for the asymptotic behaviour of v near n = 0). For instance, at the O(¢) balance u(+o00)
is given by (3.16¢). Thus,

Uc(z,y) =to(n)d* () + €{ —idig(n) + [1(n) — ¥1(0)]¢*(x) + wi(z,y) }

[ = SOl — i) + [an) — a0 () + wn(a, )]
(3.31)
with 7 = ey.
It can be readily verified that
Ue(z,0) =0.
We now show that, for a suitably chosen 5, U, is also an approximate solution for the
equation
(Ao — Ej — EX)U =0, (3.32)
with € = ¢3 and an error of size o(e2). More precisely, we choose in (3.31) ¥, = 0, and
accordingly, by (3.30) and (3.29), we can impose

¥1(0) =0, (3.33)
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and get from the uniqueness part in Theorem 2.1 that ws = 0. Then we have

Uc(, ) =Uo(n) (2) + e{ = i0104(n) + [ () — 61 (0))6" (2) + w(,)}
SO ) — i (@) (n)].

For this choice of U, we have:

Proposition 3.1. Let U, be given by (3.34) where 1), is given by (3.25), ¢¥1 € S(R,C)
satisfies (3.19) with 1} (0) = 0, and wy satisfies (3.18). Let further,

A=E: 4+, (3.35)

e [ B (3.34)

where A is given by (3.24), and let
f= (A7 =AU, (3.36)

with ¢ = €3.

Then we have the following conclusions.
(i) U. € D(AY), the domain of the operator A} .
(ii) For any p, k, n € N, there exists C = C(p, k,n) > 0 such that,

"

[t

]2 < C(p,k,n) & |U.lls. (3.37)

Proof. Step 1. We first prove (ii). We have
f=(Aoc — MU
=(iye" + Xoe®) [wi (2, y) — U1 (0)¢" ()]
] = i3 @) ) + ()6 (@) + dal b @) + (S @] g a9

1,2

—i(5 = ") oL@ () + 262 ()]}

e[ = il (@)er? (n) — et (@)ei ()]
with n = ey. To prove (ii) one has to show that (3.37) holds for each term in (3.38). There
are two types of terms: the first includes those which depend only on the slow coordinate

7, the second includes those which depend on the fast coordinate y. Consider then a term
of the first type

hi(w,y) = €91 ()¢ (x) . (3.39)
Since 1, € S(R, C) and ¢* € S(R,C), it easily follows that
"h "hy |2
Jiapten ot = [ bePriew™ || dody =
RZ

n n 2 * n
/ 25 | ()| / 2| |¢" () dz < Clpp €727 (3.40)
Ry R

All terms of this type can similarly be estimated.
Consider next an example of a term of the second type

ha(w,y) = w2, y) — ¢1(0)¢"(2)]. (3.41)
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In view of (2.8), (2.37), and (2.5¢) we have that

C(k
[ e dsdy < SR wien,
B(Po,1) |zolPys
where Py = (¢, yo) and B(Fp, 1) is the ball with center Py and radius 1. Standard elliptic
estimates, boot-strapping and Sobolev embeddings then show the existence of a constant
C(k,p,n) such that,

k
Clk,p,n) ’p’f]) &, VkeN.
’$0|pyo

Using the above and a countable covering of R% (see for instance the proof of Remark 2.8)
we obtain that

P2 || Em (B(Po1/2)) <

JiapenrSs 2

< O(k,p,n) 3. (3.42)
2
The above, in conjunction with (3.40), yields

et 22], <tk oo

By the choice of Cy in (3.25) we have

1
Uell2 = =75 + O(1). (3.44)
Combining (3.43) and (3.44) we obtain (3.37).

Step 2. We now prove (i). As, by (3.43) we have that ATU. € L*(R3,C), it remains

to show only that U, € Hy™*(R2,C). For product terms, such as ¢(n)¢*(x), this fact

easily follows from the exponential rate of decay of Airy’s functions and its derivatives
(note that v, decays exponentially fast as well). For wy, this fact follows from Remark 2.8.

4. SOME PRELIMINARY ESTIMATES
In the following we list some of the properties of
f=(Ay.—ANU., (4.1)

where A is given by (3.35) and U, by (3.31). In addition we prove some basic properties
of the solution of

NV — o in R2
{(AQC MNu=g inR%, (49)

u=70 on JR? ,

where g € S (}RT?H C). To describe the topology in & (@, C), we use here the increasing
(with respect to k) e-dependent family of norms

g—m@) = Y (el () %051 e (4.3)

p+q+r+s<k
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for k£ € N, where

e=c/3,

We use this definition in the sequel whenever a norm appears in our calculations, except
for the cases where the exact form of the norm should be introduced. In this section we
shall denote the norm || - [[z2@2) by || - [|2, and denote the inner product (-, )22 by

<.7 .>2.
The following equations are needed in the sequel. Let ¢ be any smooth real-valued
function with a compact support in R2. We multiply (4.2) by ¢?u and integrate to get

|7~ )]

:)‘H¢UH2 (¢, ¢u>2,

2

— [|uVe[}3 +2itm ( (V —i5, ) (6u),uVe) +iclly*oul}

(4.4)
Taking the real part of (4.4) we obtain

H( “2“%> ¢“)H = [[uVell3 + (Re N)[|gull3 + Re (¢g, du)s . (4.5)

Lemma 4.1. Let C > 0, ¢g > 0 and k € N. There exists a positive constant C(k) such

that, for any g € S(]RT?H (C), c € (0,¢9) and A € C with Re A < C, such that the solution
u of (4.2) satisfies

Iz ullz < C (&) (llull2 + pr(9)) - (4.6)
Proof. Step 1. For j > 1, let n; € C*°(R, [0, 1]) satisty

0, ift < —1,
ni(t) =141, ifo<t<y, (4.7)
0, if2j<t,

and

()| < % forallt e R.

Denote further by nf the restriction of 7; to Ry. Setting ¢ = [z|™/2n;(z)n;f (y) in (4.4),
with m a non-negative integer we get from the real part

.12? m 2 m m m
| (7= ) Gl 2nsmi || = 0l 2nsm ol -+ Re All 2™ 255wl + Re (2™, g)a
Letting k — +o00 then yields

x2/'\ m m m m
(953, ) el )| = 10 2n) ]+ Re Xllal ™ *nyull3+ Re (oo, g)s . (48)

We now claim that there exists a constant K (m) depending on m such that

el 2| < QU™ )3+ Re Al 2 -+ el ™ ngels ™ s
(4.9)
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which can be proved by using Theorem 4 in [15] (cf. also (2.24) in [4] and (5.16) in [5])
together with a partition of unity. In fact we can find a constant M; such that, for any
¥ € Hy™(R2,C), we have

[, 1BulloPde < M (IVavlf+ 1013) (4.10)
+
where

By = 1[0y, — 1Ak, On, — 1 4],

and [P, Q] denotes the commutator of the operators P and Q. For A = (0, %2) we have
By = x. Hence, from (4.10) we get the existence of My > 0 such that

23 < 0 (]| (9 = 55+ 1ol

Clearly, the above inequality is valid for 1) = |z|™/?

Consequently,

n;u, where m is a non-negative integer.

m .x2¢ m 2 m
el %, < o ([0 =580 el 2050+ el 2, )

From the above, in conjunction with (4.8), we get (4.9).

Step 2. Based on (4.9) we prove (4.6) invoking inductive arguments. We first consider
the case m = 0. By (4.9) we have

2 1
(12w, < 2 <lhul + Re Mgl + el gl
Taking limit as j — +oo we obtain
2
1= @)l 2u]| < Mg (ullg + ullz lgll) (4.1)

where M3 = K(0)max{|A|,1}, and 1g, (x) is the characteristic function of the set R..
Since u(—z,y) is a solution of (4.2), we apply (4.11) to u(—z,y) and then change the
variables (z,y) — (—x,y) to get

2
|t @)l 2u]| < Mg (Jullf + ullz llgll)
from which we easily obtain the existence of 'y such that,

(a2 < € (lull + liglz) -

Suppose now, by induction, that there exists C) such that,
e 2ull3 < Cilllull + prja(9)lull2) (4.12)

for all 1 <1 < m, where [-] denotes the integer part of the term in brackets. By (4.9) and
(4.12) we get a constant C,, 1 such that, for all j and g,

2
(2l 250 < G (0l + promsny/2(9) ullz) -
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Taking limit as j — oo and using again the fact that u(—z,y) is a solution of (4.2), we
obtain
| (m+1) /2

| < Gt (1l + i @)

Thus, by induction, (4.12) follows for all [ > 1. In particular, if we set [ = 2k in (4.12),
then (4.6) easily follows with C(k) = Ca. &

=t

Lemma 4.2. Let C > 0, ¢cg > 0 and n € N. There exists C(n) such that, for any
g€ S(Ri,@), A€ C with || < C and 0 < ¢ < ¢, the solution u of (4.2) satisfies

’ J"u
oy ll2

Proof. Step 1. Taking the limit as j — 400 in (4.8), we obtain by (4.6) that, for any m,
there exists a constant K (m) such that:

< C(n)(llull2 + p2alg))- (4.13)

[(% =3, Qa2 < K2 m) (s + sy (@) lle)

Using the above together with Cauchy’s inequality we obtain, for any m, the existence of
a constant Ky(m) such that:

I(al™2w)all2 + ™y |2 < Ka(m) ([al™> 2ullz + lullz + piomsn2(9))

and hence, taking m = 2k in this inequality and using (4.6) we get the existence of a
constant C (k) depending on k such that

lz*uall2 + lla™uy ll2 < Co(k) (lullz + prea(g)) - (4.14)

Step 2. Let ¢ € C§°(R,) be given by

1 ift<l1
t) = ’
o) {0 if 2 <t,

and
0<¢<1, []<2.
Let further
Go(t) = ¢(2).
Clearly, for any /¢,
Co < Gers IGG <21 (4.15)
In the following, for fixed xy and y, we write
Crao () = Cellz = wol), Ceao(y) = Ce(ly = ol)-
Let ¢ = Q 90(W)Ch o () in (4.4) to obtain for the real part

2
H ( - 7’ ) Q yoCk’ zo U ) 9 = Re )‘”Q,yock,xoqu + ||V(Cf7y0§k,xo)u”% +Re <Cﬁ,y0Ck,roua ng>2 :
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Letting k — 400 yields

2
[(7 = 54,) ]| =R Ml + Gyl + Re (oot i)
<K3(0) (1610003 + ICeangllolCeantls)

where K3(¢) depends only on ¢. Here we have used (4.15). From the imaginary part of
(4.4) we obtain, after the limit £ — oo is taken, that

(4.16)

0
eIy Coyoulls =Im A|[Coyoull3 + Im (Coyott, Ciyog)2 + 2Im <(8_y — i )(Ce yoth)s Cfyoth),

<1 G 015 + 10t + 2] (T = 758,) (G| Iyl
(4.17)
With the aid of (4.15) and (4.16) we thus obtain, for any ¢ the existence of Cy(¢) > 1
such that,

M2y 2 youllz < Co(0) (11, m0ttll2 + 11Cem1,409]l2) - (4.18)

Step 3. We now establish the H? estimates of u. Using (4.2) we obtain that

.774

—Au:—[Z—A]u—im2uy+)\u—icyu—l—g, inRi,

u=0 on@Ri.

(4.19)

For any xo = (20, o) with o € R and yo > 0 and ¢ € N, we let

<Z1"E01y0 (xv y) = @@0 <I> Q,yo (y)X-l-(y) )

where x. (y) is the characteristic function of the positive y-axis. Applying the standard
elliptic L? estimates to (4.19) and taking £ = 4, we can show that, for some constant Ky,

||u||H2(B(X0,2_4)) < K4 {H(%él + 1>C4,:Bo,youH2 + Hx2g4,960,y0uy|’2 + C|’yc4,wo7you||2 + ||C4,$07y0(g‘|2})‘
4.20

Then we use a sequence of intervals A; = (x; — 27, 2, +275), i € Z, to cover the r-axis,
and a sequence of intervals B; = (y; —27°,y; +27°), j € N, to cover the positive y axis.

We can choose {x;} such that
S
e L lf? |

We set zp = z; and yp = y; in (4.20) and take sum in ¢ and j to get the existence of Kj
such that:

|2 + (|27 Caz, uy |2

lullezy <Ks | D (oG
i€EZ

(4.21)
+e > Gyl + (lull> + llg]l2)

JEN
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Step 3.1. We now claim that, for any integer £ > 1, there exists a constant C3(k) such
that for any ¢ it holds that

Cs(k)
2 3

|2 + |27 Caauyll2 < P
In the following we denote the constant C'(k) in (4.6) by Cy(k). It is easy to show

that (4.22) is valid with C3(k) > 21(1 + 2*) for all i such that |z;| < 2. We now assume
|z;] > 2. For any k > 1 we use (4.6) to obtain

Colk +4)([lulls + prra(9)) = llz"Hullo = [l2" ¢y 0pu
Lt [zi\F) 4 L+ |il"
>(—5 ) el = —50
Here we have used the fact that, on the support of (4, we have |z — x;| < 273 yielding
that |z| > |z;| — 272 > (|a;| +1)/2. Hence

124 Ca 0 (lullz + prralg)), VE>1. (4.22)

|2

”$4n4,$iu ‘2‘

lo >

28Co(k + 4)
4 0
[Ea TR PR W(HUW + Pr+a(9)) - (4.23)
Similarly, we obtain that
2kCy (k + 2
el < S ull + pss(0), (120

where C(k + 2) is the constant appearing in (4.14). Combining (4.23) and (4.24) yields
(4.22)

Step 3.2. Next, we claim that there exists Cy > 0 such that, for any j such that y; > 2,

¢ [[yCagyullz < Ca ([1Cy;ull2 + p1(Cayy9)) - (4.25)

To prove (4.25), we first note that for £ > 2, if (s, (y) # 0 then |y —y;| < 27, and
hence y;/2 <y < 2y;. Using (4.18) we obtain

y.
) P gy ullz < clly'*Cugyullz < Co(4) (s, ull2 + 1G5, 9112) -

2
Therefore,
21/2Cy(4)
[Guaslls < =22 (IGoayulla + IGsnglls) -
cliy;
For the same reason we have
217204 (3)
IGsall < =2 Gl + G )

J

Using the above two inequalities we have just proved, and noting that Cy(n) > 1, we
obtain that

Ks
Iauyulls < {1, ulls + 1ol + llends, gl |-
J

Since g € S (]RTzL7 (C), it easily follows the existence of a constant C4 such that, for any 7,
g and ¢ > 0,

cllyCay,ulle < 2¢lly;iCay,ulle < Ca(llGoy,ullz + p1(Cay,9)) -
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and this completes the proof of (4.25).
For later reference, we repeat the above procedure twice more to obtain, for some
constant Cs,

Ay Cagyullz < Cs([1Co, ullz + p2(Coy,9)) - (4.26)

Step 3.3. We now combine (4.21), (4.22) and (4.25) to obtain, for any k > 2,

el e ez <K5Z

Ullo +
P (el + psa(9)

+ K5(Cy+ 1) Z (ICa;ulla + p1(Cay;9)) + EKs(llull2 + llgll)-
jeN
Setting £ = 2 in the above inequality yields the existence of Cy such that:
lull 22y < Co (lullz + ps(9)) - (4.27)

Hence, (4.13) holds for n = 2.

Step 4. To bound the H3 norm of u we need to bound the H! norm the right-hand-side
of (4.19), which is bounded by

1AUll 1 a2 o) Sla*ugyllz + 2%y llz + (2% + Duallz + 4]l (2% + Dy [l + 21/ (2 + Dull2

+cll(y + Dullz + cllyus |2 + cllyuy|2
(4.28)
Once we manage to obtain a bound for the right-hand-side of the above inequality, we
can use the standard regularity theory for the Dirichlet Laplacian on the half-space.

Step 4.1. We first compute the terms ||2%uy,||2 + ||2%ugy|l2 in (4.28). Let D?u denote
the Hessian matrix of u. Using (4.20) we have, for any o € R and 3y > 0
(25 + DID*ull r2(5(xo.2-1))
SCg(ZES + 1){”(1}4 + 1)<4,930,y0u||2 + ”1:2C4,m0,youy||2 + C”y(4,330,y0u||2 + ||C4,$0,yog”2} )
which can be written as
12 + 1) D*ull r2(Bexo,2-1)) SE7{II(=° + 1)Cawogotellz + (2" + 1) Camo oty 12
+2[(25 4+ 1)" + Y I Camomoullz + [1(2” + 1) oo ll2} -

As in Step 3 we cover the z-axis by the intervals {4;} and cover the positive y-axis by
the intervals {B;}. Then, we let zp = x; and yo = y; in the above inequality, and then
sum in ¢ and j to obtain

(2 + 1)D2ully <Ks| 3 {10 + Dumulls + 12" + Daeuylla + 1122 + Dangll
1€Z

+ 3 53 ule]

jeN

(4.29)
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We now estimate the terms in the right side of (4.29). For the first two terms we use

the same argument as in the proof of (4.22). Thus,

Cs(k+2)

12 + Daaullz + (@ + 1) G uyll2 < (NPT (lull2 + prialg)) . VE =1, (4.30)

For the third term we use (4.26) to obtain

Ay Gyl < Cs (IS0, wll2 + P2(Go,9)) - (4.31)

Now we use (4.30) and (4.31) to bound the terms on the right-hand-side of (4.29), and
take k = 2 to obtain the existence of Kg and Ky such that:

(2 + 1) D%ully <K |

1
TW(HUHQ +pa(9))

|2} +>  o,ull2 +p2(g0,y]_g)] (4.32)

jeN

+[(z* + 1)Cuz,9

<Ky (|Jullz + ps(9)) -

Step 4.2. We next estimate the term c||yVulz in (4.28). From (4.25) we know that
yu € L*(R%,C). Hence, via a density argument, we can apply the first equality in (4.5)
is valid with ¢ = y, and

2
(= 28, | = ull + (Re Myl + Re g,y

From this we have

ix? iz?y 2

Aot =20+ ) = )+ (52 =0
2, 2 2
<22 (v = 5 ) [+ 2 2 - 0

<8c*([[ull3 + llygll2) + c*lly*ulls + lla*ul; .
From the above, with the aid of (4.26) and (4.6), we obtain a constant C7 such that:
ElyVullz < Cr ([Jullz + palg)) - (4.33)

Step 4.3. The rest of the terms in (4.28) can be easily estimated. From Lemma 4.1 and
(4.14) we have

1(2* + Da |2 + 41 (2* + Dy [l2 + 2] (2* + Dulla < Cs (full2 + pa(9)),
and from (4.25) we derive

cll(y + Dullz < Co ([[ull2 + palg)) -

Since all the terms on the right-hand-side of (4.28) have been estimated we have
[Aul[ ez ) < Cro (lJull2 + ps(g)) -
Hence standard elliptic estimates applied to (4.19) yield
lull a2y < Cua ([Jull2 + pe(9)) - (4.34)
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Hence (4.13) holds for n = 3. Higher order Sobolev norms can similarly be obtained in a

recursive manner. i

Recall that ¢ = 2. We next define the following cutoff function

yexp (— e (1 —e*™)) if0<y<l1,

Xe(y) = qexp (—e*(1—ety))  ifl<y<e @) (4.35)
1 if e (@) <y
where o and 7y satisfy o > 0,0 <y < 1 and a + v < 1. Furthermore,
exp (— e (1 —e*™)) if 0 <y<1,
Xi(y) = ¢ € exp ( —e*(1—- eo‘ﬂy)) = €7, if 1 <y <e ety
0 if (@) <y

Thus, for sufficiently e,

Xe(y) 20, [xe] < xe+2e7 (4.36)
Hence for every u € L*(R?%, C) we have

Ixcull < €llxeull2 + 27 " [ulls - (4.37)

The proof of the next lemma relies on the following elementary implication:

For (a,b) € Ry x Ry, if X* <a®+bX, then X < 2a* +b*. (4.38)
Lemma 4.3. Let ¢g > 0, M >0, 6 € (0,1/2), a € (0,20] and n € N. There exists a

constant Cy 5 > 0 such that, for any g € S(R%,C), ¢ € (0,¢o), € = /3, and X € C with
A — Ej| < Me, the solution u of (4.2) satisfies

‘ o"u <C [ 1 ‘ o"u 6’ oty 1y 0" ]
Xey@y” g = ave || Xe TP oyn—til2 € Xe Oy" ll2 (4.39)
+ Cuge™ 5 " ([lull2 + p2n(9)) -
Proof. Step 1. Differentiating (4.2) n times yields
o g . L0 tu
(Agc — )\)a—yn = 8_3/” +ine g1 in RY . (4.40)

Multiplying (4.40) by x?(y)0"u/dy™ and integrating by parts yields for the real part

2 o 2 or 2 on 2
(v = igh) (), =Red [z, g
2 oy™/ 2 oy™ ll2 oy ll2
o"u oy oy (4.41)
+Re <X€_7X6(_+in63 >>7
8yn ayn ayn—l
and for the imaginary part
o 2 o 2 on o an—l 2
63Hy1/2><e—7;f =Im>\‘ X |+ <xe—g,x5—‘z> —2n63<x5x2, Tff( >
oy™ ll2 oy™ ll2 oy oy oy (4.42)

o2 ) (). )
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By (4.41), (4.13) and (4.37), we have that, for all 0 < ¢ < ¢y,
0™ |2 J"g |2

|7 -5 () =g 2

+Cre " (JJullz + panl9))”,

an 1
+ dne H
2

Xegt

(4.43)

where (1, like all other constants introduced in the following, depends on M, n, ¢y, o and
7. In particular we have that

|(v- i 55) (5o ), < ol + ). (1.44)

Next, we estimate the terms in the right side of (4.42). Since x. > 0, the third term in
the right side of (4.42) is negative. For the fourth term on the right-hand-side of (4.42),
we use (4.13), (4.44) and(4.37) to obtain

2 ", 1
\21m<<(%-@‘x—) (o) i)

72, J"u J"u o
<9eY . s - - . - —€ 2 ]
<20||(V =5 () |, x5 (lul + p2u(9))
From the above and (4.42) we obtain
12 O"u O"u g
y Xen | Xen X Xe_n
dyn ay oy ll2 (4.45)
2 —e 2 .
+267|[(V — z (ullz + p2n(9)) "
Combining (4.43) with (4.45) yields
0"u |2 0™ ||2 o"u d"g
3 1/2 <C ) C ‘
€ Hy Xe ay 4€ 7 || Xe ayn 5 4 || Xe 8yn 9 Xe ayn 5
anu anflu Cu 9
3 —€
+ Ce Xeayn ) XEW ) C(n)e (||UH2 +P2n(9)) .

Using the above in conjunction with Cauchy’s inequality yields

‘ o"u 6”‘1uH ¢ w21 oy H
Xe@y” 2 Xe@y"_l 27 2 Xe@y" 2 27 Xe@y —Lla”
Consequently,
O™ (|2 1 O™ (|2 ot
e
oy ll2 3=V I gy ll2 oy~ (4.46)
— | Xem— e— —e u :
&3 |IX Ay™ ll2 X adymllz € 27T Pold
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Step 2. Multiplying (4.40) by yx?(y)0"u/0y"™ and integrating by parts yields for the
imaginary part

63ny6§;: z = Im A‘ Xeyl/Qg;: z <xgy%,xggly‘g>
- n€3<(xf + 2yXeXe), %:f 2> +1Im < <a% - @%2) (xegi;ﬁ, (xe + 2X’Ey)g;:> :
(4.47)

Using again the fact x.(y) > 0, the third term in the right side of (4.47) is negative, and
hence

J"u
oy"

d"g
XE ayn
a2,

(5 8 (2 o+ 2

2 n
<Me ylﬂxe%
oy"

2

63

2 N H o"u
2 YXe oyn

YXe

2 2

o™y (4.48)
oy™

)
Note that, when € < 1,
yXe(y) fo<y<l,
YY) = QUENe S € xely)  ifl<y <t
0 if =0+ <y,
< € MXe(y)-
Hence,
J"u J"u
c+2Y e—|| -
H(X +2X.y) o Xegml,
Substituting (4.49) into (4.48) yields, with the aid of (4.38), that

H Ou|> _2M | 1y O"u 2+ 1 9"g |2
YXe 2 Xeay” 2 €S Xﬁayn 2

y"
2 n
(v-i54) (),

We next substitute (4.46) and (4.43) into (4.50) to obtain

2 <0 1 o"u oty
S P Xeﬁy" Xé@y”_l
6—(1

(4.49)

| <5
2

27 €

5 (4.50)

6 "
oy"

63+a

+

Xe .
2

2
+e 7
2

2 1 2

2 €6

d"g
Xea—yn
d"g
Xea—yn

H o"u
YXe oyn 2

oty

Xe ayn—l

o"u 1
Xyl T &
o"u
Xea—yn

2 2

‘ o"u
Xe oyn 2

1 716—04
+rae 7 (Julls + panl)

|+ 5 (e +pata))”] (50

Making use of Cauchy’s inequality yields

o lu o"u 1 0" (|2 o Lu 2
2¢| | (2 : el , 452
<X dyn—1ll2 X ynlla = e X Ay ll2 e dyn—1ll2 (452a)
J"u d"g J"u |2 J"g |2
=2 22| < e|x - ‘ oI\ 4.52b
’X8y”2X0y”2_6 X@y"z 2X6y”2 ( )
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Furthermore, it follows from (4.13) that

1l —«a 1l —«a
e 2¢ J"u e 2¢ 2
—a (ull2 +pzn(g))‘ Xegma |, < ~ara (lell2 + p2n(9))™ (4.52¢)
yrlle = €
Substituting (4.52a,b,c) back to (4.51) we get
0" || 1 0" || oty
€ <Crl== € 1 - € ‘
ny oynll2 — 7|:65_'7 X oy™ 2+ X oyn—1
1 g e~z " 2
g+ oGl + puto))?] - 459

Let 06 =1 —v/2 (which readily yields o < 2§). Substituting into (4.53) we obtain, for

sufficiently small e,
w2 1 0" |2
2 = Cs L‘*ﬁ ‘ Xe@y" 2

0"q |2

(20 99
Xegall,

ol
XG 8yn 1

s
yX€ 8yn

Finally taking square root of the both sides we get (4.39) with C,, 5 = (Cg)%. ]

€6

w%“wmeMmﬂ.

We conclude this section by the following obvious estimate

Lemma 4.4. Let f be given by (3.38), and x. by (4.35). For every n € N there ezists
Cyn > 0, such that for all sufficiently small € we have

an
‘ Xy, < e, (4.54)

Proof. As in the proof of Proposition 3.1 we prove (4.54) by estimating separately the
derivatives of the two different types of terms in the expression of f mentioned there.
Let h; be a term of the first type given by (3.39). Then,

J"hy J"hy

‘ XeQa S ‘
oy™ ll2 oy"
where the last equality is due to the fact that 1, € S(R,C).
Let hy be a term of the second type given by (3.41). Then,

= STy < Cy(n)en o2, (4.55)

‘ 8”h2 3 H 0wy
XE a n - XE ayn
" w1 _le—a 8”w1
<% +et
L2(Rx (e (@+7) o0)) Oy lL2®x(0,5e(@+m))

Applying standard H" elliptic estimates to (3.18) on the domain R x (e~(*™) 400} in
conjunction with (2.5¢), it is easy to show that there exists a constant K, and for every
k> 1 Cy(k) > 0, such that for all sufficiently small € we have

‘ 0w,
oy"

k(o+y)
L2(Rx (e @+, 4o0) =k leHLQ(RX(if*(O‘”)*m) < Co(k) e '
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The same H™ estimates can also be applied to (3.18) on the domain R x (0, 3e~ (7)),
yielding

(9”w1 a
‘ Oy™ N1L2(Rx(0,3e(a+m)) = Kl‘wlHLQ(RX(OEE*‘**”)) < Gy,
726
and hence
9"hs 3+k(at+y) —(oty) ,—de @ 3+k(at+y)
‘Xea— SCQ(k)E v +Cg€ Ve 2 §C4(k)€ v
y™ 112

Combining the above with (4.55) yields (4.54). 1

5. “OUTER” ESTIMATES

To estimate the resolvent for A in the vicinity of (3.35) we need to prove first some
auxiliary estimates. Note that by (3.31), to leading order, the eigenfunction corresponding
to an eigenvalue near A is expected to be proportional to ¢*. Thus, we define the following
projections from L?(R?,C) into L*(R%,C)

P||:<7¢*>w¢*7 PJ_:I_P||7

where (-,-), denotes the inner product in L?(R,C) with respect to the variable z. Set
then, for any v € L*(R%,C)

v = P, v, = Pwv.
Then
v(z,y) = ¢"(2)Y](y) +vi(w,y),  YRIy) = W y), 0" (), yER,.

A useful observation to make is that

I — ¥ (n) i
aynv(%y) o™ (x)p[v]™(y) + aynw(%y),
and hence
om ov
(‘9_ynPJ‘U<x’y) _Pj-a_yn(x’y) (51)

The next lemma is necessary to show that the image of functions of small L? norm
under the resolvent (A} — X)~! lies almost entirely in P|L*(R3, C).

Lemma 5.1. There exists positive constant C such that, for any u € H&’mag(Ri, C) and
any v > 0 satisfying
- :CQ x| 2 * 2 2
(=05 - Tl - = =
it holds that
luslle < Cy 2 ully”. (53)
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2 C). Recall the notation

44
2.C). Then u; = Pue C§(

Proof. Assume first u € C2°(R%
ulla = Nlull 2@y = llull2@e) = ]l L2@2)

Step 1. Let as before 1w denote the partial Fourier transform of the extension to R? of
w with respect to y, defined by (2.13). We claim that
/ iz, 5)[2 da = / iy (z, )2z +/ iy (z,5)2de foralls€R.  (54)
R R

= [z

In fact, from the definition of P and P, we have

<u('7y)7 ¢*<)>w¢*($)’ uL(x,y) = U(%,y) -

uy(z,y) =
Taking the partial Fourier transform in y yields
ay (2, 5) =Fy[(ul ), 0" ()20"(2)] = (Fylu(-,y)], ()" ()
=(a(-, 5),¢"(-))a0"(x) = b(5)¢" (),
Uy (z,8) =Fylu— (u, 0")e¢"(z)] = i(x, s) — (a(-, 5), ¢*(-))ad" (2)
=u(z,s) = b(s)o* () .
Hence,
t(x,s) = uy(x,s) + u(z,s),
where
b(s) = (a(-, ), ¢"(-))a

Note that for any s € R
/iq(ac s) -ty (z,s)dr = /Rb(s)gzﬁ*(x) -z, s) — b(s)o*(z) dx

() [ & (@fi(e.s) B (@) do

“is) [ 6" @it s)dz (o) [ 167 du =0
R R
)and @, (-, s) are orthogonal to each other in L*(R,, C) for any fixed s, thereby

Thus, 4 (-, s
verifying (5.4).
Step 2. Let
Ss={se€eR : Ey(s) — E; >d}.
The precise value of 0 < § < 1 will be assigned later. We now show that
it oy < 575 - (5.5)

To prove (5.5) we rewrite (5.2) in terms of the partial Fourier transform of « in y
2
) dxds <~ —i—E*/ |4|*dxds . (5.6)
2

2

[ (ot |5 - -

Consequently,
| [E(s) = Epaf dnds <7,
RQ
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and hence,

2 v’
12y < (5.7
On the other hand, integrating (5.4) with respect to s on Sy yields

HﬁH%%RxS(;) = H'ELHH%%RXS(;) + HQJ-H%Q(RXS(;) :
From the above and (5.7), we easily verify (5.5).

Step 3: We next show that there exists Cy > 0, such that for any ¢ € L*(R,C) with
Y]] L2r) = 1, we have

‘ / i1 (@, 8)0(5)do(, 5) d:vds‘ < Co 6" Juls, (5.8)
Rx(R\Ss)

where ¢ (-, s) is the normalized eigenfunction of M associated with the lowest eigenvalue

Eo(s), [cf. (2.2)].
To prove (5.8), we first note that

/ Uy (x, $)Y(s)po(x, s) dxds = / y (x,8)9(s)(do(z,s) — ¢*(x)) dads.
Rx (R\S5)

Rx (R\Ss)

Hence,

‘/ Uy (z, 8)Y(8)po(x, s) dxds
RX(R\Ss

<l llzxsn [[9(5) (G0, 8) = 6% (2)) || 2 sy

For any s > s* we have

[t~ @Pdr < s = sp [0

A similar inequality holds for s < s*.

Set
= sup / ’
SER\S(S

As 0 < 0 < 1, we have that S; C Ss. Hence, if we can show that Cy(1) < oo, it would
follow that

(5.9)

The boundedness of Cy(1) results immediately from the fact that, by Kato’s perturbation
theory s+ ¢o(+,s), is a C'! function with values in L?(R).

As
W’ ) (do(z, s) — ¢*(x))HL2(R><(R\S5))H2

<Cy(1) / i (s)[*|s — s*[2ds < Cy 6 / [(s)|>ds = Cy 4.
R\ S5 R\ S35

The validity of (5.8) then easily follows from (5.9).
Step 4. Let
ﬁﬁ = <ﬂ(',8),¢0(-,3)>w¢0(:p73)7 (5.11)
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and let
U= uj+u . (5.12)
We next estimate || ||z .
As in Step 1 we can show that
(@, 7).z =0 forall s €R. (5.13)

On the other hand, since for any fixed s € R, the function
r — Uj(z, s +5%)

is the eigenfunction of M associated with the first eigenvalue Ey(s+ s*), we have that

2

Re /R {&L«ﬁﬁ(x, s+ 890,05 (z,s + s*) + (% —5— s*)Qﬁﬁ(az, s+ s%)a5 (v, s + 3*)}(11:

=Re /Rﬂ‘ﬁ(x, s+ s")u (z,s+ s*)dr =0.

To obtain the last equality we used (5.13). Consequently, we have that

x? 2
/ |04 + ‘(? — 5" — s)ﬁ‘ dxds
R ) (5.14)
* ~5 ~ x * ~5
= [ Bals 4 Nir M s+ [ (10aatP 4 |G - 5= 9

R2

2
) dxds .

From (5.13) and using the variational characterization of the second eigenvalue
Ei(s + s*), we see that the right side of (5.14) is no less than

Egllaglz + ETllaillz -
Then we plug (5.14) back to the left side of (5.6) and get
Egllajll; + Erllat ]l — Bgllalls <+*. (5.15)
It follows from (5.15) that

72

laills < T = C37°. (5.16)
1 0

Step 5. We now prove (5.3). Assuming first that a := ||@jj|[r2®) > 0, we let in (5.8)

0(s) = = (il 5), o 5)h

and noting that a < ||al|2, we obtain

~

’ / wy (z,8) ﬂﬁ(x,s) dzds| < a Cy5'/? laL|l2 < Co 512 1T |22 - (5.17)
R (R\S5)

It can be verified that the above inequality holds for a = 0 as well.
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From (5.13) we see that, for any fixed s € R,
/ Gy (2, 5)|*dr = / iy (x,5) - Gy (x,s)dr
R R
:/ ) (z,8) - [a(z,s) — qy(z, s)] de = / i (z,5) - a(z,s)dx
R R

:/Rfu(x, 5) - [i(z, 5) + 05 (x, 5)] dar

Integrating the above equality in s on R\ Ss, and using (5.17) and (5.16), we obtain

i oy = / i1 (2,5) - [01(z, 8) + 0%, (z, 5)] dads
RXR\Ss)

<[l z@x s |41 2@xriss) + 0Ll r2@x@ssn 1L L2rxr\Ss)
<Co (8" lallulle + )

From the above and (5.5) we get
2 2 2 72 1/2
613 =i sy + 1 Baemsy < C( %+ i ol + i)

from which we easily obtain, using Cauchy’s inequality, that

lill2 < €1 (57 + 02 flullz)

We now distinguish between two different cases: ||ulla > v and |Ju|ls < . In the former
case we set § = v/||ull2 < 1, and (5.3) easily follows. In the latter case we have

iz < JJulls < Y2 ully? < CLyY2 |ully?

Y

which is precisely (5.3).

Step 6. As (5.3) is proved only for u € C2(R2, C) we extend it to any u € Hy™® by
a standard density argument. g

An immediate, but useful, corollary is given by:
Corollary 5.2. Let u € Hy™%(R2, C) satisfy (5.2) and Pju = 0. Then
[ulls < Cy. (5.18)
The next corollary is both useful and simple to prove.
Corollary 5.3. Let u € H*™8(R3,C) satisfy
(Ao —Nu=g, (5.19)
where g € L*(R3,C) .
(i) Let T € CY(R4,[0,1]) N Wh>(R,, [0, 1)) satisfy T(0) =0 . Then

I lls < Cr {[Re A = Bg 4 Tully + 1Tglly Il + 0Cully I Tul} . (5.20)
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(ii) Furthermore, if Pyu = 0 then there exists a positive constant Cy such that, if
[Re A — Ej| < 1/(4CY), then

Iulla < G2 {ITgulla + 17ulla (5:21)

Proof. Step 1. We first prove (i). Suppose first that T € CY(R,,[0,1]). Since u €
HYm2g(R2 C) we have that Tu € Hy™#(R2,C). Multiplying (5.19) by YT?a and inte-
grating over R? we obtain
H( —@[_ _s }ly) Tu) H ~ B Tul)? = (Re A — E2)||Tul2 + || T7u|) + Re (Tu, Tg) .
Denote )
1/2
= (IReA = EGlICull3 + IC"ul} + [Re (Tu, Y}l )
Note that (Yu), = Tu,. Applying Lemma 5.1 to Tu we obtain
IPuslly < Coat2 | Tull;”. (5.22)
Using Cauchy’s inequality to bound |Re (Tu, Yg)| yields
1/4
P =Gl < ([Re A= B3l Tul+ T w3 Tul3 + [Tl Tl

<[Re d = B Pulls + [0 ully Tl + 1Tl Yol
Substituting the above into (5.22) we obtain (5.20).
Step 2. We next prove (ii). Now we assume Pju = 0. Then

P\(Tu) = TRu=0.
Thus, by applying Corollary 5.2 to Tu with v given above, we obtain
ITull3 < Ci? = C(IRe A = ElICull3 + I0ullf + Re (Yu, Tg)l) . (5.23)
Since ¢* is a real-valued function, so P and P, are self-adjoint operators. Thus
(Tu,Tg) = (PL(Tu),Tg) = (Tu, PL(Tg)) = (Tu, TgL).

Hence
1
IRe (Yu, Yg)| < [{(Tu, Tgr)| < [ Tull|Tgrllz < 101 ITull3 + CL Ty l3-
1

Next, suppose that

. 1
[Re X — Ej| < 0
Substituting the above back into (5.23) yields
2 el 2 / H2+ HTU||2+O4”T9LH
ITull3 <CY C ICulf3 + (|77

=5 Irull3 + 02 (Il + ¢t ||TgL||2) ,
from which (5.21) is readily verified.



LARGE CONDUCTIVITY LIMIT 49

Step 3: A simple density argument extends the corollary to any T € C'(R,,[0,1]) N
Whoo (R4, [0, 1]) satisfying Y(0) = 0. n

Once the above auxiliary results have been established, we can begin our attempt to
estimate the norm ||(AF — A)7!|| in a close vicinity of (3.35). Let then

w= (A = N)7'f, (5.24)

where
f=(Ay.—NU,, (5.25)
and U, is given by (3.31). In the following we prove that

1
lwll: < 5775 - (5.26)

Once (5.26) has been verified, the eigenvalue estimate would easily follow as we later
demonstrate.
We prove (5.26) by negation, that is, we suppose for a contradiction that

Assumption 5.4.
1
lwll: = 5775 - (5.27)
We note that the above assumption is merely a technical measure. One can prove (5.26)

directly, but that would considerably complicate many of the estimates in the sequel.
It easily follows from (3.37), (3.43) and (3.44) that

p(f) < Ck) 2, (5.28)
where pi(f) is defined in (4.3). From (5.27) and (5.28) we then get
pe(f) < Ck) € [Jw]z. (5.29)
Let
wy = Pw = ¢"(@)Yoly), wr=Pw. (5.30)
Then
w=¢"(x)tho(y) +wr, voly) = (w(-y),o"())a, yER.. (5.31)
Recall that (see (3.10))
p(0) =0. (5.32)

In the following we derive an estimate for 1)y. As the outer solution constructed in
Section 3 depends solely on a slow coordinate n = ey, we expect the derivative of the
outer solution with respect to y to have smaller norms. The next lemma establishes this
fact for ¥ (n).

Lemma 5.5. Suppose that (5.27) holds. Let ¢y and Cy be both positive. Let A = \(e)
satisfy for 0 < e < €

Re A — Ej| < Cyé®. (5.33)
Then, there exist C' >0 and 0 < €1 < €y, such that for e € (0,¢;),

46l 2y < C €2 {[tholl 2wy - (5.34)
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We note that the above estimate is not optimal: one expects a factor of ¢ instead of
€'/2 in (5.34). We shall later prove a better estimate using (5.34) to this end.

Proof. Step 1. Recall the notation A el Ao, (see the paragraph after (1.10)) in Section 1.
Clearly,

Re <¢*1/)0, <./407c — )\)U)) = Re <¢*¢0, (,A() — )\)U)) = Re <(./40 — )\)qb*wo, w) .
Consequently
2

(Bj = Re ) [ollface) — Re (v, o)y + Re (2i( 5 = 57) 6", w) = Re (¢vo, f)

In view of (5.32)), and since ¢* L (z?/2 — s*)¢* we have that
H%HI}(R (ReA — E, )HwOHLQ(R —|—Re< <7 —S )¢ ¢07wL> +Re (¢, f) . (5.35)

Step 2. From (5.24), (5.33), and (5.29) we get

(7= = i )ul[| — Eslwll = (Re A= B+ Re (f.h
<Co e [w]l3 + | fllzllwllz < (Co€® + CLé¥)Jwl3 < Co €[]l
Then we apply Lemma 5.1 to w with 7 = €/Cy ||w]|| to obtain that
lwllz < C e/ flwlls. (5.36)
As

[wll2 < [[voll2 + [lwllz,
we have, for sufficiently small €, that

Jwl|2 < 2][4olls - (5.37)
Consequently, by (5.29) and (5.37) we have, for every k, that
pi(f) < Ci € [[tholl, (5.38)
and by (5.36)
il < C €2 4oz (5.39)

Thus, by (5.35) we obtain that

o113 < € (€ 1oll3 + 1 £llzllvollz) + C e g2 llvollz
With the aid of (5.38), we readily obtain (5.34). 1

We have thus shown that the norm of ¢y, is small compared to that of ¢, although it
is evaluated over both the “inner” and the “outer” regions described in Section 3. The
norm is small despite the fact that dw/0dy is expected to be O(1) inside the inner region
and not necessarily O(¢) as in the outer region. This smallness of |[¢}]|2 can be attributed
to the fact that the leading term in the inner expansion of the quasimode U, in Section 3

is of order O(e).
For higher order derivatives, however, one should not expect that ||¢[()k) |l2 would be much
smaller than ||¢(()k_1) ||l2. Nevertheless, the expected slow variation of v far away from the
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boundary, should yield small norms calculated over the outer region only. We therefore
make use of the cutoff function y. defined in (4.35) to establish recursive estimates for
the “outer norms” of higher order derivatives.

Remark 5.6. Assuming (5.27), it easily follows from (4.54) that
e

Xegn
Lemma 5.7. Under the conditions of Lemma 5.5, (in particular assuming (5.27)) there
exist, for everyn € N, C,, > 0 and €, > 0, such that, for e € (0,¢,),

< Ch €3 |0l - (5.40)

_ 0" w
n+1 n n—1 1
et sy <Cn [ Dt e +€ et ™ ey + [0 Gt
+ 6n+2 ||w0||L2(R+):| ) (541&)
9"w, 1/2 (n) 3/2 0" wy (n—1)
| dy" , <6 [6/ et zcey + €2 (| x Gyl |+ It Vllzace,)

+ €n+3/2 ||¢0||L2(R+):| . (541b)

Proof. Step 1. We prove first (5.41b). Clearly, by the definition of w we have that
ow _o'f 0w

(Aoe—A) o7 Oy + ine gt (5.42)
Furthermore, as
o"w « (n) 8"wl
G =@ @U@ + 0 (543)
we have that
PL(Xeth:) = Xe% :

Hence we can apply (5.20) to (5.42), with T replaced by x. and u by 0"w/0y"™, and
then use (5.33) to obtain that

J"w, 0w a"f /4 O | 1/4 0w ||3/4
T <ol 2o (R s
‘X oym ll2 — {E X oy 2+ X Ay Il2 X Ay™1ll2 X y™ 112
+’ , 0"w 1/2H 0w ||1/2
Xe 8yn 9 XE ayn 9 .

With the aid of (4.37), (5.43), (4.13), (5.38), (5.40), and (5.37), we obtain that

o"w | O™w O Lw 14 9w |3/4
S [, e
‘X oy" ‘2 - {E X oyn 2+€ X dyn—1ll2 X oy ll2
J"w N 4] Qw3 .
+ €7 || Xe oy |l + (B W‘H%Hé/ )XE oy +e H%HLQ(R”} )
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Using Young’s inequality we have that

oMw 34 3t 9w e t3/2
n 1/4
ol xegr, < T xegpn |, + g ol
and that
O lw A 9w 34 32 0w e o 1w
I T <K 2
oyt oyrlle — 4 oy ll2
Hence,
o"w | O"w o tw .
‘ XE 8yn 9 S Cn |:€1/2 Xe ayn 63/2 Xe ayn_l 9 + +3/2 H¢O||L2 R+ :| .

The above inequality in conjunction with (5.43) readily yields (5.41b) for sufficiently small
€.

Step 2. To prove (5.41a), we multiply (5.42) by x2¢* % and integrate by parts to
obtain

I (Xewén )/Hi?(RJr) - HXéw(()n Hi2(R+)
* n . z? «\ % n o"w
= (B ~ ReN) et e, + Re (205 = 57)o" (™). 5,0 (5.44)

n— n 8
- SRefirdul” o ) + Re (0, 5T

To estimate the second term in the right side of (5.44), we represent it as follows:

Re (2i(% = ") (2) (Zul) a;;:f>
BAEIE
e ~ ) ) e ({5 Yot )

Using the fact that z2¢* € L?(R) together with Cauchy’s inequality and (4.37) yields

2

e (21(3 =)o ™) )|

ey ||y 2 s (  9"wy
SCH(Xe 0 ) € dyn XeWo laf| Xe oy 2
n anw n 8nw e @ anw
<[ (xews™)' |, xe—ayj +Clbess”l, { Xe ayL , @ynL 2}.

For every 6 > 0 we have

n n n 1 n
| (xevo )),Hi2(R+) - ||X/6¢(() )||22(R+) 2 HXJP( +1)||L2(]R+) - SHX/M(() )||2L2(R+)'
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From the above, (5.44), and (5.33), we get

0" w 1
Xe g

ety < [t e It e [ ]

+ €7 HXEw[()n) HLQ(R-&-)

-—%L+5WMWMWJM%“%MM)

o f
Xegonll,

aan_

)]

(5.45)
Next, we use (5.43), then apply (4.13) with v = w and g = f, and then use (5.37) and
(5.38) to bound the L? norms of w and of f. We obtain

0w, 0w 2 2
<
‘ oy oy C(n)(HwHZ + pan(f) )

C(n) (4l1oll3 + Cu€® [[Wol3) < Cu H%H%%M :
Hence, (5.41a) readily follows from (5.38) and (5.45). 1

x| 2y e (108 Bam,y + 1087 N2y

2 Oy"

|+ 1 B = |

The next corollary employs (5.41) with n = 1 and n = 2.

Corollary 5.8. Under the conditions of Lemma 5.5, there exist C' > 0 and €y > 0, such
that, for all € € (0, €),

X0 HL2 ®y) S Ce %0l L2 Ry) > (5.46a)
X6 | 2.y < C €2 ol 2qes) - (5.46b)
Proof. We first use (5.41b) with n =1 to obtain that

ow
\ﬁgiH_oFWMWMM&ﬁfWQXMJ,WM%MWMwéﬂWﬂM&J
(5.47)
Then, substituting (5.39) and (5.34) into (5.47), we obtain that
ow
‘ XEa—LHQ S C€||¢O|IL2(R+)' (548)

Substituting the above into (5.41a) with n = 1, and then using (5.34) again, yields (5.46a)
(recall that v > 1/2).
The proof of (5.46b) follows in exactly the same manner. 1

The formal expansion in Section 3 suggests that (5.34) and (5.46) are not optimal.
To obtain better estimates on the derivatives of ¢y we have to obtain a more accurate
approximation of w; than (5.39). Set then

wy(z,y) = —igs(x)o(y) + wi(z,y). (5.49)

We can now prove the following
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Lemma 5.9. Under the conditions of Lemma 5.5, there exist C' > 0 and ¢y > 0, such
that, for e € (0,¢),

IxXVollz2@y) <C € 1vollree,) (5.50a)
HXewg”LQ(RH <Cet? 1Yol L2y , (5.50b)
Ixewt fl2 < C Y2 |9l 2wy - (5.50¢)

Proof. Step 1. A straightforward calculation yields
(Ao — Nwl = —i(Ey — A —i€’y)¢iv + f + ¢*[vg — (ie’y + E5 — Ny

22N L. . . (5.51)
—2(5 - 5ot —iwior
Applying (5.21) to w! we obtain, for sufficiently small e,
Ixew 2 <C {lIxcw 1z + € Il zaes) + € lIxeydillzas) + Ixefolz (552)

+ ||Xe¢ HL2 ®y) T ||X677Z)0 ”L2 IR+)}
Here we have used the fact that both ¢*(z) and ¢%(z) are in S(R.).
Step 2. From (5.31) we get

xe(y)yg—j(-, y) = " ()xe(y)yvo(y) + xe(y) %(w y), yeERy,

which is an orthogonal L*(R,C) decomposition in z. Hence,

/rxe xy\dx—/w v )y |d93+/lxe “’y(myn?dx

Next we integrate the above equation with respect to y to obtain

From the above and (4.39) with n = 1 we get
ow H

nga H Ixeytoll72 R+)+‘xey D H > |xeythl3a, -

<Cs [z (Il + [ 552 ,)
)

Xes || ]+ € (el + ().

Ixeytllzee) < [|xey

1
+ € e + = |

Next we use (5.48) to estimate [|x - 9wL |, (4.54) with n = 1 to estimate X 8f |2, and
(5.29) to control pa(f). We then obtam from the above inequality that
05 716_(1
Ixebllze < 55 (bl + elollze ) +Ce wls. (5.53)
Substituting (5.53) together with (4.37), (5.34), (5.46), (3.43), and the fact that
[w] ll2 < lwillz + C ol 2@,y < Clivoll2@,)

into (5.52) we obtain that
Ixewlla < Ce %ol L2 &) - (5.54)
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Step 3. We now multiply (5.42) with n = 0 by x2¢*¢ and integrate by parts to obtain

||Xe%||%2(m+) :||X/E¢OH%2(R+) + (Re A — ES)||X€¢0”%2(R+)
2

+ Re< — 2 <% — S’“)ngb*@%, UJL> + Re (x2¢™ o, f) -

Substituting (5.49) into the above yields
5‘|Xs%”%2(m+) :HXIG%H%%RQ + (Re X — ES)HXG#’OH%%RQ
+Re( - 2@'(%2 — )X U, wl ) + Re (3200, f)
in which g = E{(s*). With the aid of (4.37), (5.54), (5.38), and (3.43) we obtain

IxollZ2m,y < C (€710l 22m, ) + € Ixoll 2@ 1Yol 2@y

from which (5.50a) readily follows.

Step 4. To prove (5.50b) we return back to (5.47) and substitute into it (5.50a) instead
of (5.34) to obtain

an_
vy

Substituting the above into (5.41a) with n = 1 yields (5.50Db).
Finally, we revisit (5.52), this time armed with (5.50b) in hand. The proof of (5.50c)
then readily follows.

HQ <Catt 1Yol -

The following estimates follow immediately from (5.41) and (5.50a,b).

Corollary 5.10. Under the conditions of Lemma 5.5, there exist C' > 0 and ¢y > 0, such
that for e € (0,¢€),

XS | 2isy < C e 1ol 2y (5.55a)

Ixes? llr2my) < C QT2 ol 2,y - (5.55b)
. The estimates (5.50b) and (5.55) are still non-optimal as we expect ¢ék) to be of order
€.

Lemma 5.11. Under the conditions of Lemma 5.5, there exist C > 0 and ¢y > 0, such
that, for e € (0,¢),

Proof. Step 1. By (5.51) we have that

S 6'62’y ||¢0||L2(R+) . (556)

"
X0 e

= —i(Ey — A —iey) oty + f, + ¢ [ — (iefy + By — M)
2

x * * - *
—2(5 =)ot — it

(AOC - )‘)

)
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We now use (5.21) to obtain that

2Ixeg 2y + € lxeyds 2y + € Ixedoll 2y

8wL
H [ (5.57)

s %1

|+ el + et e

Here we have used (5.1) to obtain P, f, = a—ny.
As
0w . 0w
xe(y)ya—?ﬂ(wy) = ¢"()xe(¥)yo (y) + xe(y)yﬁ(u y), yeR,,

(see step 2 in the proof of Lemma 5.9), we have

82
Il < oz,
Employing (4.39) with n = 2 and u = w yields
0? 1 1 0? e
‘Xeya—yQ <Cj [€2+5’ O ay H 3 || X gz } +Cse73 " (Jlwllz + pa(f))
82w, 1y 8%f
<
<G [z (Il + \ o H > ol + szl

+Cse3e " (lwll +p4(f)) :
Therefore, we find that

9*w

wJ_
XCy ay2 9 XG

2)

I ] + O (ull+palf)).
(5.58)

< Cs [62% <HX6¢0HL2 (Ry) T ‘

2
Xe%“z) ;)XEgyf

Ixeyo ll L2 ey S’

+ ¢ (el + |

By (5.41b) with n = 2 we have

‘ 3211&
X8

3/4
XE—H + eetbllz ) Ixeds 15,

‘ <C |: 1/2HXEwOHL2 ®,) +€3/2 <’

N ||¢o||L2<R+>} |

which together with (5.48), (5.29), and (5.50) yields
8221&

[
Substituting the above together with (5.48), (5.50), and (5.29) into (5.58) leads to

‘2 <C [ﬁlﬂ lIxetol| 2,y + €72 HZ/}0|’L2(R+)] :

Cs
IXey¥5ll 2 my) < = %ol z2(®., ) -
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Substituting the above inequality, (4.37), (3.37) (4.39), (5.55) and (5.50) into (5.57), we
obtain that

dw}
Jx d
Y

Step 2. Next, we substitute (5.49) into (5.44) with n = 1. We obtain
([CEEYR PR AT e
=5 = Re) et e, + Re (20( 5 =)o (). G
- S Re(ixduh, ) + (1= A)Re ((Cu5) 06 + Re (20 vh. 5 )

where 8 = 1E{(s*). With the aid of (4.37), Cauchy’s inequality, and (3.43), we then
obtain

, S C e [|voll L2y - (5.59)

2 8w1
et oz, <C [ Ixevh R+>+erw (| e
te ||X€77/}0||L2(]R+ X6 H +'53||Xs¢o||L2(JR+ ||Xe¢o||L2 (Ry)

+ €7 |xe¥p || L2 (ry) ||X577Z)0||L2(R+) +Ce 5 ||1/10||L2(R+)} :

The above inequality in conjunction with (5.59), (5.50a,b), (3.37) and (5.38) yields (5.56).
|

The following improvement of (5.55a) follows immediately from (5.41), (5.50a), and
(5.56).

Corollary 5.12. Under the conditions of Lemma 5.5, there exist C' > 0 and €y > 0 such
that, for e € (0,¢),
x| 2@y < C 2 ||gol| 2wy - (5.60)

We complete the outer estimates by showing that away from the boundary, for y~! =
O(e), one of the solutions of (3.23) can serve as a good approximation for 1.

Proposition 5.13. Under the conditions of Lemma 5.5, there exist C > 0 and ¢y > 0
such that, for e € (0, ¢),

Ixe (= 894 + liey + B — Newo) ||, < C e[t o, (5.61)
where 8 = SE{(s*).
Proof. Taking the inner product in L?(R) of (5.51) with ¢*(z) yields

~gug+ liy+ B = o = —2i{ (5 = 7)o" T+ (1,07,

Consequently,

e = 86 + iy + B~ Ao) | s, < O

8wL’

Il (562
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As (5.59) is not sufficiently accurate to obtain (5.61), we return to (5.57), and substitute
(5.60) instead of (5.55a) into it, along with (4.37), (5.38), (5.55b), and (5.50a). It follows
that

substituting the above into (5.62) immediately yields (5.61). 1

1
ow

Xeg—y < O€2W+1/2H¢OHL2(R+)~

Remark 5.14. Let = (E; — \)/€* . By applying the transformation n = ey in (5.61)
we obtain for

W) = do(1), Cn) = xe(D)
the following

[¢(=BY"(m) + [in — W% () || oz, ) < Co €7 [1¥lrees) (5.63)
for any § > 0. This manifests the validity of (3.23) in the outer region.

6. “INNER” ESTIMATES

In Section 3 we obtained the equation governing the behaviour of ¢, in the outer region
(namely (3.23)). Obviously, 1 decays as y — +o00. Nevertheless, a boundary condition
at the lower “edge” of the outer needs yet to be established. In this regard, it is simply
not enough to rely on the fact that ¢y(0) = w(z,0) = 0, since the boundary condition
has to be prescribed at some yy ~ ¢ 1*° wherein 0 < § < 1/2. The next lemma allows
us to obtain a bound on ¥ (yo).

Lemma 6.1. Let w satisfy

(A()’c - )\)’UJ = f in R2+72 (61)
w =0 on ORZ,
with f € S(R3,C) and X € p(Ay). Then, for every A satisfying
ReA— E5| <1, (6.2)

there exists k(9) € N,
HayH <Cé(\ReA E5 '~ (lwll3+(px(f >>2>+rReA—Egrﬂ\wy|2|\fy|2), V6 >0. (6.3)

Proof. The proof follows the same steps of the proof of (2.14f) in Section 2. Multiplying
(6.1) by w and integrating by part we obtain

(7~ i)

Let w denote, once again, the partial Fourier transform with respect to y of the extension
of w to H'(R? C) defined in (2.12) and (2.13) We next employ the decomposition (2.17)

)—MMWM—MWJ>

w(x,s) = uA}His(a:, s)+ Wy s(z,s),
W s(x, 8) = b(s* + s)po(x, 5" + 5), (6.4)

~

b(s*+8) = Lg 1,541y (8" + S)(D (-, 8), do(, 8" + 8)) L2 w)-
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Then, we conclude in exactly the same manner as in the derivation (2.23) in §2 that
1sb(s™ + I L2y + 1 LsllZ2(gzy < C(IRe A = Eglllwl]l3 + [[wll2]l f2) - (6.5)
Furthermore, using the same argument leading to (2.25) we obtain
|55 =i )]
- o TS JWligs
L2 (R2?)
Combmmg the above with (6.5) yields

Hauus

< Re X — Eglllwll3 + |(w, /)] + Ejllwi sl iz -

2

< C(IRe Bl + el 1) + | (5 - )

(6.6)

s )
L2(R2?) L2(R2?)

In view of (6.4) we have that

1,2 RQ 1/1, R <H< 2 >w 1,2 R2 1/1, R

15 - )
(-

L2(R3\[-L,L]xR4)
By (4.6) for all L > 1 we have

|5 ~)e]

Similarly, from the well-known properties of the eigenfunctions of the anharmonic os-
cillator [11] we learn that
2

|5-+)
— — 5w,
2

Consequently, for all L > 1 we have
2

— — 5w, 4
9 L

For a given k > 1, we choose

< S (o)

L2(R2\[-L,L]xR+)

e ol < 75 llwlle.

L2(R2\[-L,L]xR) — L¥ Lk

Ch
2
L2(R2) S CL ||wl5||2 + (||w||2+pk( ))

= |Re X — Ez|7V/0+4)

to obtain with the aid of (6.5) that
2
< O [Re A=Eg [ w3+ (i (£)))+C IRe A= Bg |~ E | £l [Jw]]2

22
H (?_S )wL’S L2(R2)
Substituting into (6.6) the lemma readily follows for § = k/(k +4).

Relying on (6.3) we obtain the following estimate:

Lemma 6.2. Assume that

Re A — E}| < Cé. (6.7)
Let f satisfy (3.37), and suppose that w satisfies (5.27). Let 1y be defined in (5.30). Let
n = ey and let V(n) = o(n/€). Then, for all § > 0, there exists Cs > 0 such that

()] < Cs € (20) W12 000, 0 € (0,6 C577). (6.8)
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Proof. As w(x,0) = 0, we have, for any R > 0,

Yy
/|wxy|2dx—/|w:cy —wade-/‘/ g—wdyl
Y1

By (5.30), (6.3), (3.37), and (5.27), we then have that, for all 0 > 0, there exists some
k(0) € N such that

dx

| e <o 5]

o) < | el de <y Cs ([Red = Byl + [Re A= B[l f]2).

It readily follows from (6.7), (5.29), and (5.37), that

[Yo()I” < Csy ) [aboll3.
Applying the transformation n = ey we obtain that
[W()* < Csme || 0l3.

To complete the proof we use the above inequality to obtain by integration that
U 2
no_
[ rwrac < o e o, (6.9
0

Hence, for n satisfying
O<n<e C Y 2

we obtain that .
wmﬂ/ W[ d
n
from which (6.8) readily follows. 1

7. PROOF OF THEOREM 1.2
Let £: D(L) — L*(Ry) be defined as

a2
L= —ﬁ + 1,
where
D(L) ={ue Hj(Ry,C) : Lue L*(Ry)}.
It is well-known [3, 13] that o(L) consists of a countable set of eigenvalues {1, }5°,
with

where {a,,}7°, C R denotes the decreasing sequence of the zeroes of Airy’s function on
the negative real axis. Set

. g —

2
To prove Theorem 1.2 we need first the following proposition.
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Proposition 7.1. There exists C' > 0 such that

(£ =)~ <

., Yu e B(uy,r), 7.1
[ — (pr,7) (-1

where y is the leftmost eigenvalue of the operator L.

Proof. The Riesz-Schauder theory of compact operators allows us to represent the resol-
vent of £ in the form

1
L—p) = —Tl, + T,
(L=p) = T 4 T,
where T}, is bounded in B(pq,7) (cf. Eq. (16.1) in [2]) and II,,, is the projector (defined
by the Dunford integral) associated with u;. The proposition readily follows. 1

We can now prove the following estimate for the resolvent:

Proposition 7.2. Let, for e > 0, A be given by (3.35) and f given by (3.36). Then, for
every 6 € (0,1/6) there exist Cy > 0 and ey > 0 such that, for all X satisfying

we have, for e € (0,¢p),

1
ICAS =N < 577 - (7.2)

Proof. We recall that to obtain the estimates in Sections 5 and 6, we assumed (5.27) by
negation. Therefore, if we reach a contradiction, (7.2) would immediately follow. For
U(n) = 1o(n/e€) defined in Remark 5.14 let

g(n) = =BV"(n) + [in — ] (n),
where 8 = $E{(s*) and u = (A — Ej)/€®. By (5.63) for every 6 > 0, we have that
191l 225 00) < C5 €272 W] 2 (c5 oy -

Given any 6 € (0,1/6), take 6 = 6 and 1y = /3. By (6.8), for all ¢ > 0 sufficiently
small (such that €/2 < ¢/ /C}/*) we have that

U (0)| < Co €% 0|l 20,00 - (7.3)

Applying the transformation  — 37/3(n — 1) to the equation for v, we obtain the
following problem for W

(L—v)¥ =g inR,,
v(0) = ¥,

where ¥; = U(n). In the above
lgllz@,) < C ey, (Wil < Coe/ 1] 2@y, v=p3""(u—ie/%). (7.4)
Next we write

(eim/6 v
U(n) =d(n) + \DlAZ(Ai(e”[Z/:y) ) ,

(7.5)
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where A; denotes Airy’s function [1] and
d=(L-v)lg
By (7.1) we have that
(/6

v—ml|

C
1@l 2@y < 9l 2y < C
(Ry) ‘V_,Ul‘ (R4) |

Furthermore, as

| 4;(e™™30)| = |Al(an)(e®™v — an) + o(|[v — pu|)| < Olv —

a straightforward computation yields

Jo 1Ai(e™n + av])|? C
AEE S el
Combining (7.5), (7.4), and (7.6) yields
(1/6-0
H\IJHLQ(RH < C(0) v — ] H\IJ”LZ(RH :

Recall that
A=Al =8Py — .
Thus, for € > 0 small and

| >

V —_— —
M=oy

it follows that W = 0 which clearly contradicts (5.27). 1

Proof of Theorem 1.2.

(7.6)

We now use the same technique as in [5]. Let U, be given by (3.34) and f by (3.36).

Clearly,

(AF =N "0 = A—_)\[Ue —(AF =N

Hence, for all 0 < # < 1/6 we have

]{ (AT = N)'Uedr = 7{ (A = N7+ 2wl
OB(A,Cyel3/6-0) OB(A,Cyel3/6-0) A — A

By (7.2) and (3.44) we then have

H 75 (AF =)
OB(A,Cyel3/6-0)
—C —

——(AF = N)7Lfdx
\%;B(A709613/6—0) )\ - A( ) HQ

-C-C.

61/2

= 2¢1/2
For sufficiently small ¢ we thus obtain

f (AF =N dA£0.
AB(A,Cyel3/6-0)
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It follows that (A — A)~! is not holomorphic in B(A, Cye'®/6~%) and hence, an eigenvalue
of AT must exist there. i
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