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Abstract

The Ginzburg-Landau model for superconductivity is considered in two dimensions.

We show, for smooth bounded domains, that the superconductivity order parameter

decays exponentially fast away from the boundary as the Ginzburg-Landau parameter

κ tends to infinity. We prove this result for applied magenetic fields satisfying hex−κ ≫

1/κ, and therefore, improve a recent result of Pan [16].

1 Introduction

Consider a planar superconducting body which is placed in a sufficiently low temperature

(below the critical one) under the action of an external magnetic field . Its energy is given

by the Ginzburg-Landau energy functional which can be represented in the following dimen-

sionless form [6]

E =

∫
Ω

(
−|Ψ|2 + |Ψ|4

2
+ |h− hex|2 +

∣∣∣∣ iκ∇Ψ+ AΨ

∣∣∣∣2
)
dxdy (1.1)

in which Ψ is the (complex) superconducting order parameter, such that |Ψ| varies from

|Ψ| = 0 (when the material is at a normal state) to |Ψ| = 1 (for the purely superconducting
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state). The magnetic vector potential is denoted by A (the magnetic field is, then, given

by h = ∇ × A), hex is the constant applied magnetic field, and κ is the Ginzburg-Landau

parameter which is a material property. Superconductors for which κ < 1/
√
2 are termed

type I superconductors, and those for which κ > 1/
√
2 are termed type II. The domain Ω

is the domain of superconductor whose Gibbs free energy is given by E. Note that E is

invariant to the gauge transformation

Ψ → eiκηψ ; A→ A+∇η . (1.2)

It is known both from experiments [15] and rigorous analysis [10] that for a sufficiently

strong magnetic field the normal state (ψ ≡ 0, h = hex) would prevail. If the field is then

decreased, there is a critical field, depending on the sample’s geometry, where the material

would enter the superconducting state. For samples with boundaries, this field is known as

the onset field and has been termed HC3 .

The simplest case in which the bifurcation from the normal state to the superconducting

one was calculated is the case of a half-plane [18]. The analysis in this case is one dimen-

sional: the linearized Ginzburg-Landau equations, which are the most common model for

macroscopic superconductivity, were solved on R+. Even in this simple case the onset field

is substantially larger than the bifurcation field on R [9]. The situation is no different in two

dimensions: it was proved in [14] and [7] that the bifurcating mode in R2
+ is one-dimensional

and that the value of HC3 is exactly the same as in the one-dimensional case. Similarly,

the bifurcation from the normal state in R2 takes place when the applied magnetic field is

identical with the bifurcation field for R, which has been termed HC2 .
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In addition to the difference in the values of the applied field, it was found by Saint-

James and de-Gennes [18] that superconductivity is concentrated at the onset near the

boundary for a half-plane, i.e. ψ decays exponentially fast away from the boundary. This

phenomenon, which appears only in the presence of boundaries have been termed, therefore,

surface superconductivity. It was later proved for general two-dimensional domains with

smooth boundaries [13, 7], that as the domain’s scale tends to infinity the onset field tends

to de-Gennes’ value, and that. If the boundaries include wedges the onset field will be larger

than de-Gennes’ value [4, 11, 19, 12].

Surface superconductivity reflects another difference between the problems in R2
+ and

R2, where the bifurcation takes place in the form of periodic solutions [1, 5, 2] known as

Abrikosov’s lattices. The transition, as the applied magnetic field decreases, from surface

superconductivity to the experimentally observed [8] Abrikosov’s lattices is not yet well

understood. Rubinstein [17] conjectured that superconductivity remains limited to a neigh-

borhood of the boundary until about HC2 when a new solution which is similar in the bulk

to Abrikosov lattice appears.

Two recent contributions [16, 3] study the behaviour of the gobal minimizer of the energy

functional (1.1) for external fields satisfying κ = HC2 < hex < HC3 . In [16] the limit κ→ ∞

is considered: it is demonstrated that ψ decays, in L2 sense, exponentially fast away form

the boundary. The results are valid whenever hex − κ ≫ 1 as κ → ∞. In addition the

energy of the global minimizer is shown to be evenly distributed along the boundary. In [3]

the large domain limit is considered: it is demonstrated for the global minimizer that both
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ψ and h tend, in Cα sense, exponentially fast away from the boundary, to the normal state.

The result are valid whenever hex − κ ∼ O(1) as the domain’s size tends to infinity.

In the present contribution we focus on the limit κ → ∞. We prove that the global

minimizer tends to the normal state exponentially fast away from the boundary as long as

hex − κ≫ 1/κ, which extends the validity of the results in [16]. Furthermore, we show that

the magnetic field tends to a constant not only away from the boundaries but also near the

boundary for this limit case.

The Euler-Lagrange equations associated with the energy functional defined in (1.1), or

the steady state Ginzburg-Landau equations, are given by

(
i

κ
∇+ A

)2

ψ = ψ
(
1− |ψ|2

)
, (1.3a)

−∇×∇× A =
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A , (1.3b)

and the natural boundary conditions by

(
i

κ
∇+ A

)
ψ · n̂ = 0 ; h = hex . (1.4a,b)

We consider two-dimensional settings where we can write h = (0, 0, h(x, y)) and hex =

(0, 0, hex). In the next section we consider the global minimizer of (1.1) in smooth bounded

domains as κ→ ∞. We show that for sufficiently large κ, the global minimizer of (1.1) which

must solve (1.3) together with (1.4), tends exponentially fast away from the boundaries to a

normal state as long as hex − κ≫ 1/κ. Furthermore we show that

∥h− hex∥L∞[Ω] ≤
C

κ1/2
min

(√
hex − κ,

1√
hex − κ

)
. (1.5)

4



To prove the above results we use a differential inequaity which was proved in [3]. Let

u = h− κ+
1

2κ
ρ2. (1.6)

Then

∇2u− ρ2u = κ
∣∣∣Ĵ∣∣∣2 + (κ− 1

2κ

)
ρ4. (1.7)

The precise definition of Ĵ will not concern us. We shall be interested only in its following

property ∣∣∣Ĵ∣∣∣2 ρ2 = |∇u|2 . (1.8)

which is proved in [3]. Finally, in section 3 we briefly discuss a few key points which are not

mentioned in section 2.

2 Exponential rate of decay

We prove here the following theorem:

Theorem 2.1 Let λ =
√
κ(hex(κ)− κ), and let (ψ,A) = (ψ(λ, κ), A(λ, κ)) denote a solu-

tion of (1.3) and (1.4). Then, ∃λ0 > 0, κ0 > 0, β > 0, δ > 0 and h̃λ such that for every

κ > κ0 and λ > λ0 log
1/2 κ we have

|Dαψ| ≤ Cακ
αe−βλd(x,∂Ω) for all α ≥ 0 and x ∈ Ω (2.1a)∣∣∣h− h̃λ)

∣∣∣ ≤ Cmax

(
e−βλδ,

1

λ
e−βλd(x0,∂Ω)

)
(2.1b)∣∣∣Dα(h− h̃λ)

∣∣∣ ≤ Cακ
α−1e−βλd(x,∂Ω) for all α ≥ 0 and x ∈ Ω (2.1c)∣∣∣h̃λ − hex

∣∣∣ ≤ C
log κ

κ
(2.1d)
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To prove the theorem we need first a number of auxiliary results. The first of them

includes the following well-known estimates:

Lemma 2.2 Let hex ≥ κ. Then,

∥ρ∥L∞(Ω) < 1 (2.2a)

∥h− hex∥C1(Ω̄) ≤ C (2.2b)

∥
(
i

κ
∇+ A

)
ψ∥L∞(Ω̄) ≤ C (2.2c)

Proof: The proof of (2.2a) is well known and follows immediately from (1.3a) and the

real part of the boundary condition (1.4a). The proof of (2.2b) and (2.2c) can be found in

[16].

Lemma 2.3 Let hex ≥ κ. Then, any solution of (1.3) and (1.4) satisfies, for sufficiently

large κ ∫
Ω

ρ4 ≤ C

κ
(2.3a)∫

Ω

|h− hex|2 ≤ C
log2 κ

κ2
(2.3b)

where C is independent of κ.

Proof: We first prove (2.3a). To this end, we integrate (1.7) over Ω. In view of (2.2b) we

have, ∫
Ω

ρ2u+

(
κ− 1

2κ

)∫
Ω

ρ4 ≤
∫
∂Ω

∂u

∂n
≤ C (2.4)

Hence, apllying (2.2b) once again, we have

κ

∫
Ω

ρ4 ≤ C +

∫
Ω

ρ2 (h− hex) ≤ C

(
1 +

[∫
Ω

ρ4
]1/2)

(2.5)
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from which (2.3a) is readily verified.

To prove (2.3b) we integrate (1.3a) multiplied by ρ2ψ̄ and integrate over Ω. We obtain,

∫
Ω

ρ2
∣∣∣∣( iκ∇+ A

)
Ψ

∣∣∣∣2 + 1

κ2

∫
Ω

ρ2|∇ρ|2 =
∫
Ω

ρ4(1− ρ2).

By (1.3b) we have ∫
Ω

|∇h|2 ≤
∫
Ω

ρ2
∣∣∣∣( iκ∇+ A

)
Ψ

∣∣∣∣2 ≤ ∫
Ω

ρ4.

We now apply Poincare inequality and (1.4b) to obtain

∫
Ω

|h− hex|2 ≤
∫
Ω

ρ4 ≤ C

κ
. (2.6)

In a similar manner to [7, 3] we now define a local coordinate system near ∂Ω. Let η

denote the distance from the boundary, s the arclength along the boundary, with some point

x0 ∈ ∂Ω corresponding to s = 0, and κ1(s) the curvature of ∂Ω, which must be uniformly

bounded in [−L/2, L/2]. This local coordinate system is well defined in the rectangle

S = {(s, η)| − L/2 < s < L/2, 0 < η < η0} (2.7)

where L denotes the arclength of ∂Ω, and η0 is chosen such that infs∈[−L/2,L/2] 1−κ1(s)η0 > 0.

Denote by Ω′
α the domain enclosed in η = α. Integrating (1.7) on Ω′

α yields

κ

∫
Ω′

α

∣∣∣∣∇uρ
∣∣∣∣2 + ∫

Ω′
α

ρ2u ≤
∫
∂Ω′

α

∂u

∂n
≤ C

[∫
∂Ω′

α

∣∣∣∣∇uρ
∣∣∣∣2
]1/2

(2.8)

However, by (2.6) we have

−
∫
Ω′

α

ρ2u ≤
∫
Ω′

α

ρ2 (h− hex) ≤
C

κ
. (2.9)
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Furthermore, for every 0 < δ < η0, there exists 0 < α < δ such that

∫
∂Ω′

α

∣∣∣∣∇uρ
∣∣∣∣2 ≤ C

δ

∫
Ω′

α

∣∣∣∣∇uρ
∣∣∣∣2 .

Cobining the above with (2.8) and (2.9) yields

κ

∫
Ω′

α

∣∣∣∣∇uρ
∣∣∣∣2 ≤ fracCδ1/2

∫ [∫
Ω′

α

∣∣∣∣∇uρ
∣∣∣∣2
]1/2

,

from which we obtain ∫
Ω′

δ

|∇u|2 ≤
∫
Ω′

α

∣∣∣∣∇uρ
∣∣∣∣2 ≤ C

κ2(δ + 1/κ)
. (2.10)

We can now use Schwarz Inequalty, and the local coordinate system defined in (2.7), to

obtain

∫ L/2

−L/2

|u(s, 0)− u(s, δ|2ds ≤
∫
Ω\Ωδ

|∇u|2
(
η +

1

κ

)
dsdη

∫ δ

0

dη

(η + 1/κ)
≤

≤ C log(1 + κδ)

[∫ δ

0

dη′
∫
Ωη′\Ωδ

|∇u|2 dsdη + 1

κ2

]

Combining the above with (2.10) yields

∫ L/2

−L/2

|u(s, 0)− u(s, δ|2ds ≤ C
log2(1 + κδ)

κ2
.

Consequently,

∫
∂Ωδ

|u− (hex − κ)|2 ≤ 2

∫ L/2

−L/2

|u(s, 0)− u(s, δ|2ds+ 2

∫
∂Ω

|u− (hex − κ)|2 ≤ C
log2(1 + κδ)

κ2
.

(2.11)

However, ∫
Ωδ

|u− (hex − κ)|2 ≤ C

∫
∂Ωδ

|u− (hex − κ)|2 + C

∫
Ωδ

|∇u|2,

8



and hence, with the aid of (2.11), we obtain

∫
Ωδ

|u− (hex − κ)|2 ≤ C
log2(1 + κδ)

κ2
.

Choosing δ ∼ O(1) we prove (2.3b).

□

Lemma 2.4 Let hex > κ and λ =
√
κ(hex − κ). Let {x}λ≥λ0 denote a family of points in

Ω. Let sλ = d(xλ, ∂Ω) Then,

F (xλ, s) ≤
C(ϵ)

(λsλ)4−ϵ
∀s ≤ 1

2
sλ (2.12a)

where F (x, r) is given by

F (x, r) =

∫
B(0,r)

λ2w+
∣∣∣J̃∣∣∣2 + ρ2

(
w+
)2

+
∣∣∇w+

∣∣2 (2.12b)

J̃ =
1

λ
Ĵ (2.12c)

and

w =
u

hex − κ
(2.12d)

Proof: By (1.7) w satisfies

∇2w − ρ2w = λ2
∣∣∣J̃∣∣∣2 + (κ2 − 1

2

)
1

2λ2
ρ4. (2.13)

Integrating over B(xλ, r) the product of (2.13) by w+ we obtain

∫
∂B(xλ,r)

w+∂w
+

∂r
≥ F (xλ, r) (2.14)
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Multiplying (2.14) by 1/r and integrating between s and sλ yields, in view of (2.2),

∫ sλ

s

F (xλ, r)

r
dr ≤ 1

2

∫ 2π

0

[(
w+(sλ, θ)

)2 − (w+(s, θ)
)2]

dθ ≤ C (2.15)

In the following we use C to denote a constant which is independent of both λ and xλ. As

F is monotonically increasing in r,

∃1
2
< β0 < 1 : F (xλ, β0sλ) < C. (2.16)

It is easy to show that 1/2 < β < β0 exists such that

∫
∂Bβ

λ2w+
∣∣∣J̃∣∣∣2 + ρ2

(
w+
)2 ≤ C

sλ

∫
Bβ0

λ2w+
∣∣∣J̃∣∣∣2 + ρ2

(
w+
)2

(2.17)

where Bβ
def
= B(x, βs). Let ξ1, ξ2 ∈ ∂Bβ. Then,

∣∣∣(w+
)5/2

(ξ1)−
(
w+
)5/2

(ξ2)
∣∣∣ ≤ C

∫
∂Bβ

(
w+
)3/2 |∇w|

By (1.8) |∇w| = ρ
∣∣∣J̃∣∣∣. Hence,

∣∣∣(w+
)5/2

(ξ1)−
(
w+
)5/2

(ξ2)
∣∣∣ ≤ C

[∫
∂Bβ

w+
∣∣∣J̃∣∣∣2]1/2 [∫

∂Bβ

ρ2
(
w+
)2]1/2 ≤

≤ C

λ

∫
∂Bβ

λ2w+
∣∣∣J̃∣∣∣2 + ρ2

(
w+
)2 ≤ C

λsλ
F (xλ, β0sλ) . (2.18)

Let 0 < s < βsλ, and let (r, θ) denote a polar coordinate system centered around x. Then,

∫ 2π

0

∫ βsλ

s

(
w+
)3/2 ∂w

∂r
drdθ ≤ C

[∫
A

w+
∣∣∣J̃∣∣∣2]1/2 [∫

A

ρ2
(
w+
)2 1

r2

]1/2
(2.19)

where A
def
= Bβ \B(x, s). Hence,

∫ 2π

0

(
w+
)5/2∣∣∣βsλ

s
≤ C

λs
F (xλ, β0sλ).
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Utilizing (2.18) together with the inequality

∣∣x5 − y5
∣∣ ≥ ∣∣x4 − y4

∣∣5/4 (2.20)

and Hölder inequality we obtain

∫ 2π

0

(
w+
)5/2∣∣∣βsλ

s
dθ +

2πC

λsλ
F (xλ, β0sλ) =

=

∫ 2π

0


[(

w+ 5/2 (βsλ) +
C

λsλ
F (xλ, β0sλ)

)1/5
]5

− w+ 5/2 (s)

 dθ ≥

≥
∫ 2π

0

{(
w+ 5/2 (βsλ) +

C

λsλ
F (xλ, β0sλ)

)4/5

− w+ 2 (s)

}5/4

dθ ≥

≥ C

{∫ 2π

0

∣∣∣∣∣
(
w+ 5/2 (βsλ) +

C

λsλ
F (xλ, β0sλ)

)4/5

− w+ 2 (s)

∣∣∣∣∣ dθ
}5/4

.

In view of (2.15) ∫ 2π

0

(
w+
)2∣∣∣βsλ

s
dθ ≥ 0 .

Consequently,{∫ 2π

0

∣∣∣∣∣
(
w+ 5/2 (βsλ) +

C

λsλ
F (xλ, β0sλ)

)4/5

− w+ 2 (s)

∣∣∣∣∣ dθ
}5/4

≥
{∫ 2π

0

(
w+
)2∣∣∣βsλ

s

}5/4

Combining the above inequalities yields∫ 2π

0

(
w+
)2∣∣∣βsλ

s
dθ ≤ C

(
F (xλ, β0sλ)

λs

)4/5

and by (2.15) we have ∫ βsλ

s

F (xλ, r)

r
dr ≤ C

(
F (xλ, β0sλ)

λs

)4/5

Thus, since F is monotone increasing

∃1
2
< β1 < β0F (xλ, β1sλ) ≤ C1

(
F (xλ, β0sλ)

λsλ

)4/5

. (2.21)
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It is possible to repeat the above procedure recursively (cf. [3]) to prove the existence of

a monotone decreasing sequence {βn}∞n=1, which is strictly bounded from below by 1/2, such

that

F (xλ, βnsλ) ≤ Cn

(
F (xλ, βn−1sλ)

λsλ

)4/5

∀n ≥ 1. (2.22)

Utilizing the above inequality together with (2.16) proves the lemma.

□

Lemma 2.4 allows us to obtain uniform convergence in Ω of w+ to a constant, except for

a boundary layer of O(1/λ) size (as λ→ ∞).

Lemma 2.5 For any family of points {xλ}λ>λ0

∃w̃λ :
∣∣w+(xλ)− w̃λ

∣∣ ≤ C

λ1/2d(xλ, ∂Ω)1/2

The lemma can be proved by applying the same arguments as in the proof of lemma 3.4 in

[3].

We now find the value of the constant w̃λ by using the energy estimates in lemma 2.3.

Lemma 2.6 Let hex > κ. Then,

|w̃λ − 1| ≤ C

(
1

λ1/2
+

log κ

λ2

)
(2.23)

Proof: Let x ∈ Ω such that ∂B(x, r) ⊂ int(Ω), where r is independent of λ. By lemma

2.3 we have

∥1− w∥L2[B(x,r)] ≤ ∥1− w∥L2[Ω] ≤
2

hex − κ
∥hex − h∥L2[Ω] +

1

κ(hex − κ)

∥∥ρ4∥∥
L2[Ω]

≤ C
log κ

λ2
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However, by the previous lemma |w+ − w̃λ| ≤ C/λ1/2 in B(x, r), and hence, since

∥w̃λ − 1∥L2[B(x,r)] ≤
∥∥1− w+

∥∥
L2[B(x,r)]

+
∥∥w̃λ − w+

∥∥
L2[B(x,r)]

≤ C

(
1

λ1/2
+

log κ

λ2

)
,

from which the lemma immediately follows.

□

We can now obtain better estimates for the rate of decay of |w+ − w̃λ| away from the

boundaries as λ→ ∞.

Lemma 2.7 Let hex > κ and {xλ}λ≥λ0 denote a family of points such that xλ ∈ Ω. Let

λsλ = λd(xλ, ∂Ω) −−−→
λ→∞

∞. Then,

∀n ∈ N ∃1
2
< βn < 1, Cn > 0 : F (xλ, βnsλ) ≤

Cn

λnsnλ
(2.24a)

where F is defined in (2.12)

∃w̃λ :
∣∣w+(xλ)− w̃λ

∣∣ ≤ Cn

λnsnλ
(2.24b)

|w̃λ − 1| ≤ C
log κ

λ2
(2.24c)

The proof of (2.24a) and (2.24b) is obtained by following the same line of arguments as in

the proof of lemma 3.6 in [3]. To prove (2.24c) we use (2.24b) and apply arguments of the

proof of lemma 2.6 once again.

□

Lemma 2.8 Let hex > κ and {xλ}λ≥λ0 denote a family of points such that xλ ∈ Ω. Let

sλ = d(xλ, ∂Ω) −−−→
λ→∞

∞. Then,

∀n ∈ N ∃Cn > 0 :

∫
∂B(xλ,sλ/2)

ρ2 ≤ Cn

λnsnλ
. (2.25)
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Proof: By (2.24a)

∃1
2
< βn < 1 :

∫
B(xλ,βnsλ)

ρ2
(
w+
)2 ≤ Cn

λnsnλ

Writing

∥ρ∥L2[B(xλ,βnsλ)]
≤
∥∥ρw+

∥∥
L2[B(xλ,βnsλ)]

+

+
∥∥ρ (w+ − w̃λ

)∥∥
L2[B(xλ,βnsλ)]

+ ∥ρ (1− w̃λ)∥L2[B(xλ,βnsλ)]
,

we obtain, in view of (2.23) and (2.24b),

∥ρ∥L2[B(xλ,βnsλ)]
≤ Cn

(λsλ)n/2
. (2.26)

Consequently, for sufficiently large λ, we may conclude the existence of 1
2
< β̄n < βn for

which ∫
∂B(xλ,β̄nsλ)

ρ2 ≤ Cn

λnsnλ
. (2.27)

□

Proof of Theorem 1: We prove the theorem by invoking blow up arguments. We first

prove that ∃λ0 and β > 0 such that

∥ψ∥L2[B(x,δ)] ≤ Cδe−βλd(x,∂Ω) ∀λ > λ0, 0 < δ <
1

λ
, ∀x ∈ Ω : d(x, ∂Ω) ≥ 1

λ
(2.28)

Let

Ω(λ, k, s) =
{
x ∈ Ω| d(x, ∂Ω) ≥ k

s

λ

}
.

We prove (2.28) by showing that

∃λ0, s0 : sup
x∈Ω(λ,k,s)

∥ψ(κ, λ)∥L2[B(x,δ)] ≤
1

2
sup

x∈Ω(λ,k+1,s)

∥ψ(κ, λ)∥L2[B(x,δ)] ∀s > s0 λ > λ0, k ∈ N, 0 < δ <
1

λ

(2.29)
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Suppose, for a contradiction, that (2.29) does not hold. Then, sequences {λj}∞j=1,{κj}
∞
j=1,

{sj}∞j=1, {kj}
∞
j=1 and {δj}∞j=1 exist such that λj ↑ ∞, κj ↑ ∞, sj ↑ ∞, kj ∈ N, 0 < δj < 1/λj,

and

sup
x∈Ω(λj ,kj+1,sj)

∥ψ(κj, λj)∥L2[B(x,δj)]
≥ 1

2

∥∥∥∥∥ψ(κj, λj) sup
x∈Ω(λj ,kj ,sj)

∥∥∥∥∥
L2[B(x,δj)]

def
=

1

2
mj (2.30)

Let

ψ̃j
def
=

ψ(κj, λj)

mj

.

By (2.29) there exists xj ∈ Ω(λj, kj +1, sj) such that ∥ψ̃j∥L2[B(xj ,δj)] ≥ 1
2
. Furthermore, since

B(xj, 1) ∈ Ω(λj, kj, sj) we have

1

2
≤
∥∥∥ψ̃j

∥∥∥
L2[B(xj ,δj)]

≤ 1.

Define

fj = ψ̃j

(
xj +

x

λj

)
eiAj(xj)·x/λj ,

where Aj = A(κj, λj). Let w̃λ be the same as in (2.24c) and let

h̃λ = w̃λ(hex − κ) + κ.

Clearly, ∥∥∥h− h̃λ

∥∥∥
L∞[Ω(λ,k,s)]

≤ Cn

κsn

It is easy to show that(
iλj
κj

∇+
h̃j
λj
B̃j

)2

fj = fj
(
1−m2

j |fj|
2) x ∈ B(0, sj) (2.31a)
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wherein

Bj(x) = [Aj(xj + x)− Aj(xj)]
1

h̃j
, (2.31b)

and h̃j = h̃λj
. we now define a cut-off function

ηr =


1 in B(0, r)

0 in R2/B(0, 2r)

|∇ηr| ≤ C in R2

Multiplying (2.31a) by η2r , and integrating over B(0, 2r) we obtain, for all r ≤ sj
2
(cf. [14]),

that

∫
B(0,2r)

∣∣∣∣∣
(
iλj
κj

∇+
h̃j
λj
Bj

)
(ηrfj)

∣∣∣∣∣
2

=

∫
B(0,2r)

η2rf
2
j

(
1−m2

j |fj|
2)+ λ2j

κ2j
|∇ηr|2 f 2

j (2.32)

Let Â : R2 → R2 denote any vector field satisfying ∇× Â = îz and Â(0) = 0. Then,

∫
B(0,2r)

∣∣∣∣∣
(
iλj
κj

∇+
h̃j
λj
Bj

)
(ηrfj)

∣∣∣∣∣
2

=

∫
B(0,2r)

∣∣∣∣∣
(
iλj
κj

∇+
h̃j
λj
Â

)
(ηrfj)

∣∣∣∣∣
2

+

+

∫
B(0,2r)

h̃j
κj

(Bj − Â)η2r

[
i
(
f̄j∇fj − fj∇f̄j

)
+ 2 |fj|2

h̃jκj
λ2j

Bj

]
−

−
∫
B(0,2r)

(
h̃j
λj

)2 ∣∣∣Bj − Â
∣∣∣2 η2r |fj|2 .

Clearly,

η2r

[
i
λj
κj

(
f̄j∇fj − fj∇f̄j

)
+ 2 |fj|2

h̃j
λj
Bj

]
= 2ℜ

{
ηrf̄j

(
iλj
κj

∇+
h̃j
λj
Bj

)
(ηrfj)

}
,
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and hence,

∫
B(0,2r)

∣∣∣∣∣
(
iλj
κj

∇+
h̃j
λj
Bj

)
(ηrfj)

∣∣∣∣∣
2

≥
∫
B(0,2r)

∣∣∣∣∣
(
iλj
κj

∇+
h̃j
λj
Â

)
(ηrfj)

∣∣∣∣∣
2

−

− 2
h̃j
λj
Mj

[∫
B(0,2r)

η2r |fj|
2

]1/2 ∫
B(0,2r)

∣∣∣∣∣
(
iλj
κj

∇+
h̃j
λj
Bj

)
(ηrfj)

∣∣∣∣∣
2
1/2

−

−

(
h̃j
λj

)2

M2
j

∫
B(0,2r)

η2r |fj|2 . (2.33a)

where

Mj = sup
x∈B(x,sj)

∣∣∣Bj − Â
∣∣∣ (2.33b)

In [14, 7] it was shown that

∫
R2

∣∣∣∣∣
(
iλj
κj

∇+
h̃j
λj
Â

)
(ηrfj)

∣∣∣∣∣
2

≥ h̃j
κj

∫
R2

η2r |fj|2 (2.34)

Combining the above with (2.32) and (2.33a) we obtain(
h̃j
κj

− 1

)∫
B(0,2r)

η2r |fj|2 ≤
λ2j
κ2j

∫
B(0,2r)

|∇ηr|2 f 2
j +Mj

h̃j
λj

∫
B(0,2r)

2η2rf
2
j +

λ2j
κ2j

|∇ηr|2 f 2
j +

(
h̃j
λj

)2

M2
j

∫
B(0,2r)

η2r |fj|2

(2.35)

By (2.24b) we have

Mj ≤
λ2jCn

κ2js
n
j

∀n ∈ N.

By (2.24c) we have, for sufficiently large j,

∣∣∣h̃j − hex(κj)
∣∣∣ ≤ 1

2
|hex(κj)− κj| =

1

2

λ2j
κj

and hence by (2.35) we have

∫
B(0,r)

|fj|2 ≤ C

∫
B(0,2r)

|∇ηr|2 f 2
j (2.36)
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From which we can easily obtain

lim
j→∞

∫
B(0,r)

|fj|2 = 0 (2.37)

for all r > 0, contradicting (2.30), and therefore proving (2.28).

In order to obtain exponential decay in Cα norm we write first the equation for ϕ(z) =

ψ(x0 + z/κ)e−iA(x0)·z,.

∇2ϕ = 2Ã ·
(
i∇+ Ã

)
ϕ− ϕ

(
1− |ϕ|2 +

∣∣∣Ãj

∣∣∣2) (2.38)

where

Ã(z) = A(x0 + z/κ)− A(x0).

It is possible to show, using the identity (2.32) and the boundednes of Ã(z) in B(0, 2), that

∫
B(0,2)

∣∣∣∣2Ã ·
(
i∇+ Ã

)
ϕ− ϕ

(
1− |ϕ|2 +

∣∣∣Ãj

∣∣∣2)∣∣∣∣2 dz ≤ C

∫
B(0,2)

ϕ2dz

Using standard elliptic estimates we then have

∥ϕ∥H2[B(0,1)] ≤ C∥ϕ∥L2[B(0,2)].

where C is independent ofκ, λ, and x0. Choosing δ = 1/κ in (2.28) we obtain

∥ϕ∥L2[B(0,2)] ≤ Ce−βλd(x0,∂Ω)

Sobolev embedding then implies

∥ϕ∥L∞[B(0,1)] ≤ Ce−βλd(x0,∂Ω), (2.39)

which proves (2.1a) for α = 0.

18



We now write the equation for Ã(z),

∇×H =
1

κ2
ℑ
[
ϕ̄
(
i∇+ Ã

)
ϕ
]

(2.40)

where H(z) = ∇× Ã(z). By (2.2c) we then have

∥∇H∥L∞[B(0,1)] ≤
C

κ2
e−βλd(x0,∂Ω),

and hence,

∥∇h∥L∞[B(x0,1/κ)]
≤ Ce−βλd(x0,∂Ω). (2.41)

We now utilize the coordinate system defined in (2.7). Suppose first that η = d(x0, ∂Ω) < δ.

Then, we can integrate (2.41) with respect to η to obtain

|h(s, δ)− h(s, η)| ≤ C

λ
e−βλη. (2.42)

Using (2.41) it is also easy to show that

∃h̃λ : d(x0, ∂Ω) ≥ δ ⇒ |h(x0)− h̃λ| ≤ Ce−βλδ

The last two inequalities when combined yield

∃h̃λ : |h(x0)− h̃λ| ≤ Cmax

(
e−βλδ,

1

λ
e−βλd(x0,∂Ω)

)
. (2.43)

Which proves (2.1b).

To prove (2.1c), and (2.1a) for α ≥ 1 we use (2.38) and (2.40) together with bootstraping

and Sobolev embedding. To prove (2.1d) we use (2.42) for η = 0, which gives

|hex − h̃λ| ≤
C

λ
.
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Then we use the same arguments as in lemma 2.6 to show

|hex − h̃λ| ≤
Cλ

κ

□

3 Conclusion

In [16] Pan obtains that in the limit κ→ ∞

∫
Ω

{
|ψ|2 +

∣∣∣∣1κ∇ψ − iAψ

∣∣∣∣2
}
eβ
√

κ(hex−κ)d(x,∂Ω)dx ≤ C√
κ(hex − κ)

(3.1)

whenever hex−κ≫ 1, for some β > 0 which is independent of κ. In the present contribution

we extend the validity of the above result to external fields satisfying

hex − κ≫ 1

κ

We also obtain, in theorem 2.1, convergence in Cα norms in contrast to the above L2 con-

vergence which is proved in [16]. It should be mentioned, however, that once L2 convergence

is obtained, it is possible to prove (2.39) and (2.41) and then proceed using bootstraping

and Sobolev embedding. The main advantage of the results in this work is therefore the

greater range of external fields for which exponential rate of decay is guaranteed. This is

facilitated by better a-priory estimates of the magnetic field: while in [16] it is first proved

that |h−hex| ≤ C in Ω whereas here, (2.24), provides a much better estimate on the magnetic

field.
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In addition to (3.1) it is demontrated in [16] that for hex − κ ≫ 1 the energy of the

global minimizer is evenly distributed along the bondary (for a more precise definition the

reader is refered to [16]). In view of the better estimated of h in the present contribution

it appears reasonable to believe that the validity of this result can be extended to external

fields satisfying hex − κ ≫ 1/κ. However, since the analysis in [16] is heavily based on the

assumption hex − κ ≫ 1, significant modification is necessary before it can be applied to a

greater range of applied magnetic fields.
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