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Abstract

In 1957 Abrikosov published his work on periodic solutions to the linearized Ginzburg-
Landau equations. Abrikosov’s analysis assumes periodic boundary conditions, which
are quite different than the natural boundary conditions the minimizer of the Ginzburg-
Landau energy functional should satisfy. In the present work we prove that the global
minimizer of the fully non-linear functional can be approximated, in every rectangular
subset of the domain, by one of the periodic solution to the linearized Ginzburg-Landau
equations in the plane. Furthermore, we prove that the energy of this solution is close
to the minimum of the energy over all Abrikosov’s solutions in that rectangle.

1 Introduction

Consider a planar superconducting body which is placed at a sufficiently low temperature
(below the critical one) under the action of an applied magnetic field . Its energy is given
by the Ginzburg-Landau energy functional which can be represented in the following dimen-
sionless form [11]

E =

∫
Ω

(
−|Ψ|2 +

|Ψ|4

2
+ |h− hex|2 +

∣∣∣∣ iκ∇Ψ + AΨ

∣∣∣∣2
)
dx1dx2 (1.1)

in which Ψ ∈ H1(Ω,C) is the superconducting order parameter, such that |Ψ| varies from
|Ψ| = 0 (when the material is at a normal state) to |Ψ| = 1 (for the purely superconducting
state). The magnetic vector potential is denoted by A ∈ H1(Ω,R2) (the magnetic field is,
then, given by h = ∇×A), hex is the constant applied magnetic field, and κ is the Ginzburg-
Landau parameter which is a material property. The superconductor lies in Ω, which is a
smooth connected domain. Its Gibbs free energy is given by E. Note that E is invariant to
the gauge transformation

Ψ → eiκζΨ ; A→ A+∇ζ . (1.2)
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where ζ is any smooth function. Thus, we confine ourselves in the sequel to competitors
from the space

H =
{

(ψ,A) ∈ H1(Ω,C)×H1(Ω,R2) | (A− Â) · n̂ Â = hexx1î2

}
, (1.3)

where î2 is a unit vector in the x2 direction.
For sufficiently large magnetic fields it is well known, both from experimental observa-

tions [20] and from theoretical predictions [14], that superconductivity is destroyed and the
material must be in the normal state. If the applied magnetic field is then decreased there
is a critical field where the material enters the superconducting phase once again. This field
is called “the onset field” and is denoted by HC3 . At the bifurcation from the normal state,
superconductivity remains concentrated near the boundary, which is why this phenomenon
has been termed “surface superconductivity” [23, 8, 9, 18, 12, 16].

In the absence of boundaries the critical field at which superconductivity nucleates is
denoted by HC2 and is smaller than HC3 (HC3 ≈ 1.7κ whereas HC2 = κ). Furthermore, the
bifurcating modes are periodic lattices, named after Abrikosov [2, 10, 4] which have been
observed experimentally [13]. It has been conjectured, therefore, by Rubinstein [22] that
superconductivity remains concentrated near the boundary for HC2 < hex < HC3 . When
hex ≈ HC2 (either for κ large or for large domains) a bifurcation of Abrikosov’s lattices far
away from the wall was conjectured [22].

Recently, it has been proved both in the large κ limit [21, 7], and in the large domain
limit [5] that as long as HC2 < hex < HC3 superconductivity remains concentrated near the
boundaries. However, the second part of the conjecture in [22] is still open. In [24] it is
shown for the global minimizer of (1.1) (ψκ, Aκ), that ψκ diminishes as hex ↑ HC2 away from
the boundaries. However, the exact structure of ψκ is that limit has never been found.

In [6] the bifurcation of periodic solutions from the one-dimensional surface superconduc-
tivity solution introduced in [21] was studied. Nevertheless, the analysis in [6] was performed
in a half-plane and under the assumption that the solutions are periodic in the direction par-
allel to the boundary.

In the present contribution we focus on the emergence of Abrikosov’s lattices in finite
domains in R2. We prove that after the second bifurcation, when hex is slightly smaller
than κ, the global minimizer of (1.1) in H, can be approximated in an appropriately chosen
rectangle in Ω, by one of Abrikosov’s solutions. Furthermore, we prove that the energy of
this solution is close to the minimum of the energy over all Abrikosov’s solutions in that
rectangle.

Thus, we prove the following result.

Theorem 1.1 Let

κ−1/5 � ε = [1− hex/κ]
1/2 � 1

log κ

Let further (ψκ, Aκ) denote the global minimizer of (1.1) in H. Then, denote by R a rectangle
in Ω whose side lengths are given by

L1 =
ωN√
hexκ

; L2 =
2π

ω
√
hexκ
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where N(κ, ε) ∈ N and ω(κ, ε) ∈ R are such that

1

κε5
� (L1L2)

1/2 ; r1 <
L2

L1

< r2

where r1 and r2 are independent of κand ε. Finally, let

PR =

{
u ∈ H1

loc(R2)

∣∣∣∣∣ u(x1 + L1, x2) = eihexκL1x2u(x1, x2) a.e.

u(x1, x2 + L2) = u(x1, x2) a.e.

}
,

UR =

{
u ∈ PR

∣∣∣∣ ∫
R

(
i

κ
∇+ Â

)
u ·
(
− i

κ
∇+ Â

)
φ̄ =

hex

κ

∫
R

uφ̄ ∀φ ∈ C∞c (R)

}
where Â is given in (1.3). Then, there exists u0(κ, ε) ∈ UR such that∫

R

|ψ − u0|2 ≤ Cε2
∫

R

|ψ|2 (1.4a)

JR(u0) ≤ inf
v∈UR

JR(v)[1− δ] < 0 ∀v ∈ UR (1.4b)

where

δ ≤ εα/4 ∀α < 1 (1.4c)

and

JR(u) =

∫
R

|u|4 − ε2|u|2. (1.4d)

Furthermore,
‖Aκ − Â‖H1(Ω) ≤ Cε3 ; ‖Aκ − Â‖H2(Ω) ≤ Cε2 (1.4e)

This result proves that we can approximate ψκ in every rectangular subset R of Ω, and
possibly even in diminishingly small rectangles (as κ → ∞), by some function u0 in UR,
which is the space of Abrikosov’s periodic solutions in R. Furthermore, the theorem shows
that u0 can be found by studying the minimization problem of JR in UR, which is a finite
dimensional subspace.

The rest of this contribution is arranged as follows: in the next section we review some
of the results obtained for the linear periodic problem, analyzed first by Abrikosov [2]. In
§ 3 we obtain some a-priory estimates that are valid for any critical point of (1.1). In § 4 we
obtain upper and lower bounds for (1.1) in R which enable the proof of theorem 1.1. Finally,
in § 5 we briefly summarize the main results of this work and emphasize some additional key
points.
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2 The periodic problem

Consider the problem (
i

κ
∇+ Â

)2

u =
hex

κ
u in R2 (2.1)

where
Â = hexx1î2 . (2.2)

Let ω ∈ R, and let

L1 =
ωN√
hexκ

; L2 =
2π

ω
√
hexκ

where N ∈ N. The periodic boundary conditions u should satisfy are given by{
v(x1 + L1, x2) = eiκhexL1x2v(x1, x2)

v(x1, x2 + L2) = v(x1, x2)
.

We can now apply another transformation

x→
√
κhexx

to obtain (
i∇+ x1î2

)2

v = v (2.3a)

v(x1 + L′1, x2) = eiωNx2v(x1, x2) (2.3b)

v(x1, x2 + L′2) = v(x1, x2) (2.3c)

where in the new coordinates

L′1 = ωN ; L′2 =
2π

ω
.

It is easy to check that the phase change around ∂R where R = [0, L′1]× [0, L′2] is 2πN . .
The general solution of (2.3a) and (2.3c) is given in the form

v =
∞∑

n=−∞

gn(x1)e
iωnx2

where gn satisfies
g′′n − [(x1 − nω)2 − 1]gn = 0 ,

whose general solution is given by

gn = Cne
− 1

2
(x1−nω)2 +DnG(x− nω) , (2.4)

where G can be expressed in terms of Parabolic Cylinder functions [1].
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From (2.3b) we conclude that for all x1 ∈ R we must have

gn(x1 + ωN) = gn−N(x1) ,

or, equivalently,
Cn = Cn−N ; Dn = Dn−N .

By the lemma of Riemann-Lebesgue we must have

gn(x1) −−−−→
|n|→∞

0 ∀x1 ∈ R

and since G(x1) is unbounded in R, we must have Dn = 0 for all n ∈ Z.
Consequently, the general solution of (2.3) is given by

v =
∞∑

n=−∞

Cne
− 1

2
(x1−nω)2eiωnx2

where Cn+N = Cn for all n. Thus, we can write that

v =
N−1∑
n=0

Cnfn (2.5a)

where

fn =
∞∑

r=−∞

ei(n+rN)ωx2e−
1
2
[x1−(n+rN)ω]2 . (2.5b)

Note that
fn+1(x1, x2) = eiωx2fn(x1 − ω) ,

and hence
‖fn‖L2(R) = ‖f‖ ∀0 ≤ n ≤ N − 1 . (2.6)

We now define the spaces

P =

{
u ∈ H1

loc(R2)

∣∣∣∣∣ u(x1 + L′1, x2) = eiωNx2u(x1, x2) a.e.

u(x1, x2 + L′2) = u(x1, x2) a.e.

}
, (2.7a)

U =

{
u ∈ P

∣∣∣∣ ∫
R

(
i∇+ x1î2

)
u ·
(
−i∇+ x1î2

)
φ̄ =

∫
R

uφ̄ ∀φ ∈ C∞c (R)

}
, (2.7b)

and state the following result:

Lemma 2.1 Let w ∈ P. Then,
w = w0 + w̃ (2.8)

where w0 ∈ U0 and w̃ ∈ U⊥0 (the orthogonal complement with respect to the L2(R) inner
product). Furthermore, ∫

R

|
(
−i∇+ x1î2

)
w̃|2 ≥ 3

∫
R

|w̃|2. (2.9)
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Proof: Since the restriction of P to H1(R) is a closed subspace of H1(R), and since U0 is a
closed subspace of P (2.8) follows immediately.

To prove (2.9) we recall first that w̃ must satisfy (2.3c), and hence it can be represented
by the Fourier series

w̃ =
∞∑

n=−∞

w̃n(x1)e
iωnx2 , (2.10)

where by (2.3b) we have
w̃n(x1 +Nω) = w̃n−N(x1) . (2.11)

Consequently, ∫
R

|w̃|2 = L′2

∞∑
n=−∞

∫ L′1

0

|w̃n|2dx1 = L′2

N−1∑
n=0

∫ ∞

−∞
|w̃n|2dx1, (2.12)

from which we also obtain that w̃n ∈ L2(R) for all 0 ≤ n ≤ N − 1.
Since w̃ ∈ U⊥0 we must have

〈w̃, fk〉 ∀0 ≤ k ≤ N − 1,

where fk is given by (2.5b) . Substituting (2.5b) into the above and making use of (2.10)
and (2.11) yields ∫ ∞

−∞
w̃n exp

{
−1

2
(x1 − nω)2

}
dx1 = 0 (2.13)

We now make use of (2.10) to obtain∫
R

|
(
−i∇+ x1î2

)
w̃|2 = L′2

∞∑
n=−∞

∫ L′1

0

|w̃′n − (x1 − nω)w̃n|2dx1 =

= L′2

N−1∑
n=0

∫ ∞

−∞
|w̃′n − (x1 − nω)w̃n|2dx1 , (2.14)

from which we obtain that w̃n ∈ H1
mag(R), where

H1
mag(R) =

{
w |

∫
R
|w|2 + |w′ − xw|2dx ≤ ∞

}
.

It is well-known [15] that

inf
u∈H1

mag(R)

u⊥e−x2/2

∫∞
−∞ |u

′ − xu|2dx∫∞
−∞ |u|2dx

= 3.

Consequently, by (2.14) and (2.12)∫
R

|
(
−i∇+ x1î2

)
w̃|2 ≥ 3L′2

N−1∑
n=0

∫ ∞

−∞
|w̃n|2dx1 = 3

∫
R

|w̃|2

�
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3 Apriory estimates

In this section we obtain some apriory estimates which should be satisfied by any solution
of the Euler-Lagrange equations and the natural boundary conditions associated with (1.1).
Thus, (ψ,A) must satisfy the equations(

i

κ
∇+ A

)2

ψ = ψ
(
1− |ψ|2

)
, (3.1a)

−∇×∇× A =
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A , (3.1b)

together with the boundary conditions(
i

κ
∇+ A

)
ψ · n̂ = 0 ; h = hex . (3.1c,d)

Since (3.1) are invariant to the gauge transformation (1.2) we fix the Coulomb gauge for A,
i.e.,

∇ · A = 0 in Ω ; (A− Â) · n̂ = 0 on ∂Ω (3.2)

where Â is given by (2.2).
The first apriory estimates include the following well-known results:

Lemma 3.1 Let hex ≥ κ− o(κ). Then, any solution of (3.1) must satisfy

‖ρ‖L∞(Ω) < 1 (3.3a)

‖h− hex‖C1(Ω̄) ≤ C (3.3b)∥∥∥∥( iκ∇+ A

)
ψ

∥∥∥∥
L∞(Ω̄)

≤ C . (3.3c)

Here and in the sequel, C is independent of κ and ε. Proof: See [17, 24].
Let now ε = (1− hex/κ)

1/2 be positive and satisfy

κ−1/5 � ε� 1

log κ
, (3.4)

as κ → ∞. In this case, according to the following result, every solution must be close to
the normal state ψ ≡ 0 h = hex:

Lemma 3.2 Let |ψ| = ρ. Any solution of (3.1) must satisfy∫
Ω

ρ4 ≤ Cε4 (3.5a)∫
Ω

|h− hex|2 ≤ Cε6 (3.5b)
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Furthermore, let Â : Ω → R2 satisfy (3.2) and

∇× Â = hex.

Then,

‖A− Â‖Lp(Ω) ≤ C(p)ε3 (3.5c)

‖A− Â‖H2(Ω) ≤ Cε2 (3.5d)

(3.5e)

for any p ≥ 1.

Proof: Let

f = h− κ+
1

2κ
ρ2 . (3.6)

In [5] it was shown that

∇2f − ρ2f = κ
∣∣∣Ĵ∣∣∣2 +

(
κ− 1

2κ

)
ρ4, (3.7)

The precise definition of Ĵ will not concern us. We shall be interested only in its following
property ∣∣∣Ĵ∣∣∣2 ρ2 = |∇f |2 . (3.8)

which is proved in [5].
Integrating (3.7) over Ω yields∫

Ω

∣∣∣∣∇fρ
∣∣∣∣2 +

∫
Ω

ρ4 +
1

κ

∫
Ω

ρ2(h− hex)− ε2
∫

Ω

ρ2 ≤ 1

κ

∫
∂Ω

∂f

∂n
.

Since by (3.3)
1

κ

∣∣∣∣∫
∂Ω

∂f

∂n

∣∣∣∣+ 1

κ

∣∣∣∣∫
Ω

ρ2(h− hex)

∣∣∣∣ ≤ C

κ
,

we obtain ∫
Ω

∣∣∣∣∇fρ
∣∣∣∣2 +

∫
Ω

ρ4 ≤ C

κ
+ ε2

∫
Ω

ρ2 ≤ C

κ
+ Cε2

[∫
Ω

ρ4

]1/2

. (3.9)

Using (3.4), (3.5a) easily follows. Furthermore,∫
Ω

|∇f | ≤
[∫

Ω

ρ2

]1/2
[∫

Ω

∣∣∣∣∇fρ
∣∣∣∣2
]1/2

≤ Cε3 .

Hence, ∫
Ω

|∇f |+
∫

∂Ω

|f − (hex − κ)| ≤ Cε3.
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Poincare inequality [19] then yields,

|f − (hex − κ)|W 1,1(Ω) ≤ Cε3.

Consequently, by the Gagliardo-Nirenberg inequality we obtain that∫
Ω

|f − (hex − κ)|2 ≤ Cε6,

from which (3.5b) readily follows. To prove (3.5c) we utilize the well-known inequality

‖A− Â‖H1(Ω) ≤
∫

Ω

|∇ × (A− Â)|2 =

∫
Ω

|h− hex|2 (3.10)

and Sobolev embedding. Finally, in order to prove (3.5d) we observe that by (3.1b)∫
Ω

|∇h|2 ≤
∫

Ω

ρ2

∣∣∣∣( iκ∇+ A

)
ψ

∣∣∣∣2 .
Multiplying (3.1a) by ρ2ψ̄ and integrating by parts we obtain∫

Ω

ρ2

∣∣∣∣( iκ∇+ A

)
ψ

∣∣∣∣2 ≤ ∫
Ω

ρ4 .

Hence, by (3.5a) ∫
Ω

|∇h|2 ≤ Cε4 .

Combining the above with (3.10) we obtain

‖A− Â‖H2(Ω) ≤ Cε2 .

�

We next proceed to obtain some L∞ estimates.

Lemma 3.3 Let Ωδ denote the domain

Ωδ = {x ∈ Ω | d(x, ∂Ω) ≥ δ} .

and let α denote, here and in the sequel, any real number smaller than 1. Then,

‖ψ‖L∞(Ω1/κε) ≤ Cαε
α/2 (3.11a)∥∥∥∥( iκ + A

)
ψ

∥∥∥∥
L∞(Ω1/κε)

≤ Cαε
α/2 (3.11b)

‖h− hex‖L∞(Ω1/κε) ≤ Cαε
α (3.11c)

(3.11d)
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Proof: Let χr denote a smooth cutoff function satisfying

χr(x) =

{
0 |x| > r

1 |x| < 1
2

|∇χr| ≤
C

r
|∇2χr| ≤

C

r2
. (3.12)

Let x0 ∈ Ω2/κε. We multiply (3.7) by χ1/κε(x− x0) and integrate by parts to obtain

−
∫

B 1
εκ

∇χ · ∇f −
∫

B 1
εκ

χρ2(h− κ) = κ

∫
B 1

εκ

χ

∣∣∣∣∇fρ
∣∣∣∣2 + κ

∫
B 1

εκ

χρ4 , (3.13)

where Br = B(x0, r). For the first integral on the right hand side of (3.13) we have∣∣∣∣∣
∫

B 1
εκ

∇χ · ∇f

∣∣∣∣∣ ≤
[∫

B 1
εκ

|∇χ|2ρ2

]1/2 [∫
B 1

εκ

∣∣∣∣∇fρ
∣∣∣∣2
]1/2

≤

≤ Cε1/2κ1/2

[∫
B 1

εκ

ρ4

]1/4 [∫
B 1

εκ

∣∣∣∣∇fρ
∣∣∣∣2
]1/2

.

For the second integral we have, utilizing (3.3b)∣∣∣∣∣
∫

B 1
εκ

χρ2(h− κ)

∣∣∣∣∣ ≤
∫

B 1
εκ

ρ2|h−hex|+
∫

B 1
εκ

ρ2|hex−κ| ≤ Cε

[∫
B 1

εκ

ρ4

]1/2

+C
1

εκ

[∫
B 1

εκ

ρ4

]1/2

Let

Xn =

∫
B 2n−1

εκ

ρ4

1/2

; Yn =

∫
B 2n−1

εκ

∣∣∣∣∇fρ
∣∣∣∣2
1/2

.

Then, by (3.13) we have

X2
0 + Y 2

0 ≤ C

[
ε1/2

κ1/2
X

1/2
1 Y1 +

ε2

κ
X1

]
. (3.14)

Since, ∣∣∣∣∇fρ
∣∣∣∣2 ≤ 2

∣∣∣∣∇hρ
∣∣∣∣2 +

2

κ2
|∇ρ|2 = 2

∣∣∣∣( iκ∇+ A

)
ψ

∣∣∣∣2 ,
we have by (3.3)

X2
0 + Y 2

0 ≤
C

εκ2

Since x0 was arbitrarily chosen, we can cover B1/εκ by a finite number of discs of radius
1/(2εκ). Consequently,

X2
1 + Y 2

1 ≤
C

εκ2
.
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Substituting in (3.14) yields

X2
0 + Y 2

0 ≤
C

ε1/4κ2
.

The above procedure can recursively be applied to obtain

X2
0 + Y 2

0 ≤
Cnε

2αn

κ2
,

where αn can be determined by the recurrence relation

αn =
1

4
+

3

4
αn−1 ; α0 = −1

2
.

Clearly, αn → 1, and hence, we can conclude that∫
B 1

εκ

ρ4 ≤ Cα
ε2α

κ2
∀α < 1 . (3.15)

We now apply the transformation

x→ κ(x− x0)

to (3.1a) in B(x0, 1/κ) to obtain(
i

κ
∇+ Ã

)2

ψ̃ = ψ̃
(
1− |ψ̃|2

)
in B(0, 1)

where ψ̃(x) = ψ(κ(x − x0)), Ã(κ(x − x0)). Standard elliptic estimates [3], together with
(1.2), then show that

‖|ψ̃|‖H2
mag [B(0,1)] ≤ C‖ψ̃‖L2[B(0,1)] = Cκ‖ψ‖L2[B(x0,1/κ)] ≤ Cκ1/2‖ψ‖L4[B(x0,1/κ)].

Wherein

‖u‖2
H2

mag(U) =

∫
U

|u|2 + |(i∇+ Ã)u|2 + |(i∇+ Ã)2u|2

Since

‖ψ‖4
L4[B(x0,1/κ)] ≤

∫
B 1

εκ

ρ4 ≤ Cα
ε2α

κ2
∀α < 1, (3.16)

(which is a rather crude estimate, but appears to be difficult to improve) (3.11a) follows
immediately from Sobolev embedding. To prove (3.11b) we use bootstrapping and Sobolev
embedding. Finally, to prove (3.11c) we notice that by (3.1b)

|∇h| ≤ ρ

∣∣∣∣( iκ + A)

)
ψ

∣∣∣∣ .
11



Consequently, by (3.11a), (3.11b), (3.3b), and (3.1d) we have

|h− hex| ≤ Cαε
α +

C

κε

�

We note, once again, that (3.11) is not the optimal estimate. Ideally, one should obtain

‖ψ‖L∞(Ω1/κε) +

∥∥∥∥( iκ + A

)
ψ

∥∥∥∥
L∞(Ω1/κε)

≤ Cε,

however, in view of the crudeness of (3.16), (3.11) is the best we can obtain here.
Let R(ε, κ) ⊂ Ω denote a rectangle whose sides length are given by

L1 =
ωN√
hexκ

; L2 =
2π

ω
√
hexκ

, (3.17)

where ω ∈ R, and N ∈ N are chosen such that

r1 ≤
L1

L2

≤ r2 ;
1

κε5
� (L1L2)

1/2 � 1,

where r1 and r2 are constant as κ → ∞ and ε → 0 according to (3.4). Denote by x1 and
x2 the coordinates in the respective directions of L1 and L2. Let R denote the image of R
under the transformation

x→
√
hexκx. (3.18)

Let PR denote the restriction of (2.7a) to H1(R) and PR denote its image under the inverse
of (3.18), i.e, the restriction to H1(R) ofu ∈ H1

loc(R2)

∣∣∣∣∣∣ u(x1 + L1, x2) = exp
{
iωN

√
hexκx2

}
u(x1, x2) a.e.

u(x1, x2 + L2) = u(x1, x2) a.e.

 .

Let η denote a smooth cutoff function satisfying

η =

{
1 d(x, ∂R) ≥ 1

κε

0 x ∈ R2 \R
|∇η| ≤ Cκε |∇2η| ≤ Cκ2ε2 . (3.19)

Let (ψκ, Aκ) denote the global minimizer (which depends on ε as well) of (1.1) inH. (To keep
the notation consistent with the one in the next section, we state the rest of the results in
this section for the global minimizer, although they could have been stated for any solution
of (3.1).) Clearly, ηψκ ∈ PR. Let UR denote the restriction of (2.7b) to H1(R). Let UR

denote its image under the inverse of (3.18), i.e,{
u ∈ PR

∣∣∣∣ ∫
R

(
i∇+ Â

)
u ·
(
−i∇+ Â

)
φ̄ =

hex

κ

∫
R

uφ̄ ∀φ ∈ C∞c (R)

}
.

12



From the results of § 2 it follows that UR is a finite dimensional subspace of PR. Fur-
thermore, we can now write

ηψκ = u0 + ũ (3.20)

where u0 ∈ UR and ũ ∈ U⊥R . The next lemma estimates the L2(R) of ũ.

Lemma 3.4 Let ũ be defined by (3.20). Then,∫
R

|ũ|2 ≤ Cε2
∫

R

|ψκ|2 + Cα(L1L2)
αε5 . (3.21)

Proof: We first multiply (3.1a) by η2ψ̄κ and integrate over R to obtain∫
R

∣∣∣∣( iκ∇+ Aκ

)
(ηψκ)

∣∣∣∣2 =
1

κ2

∫
R

|∇η|2|ψκ|2 +

∫
R

η2|ψκ|2(1− |ψκ|2) . (3.22)

We now write∫
R

∣∣∣∣( iκ∇+ Aκ

)
(ηψκ)

∣∣∣∣2 =

∫
R

∣∣∣∣( iκ∇+ Â

)
(ηψκ)

∣∣∣∣2
+

∫
R

η2(Aκ − Â) ·
[
i

κ

(
ψ̄κ∇ψκ − ψκ∇ψ̄κ

)
+ |ψκ|2Aκ

]
−
∫

R

η2|ψκ|2|Aκ − Â|2 (3.23)

For the second integral on the right-hand-side of (3.23) we have

I2 =

∣∣∣∣∫
R

η2(Aκ − Â) ·
[
i

κ

(
ψ̄κ∇ψκ − ψκ∇ψ̄κ

)
+ |ψκ|2Aκ

]∣∣∣∣ ≤
≤
[∫

R

η2|ψκ|2|Aκ − Â|2
]1/2

[∫
R

∣∣∣∣( iκ∇+ Aκ

)
(ηψκ)

∣∣∣∣2
]1/2

.

By (3.22) and Hölder inequality we thus have,

I2 ≤ C‖Aκ − Â‖L4(R)‖ψκ‖L4(R)‖ψκ‖L2(R) ≤ Cp(L1L2)
1
2
− 1

4p‖Aκ − Â‖L4p(R)‖ψκ‖2
L4(R) ∀p > 1

Since by (3.5c)
‖Aκ − Â‖Lp(R) ≤ ‖Aκ − Â‖Lp(Ω) ≤ Cε3 ,

we obtain
I2 ≤ Cα(L1L2)

αε5 ∀α < 1 . (3.24)

For the last integral on the right-hand-side of (3.23) we have∣∣∣∣∫
R

η2|ψκ|2|Aκ − Â|2
∣∣∣∣ ≤ ‖Aκ − Â‖2

L4(R)‖ψκ‖2
L4(R) ≤ Cα(L1L2)

αε8 . (3.25)

13



Consequently, by (3.23), (3.24), and (3.25),∫
R

∣∣∣∣( iκ∇+ Aκ

)
(ηψκ)

∣∣∣∣2 =

∫
R

∣∣∣∣( iκ∇+ Â

)
(ηψκ)

∣∣∣∣2 +O((L1L2)
αε5) . (3.26)

Combining the above with (3.22) and (3.20) we obtain∫
R

∣∣∣∣( iκ∇+ Â

)
ũ

∣∣∣∣2 − ∫
R

|ũ|2 +

∫
R

η2|ψκ|4 ∼=
1

κ2

∫
R

|∇η|2|ψκ|2 + ε2
∫

R

|u0|2 +O((L1L2)
αε5) .

(3.27)
By (2.9), however, ∫

R

∣∣∣∣( iκ∇+ Â

)
ũ

∣∣∣∣2 ≥ 3
hex

κ

∫
R

|ũ|2 .

Consequently,∫
R

|ũ|2 +

∫
R

η2|ψκ|4 ≤
1

κ2

∫
R

|∇η|2|ψκ|2 + ε2
∫

R

|u0|2 + Cα(L1L2)
αε5 . (3.28)

In view of (3.19) we obtain

1

κ2

∫
R

|∇η|2|ψκ|2 ≤ Cε2
∫

R

|ψκ|2 ,

and since ‖u0‖L2(R) ≤ ‖ψκ‖L2(R) , we can combine the above with (3.27) to obtain (3.21).

�

We note that the error term in (3.21) is indeed small compared with the first term on the
right-hand-side of (3.21), when α is sufficiently close to 1. We shall demonstrate this point
later when we obtain a lower bound for ‖ψκ‖L2(R) at the end of § 4.

Lemma (3.4) basically shows that ψκ is indeed close, in L2(R) sense to u0. However, in
order to obtain a minimization problem for u0 we need an estimate of (1.1). To this end, we
need the following L∞ estimate

Lemma 3.5 Let ũ be defined in (3.20). Then,

‖ũ‖L∞(R) ≤ Cαε
α (3.29a)∥∥∥∥( iκ∇+ Â

)
ũ

∥∥∥∥
L∞(R)

≤ Cαε
α (3.29b)

Proof: Since the proof is rather lengthy we divide it into several steps.

step 1: Let χr be given by (3.12), and let x0 ∈ R1/κε (see lemma 3.3 for the definition of

Rδ). Clearly, χ1/2κε(x− x0)ψκ ∈ PR. Denote by u
(0)
0 and ũ(0) the respective projection

of χ1/2κε(x− x0)ψκ on UR and U⊥R .
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step1.1: Prove that ∫
R

|ũ(0)|2 ≤ Cα
ε2α

κ2
. (3.30)

To prove (3.30) we repeat the same steps leading to (3.28) to obtain∫
R

|ũ(0)|2 +

∫
R

χ2|ψκ|4 ≤
1

κ2

∫
R

|∇χ|2|ψκ|2 + ε2
∫

R

|u(0)
0 |2 +

Cα

κ2αε2α
ε5

(where χ stands for χ1/2κε(x−x0)). Consequently, in view of (3.12), (3.17), and (3.15)
we have ∫

R

|ũ(0)|2 ≤ Cε2
∫

B(x0, 1
κε)
|ψκ|2 +

Cα

κ2αε2α
ε5 ≤ Cα

ε2α

κ2
.

step 1.2: Prove that

‖ũ(0)‖L∞(R) ≤ Cαε
α (3.31a)∥∥∥∥( iκ + Â

)
ũ(0)

∥∥∥∥
L∞(R)

≤ Cαε
α . (3.31b)

We use standard elliptic estimates to prove (3.31). Since ũ(0) = χψκ − u
(0)
0 we have in

view of (3.1a)(
i

κ
∇+ Â

)2

ũ(0) − hex

κ
ũ(0) = ε2χψκ − χ|ψκ|2ψκ −

1

κ2
ψκ∇2χ− |Aκ − Â|2χψκ+

+ 2(Aκ − Â) ·
(
i

κ
∇+ Aκ

)
(χψκ) + 2

i

κ
∇χ ·

(
i

κ
∇+ Aκ

)
ψκ (3.32)

Furthermore since, ˜u(0) ∈ PR, we can extend it periodically to R2, i.e.,

exp

{
−iω N√

hexκ
x2

}
˜u(0)(x1 + L1, x2) = ˜u(0)(x1, x2 + L2) = ˜u(0)(x1, x2) . (3.33)

The periodic extension of ˜u(0) satisfies (3.32) for every x ∈ R2 if the right hand side of
it is extended in exactly the same manner.

Applying (3.18) to (3.32) we obtain(
i∇+ x1î2

)2

ũ(0)−ũ(0) =
1

1− ε2
[ε2χψ̃κ−χ|ψ̃κ|2ψ̃κ]−ψ̃κ∇2χ−|(1−ε2)−1/2Ãκ−x1î2|2χψ̃κ+

+2((1−ε2)−1/2Ãκ−x1î2)·
(
i∇+ (1− ε2)−1/2Ãκ

)
(χψ̃κ)+2i∇χ·

(
i∇+ (1− ε2)−1/2Ãκ

)
ψ̃κ

(3.34)
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where (ψ̃κ, Ãκ) denote (ψκ, Aκ) in the stretched coordinates (3.18). To apply standard
elliptic estimates we need an L2 estimate of the right-hand-side of (3.34) in B(x, 1) for
every x ∈ R2. By (3.11a) and (3.15) we have that∫

B(x,1)

χ2|ψκ|6 ≤ Cαε
5α ∀α < 1 ,

and by (3.12) and (3.11a)∫
B(x,1)

|ψκ∇2χ|2 ≤ Cε4
∫

B(x,1)

|ψκ|2 ≤ Cαε
5α .

In view of (3.5d) and (3.11) we also have∫
B(x,1)

|(1− ε2)−1/2Aκ − x1î2|2 ·
∣∣(i∇+ (1− ε2)−1/2Aκ

)
ψκ

∣∣2 ≤ Cε5α .

Furthermore, ∫
B(x,1)

|∇χ|2
∣∣(i∇+ (1− ε2)−1/2Aκ

)
ψκ

∣∣2 ≤ Cε3α .

Finally, ∫
B(x,1)

|(1− ε2)−1/2Aκ − x1î2|2χ2|ψκ|2 ≤ Cαε
5α .

Combining the above and (3.30), we may rely on the framework in [3] to obtain

‖ũ(0)‖H2(B(x,1) ≤ Cαε
α ∀α < 1 .

Sobolev embedding then yields (3.31a). Bootstrapping and Sobolev embedding (3.31b).

Step 2: Prove (3.29).

We first note that (3.29) and (3.31) are different: while ũ is the projection of ηψκ on
U⊥R , ũ(0) is the projection of χψκ on the same space. To obtain (3.29) we thus need to
relate χ and η. Let then {xi}M

i=1 denote a set of points in R satisfying

1. R1/κε ⊆
M⋃
i=1

B
(
xi,

1
κε

)
2. B

(
xi,

1
4κε

)⋂
B
(
xj,

1
4κε

)
= ∅ if i 6= j.

Let {χi}M
i=1 denote a set of C∞ functions satisfying

1. suppχi ⊆ B
(
xi,

1
κε

)
2.
∑M

i=1 χi = 1, ∀x ∈ R1/κε.

3. |∇χi| ≤ C
κε
|∇2χi| ≤ C

κ2ε2
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Let

η =
M∑
i=1

χi . (3.35)

Clearly η satisfies (3.19) and hence, we may use it in (3.20) to define u0 and ũ. Fur-
thermore, let ũ(i) denote the projection of χiψκ on U⊥R . Then,

ũ =
M∑
i=1

ũ(i) .

Furthermore,

|ũ| ≤
M∑
i=1

|ũ(i)| , (3.36a)

∣∣∣∣( iκ + Â

)
ũ

∣∣∣∣ ≤ M∑
i=1

∣∣∣∣( iκ + Â

)
ũ(i)

∣∣∣∣ . (3.36b)

Since M is a large number, we seek an estimate for ũ(i) when |x− xi| > 2/κε.

step 2.1: Prove that

|ũ(i)(x)| ≤ Cαε
α/2N exp

{
−1

4
hexκ

[
d2

p(x, xi)−
2

κ2ε2

]}
(3.37a)∣∣∣∣( iκ + Â

)
ũ(i)(x)

∣∣∣∣ ≤ CN exp

{
−1

4
κ2

[
d2

p(x, xi)−
2

κ2ε2

]}
(3.37b)

where

dp(x, xi) = min
j,k=−1,0,1

|x− xi − (kL1, jL2)| (3.37c)

Since u
(i)
0 = −ũ(i) for every x ∈ R \ B(xi, 1/κε) we prove (3.37) for u

(i)
0 . Recall from

(2.5) that

u
(i)
0 =

N−1∑
n=0

Cnfn(x)

where fn is given by

fn =
∞∑

r=−∞

ei(n+rN)ω
√

hexκx2e−
1
2
[
√

hexκx1−(n+rN)ω]2 . (3.38)

Since u
(i)
0 is the projection of χiψκ on UR we have

Cn =
hexκω

(2π)3/2

∫
R

χiψfn .
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Let

ψ̂r
i =

√
hexκω

2π

∫ L2

0

e−iωn
√

hexκx2χiψdx2 .

Let xi = (xi1, xi2). Then, since ψ̂r
i (x1) is supported in (xi1 − 1/κε, xi1 + 1/κε) we have

Cn =

√
hexκ

2π

∞∑
r=−∞

∫ xi1+ 1
κε

xi1− 1
κε

ψ̂r
i e
− 1

2
[
√

hexκx1−(n+rN)ω]2dx1

By (3.11) and (3.12) we have that

|ψ̂r
i | ≤ Cαε

α/2 1

κεL2

∀α < 1 ,

(recall that L2 � 1/κε). Thus

Cn ≤ Cαε
α/2
√
hexκ

∞∑
r=−∞

∫ 1
κε

− 1
κε

e−
1
2
[
√

hexκ(x1−xi1)−(n+rN)ω]2dx1

Let
dp1(x1, y) = min

k=−1,0,1
|x1 − y − kL1|

Then,

Cn ≤ Cαε
α/2 exp

{
−1

2
hexκ

(
d2

p1(xi1, nω/
√
hexκ)−

1

ε2κ2

)}
. (3.39)

By (3.38) we have the estimate

|fn(x)| ≤ C exp

{
−1

2
hexκd

2
p1

(
x1, nω/

√
hexκ

)}
. (3.40)

Consequently,

|u(i)
0 (x)| ≤ Cαε

α/2

N−1∑
n=0

{
−1

2
hexκ

[
d2

p1

(
x1, nω/

√
hexκ

)
+ d2

p1

(
xi1, nω/

√
hexκ

)
− 1

ε2κ2

]}
.

Since
d2

p1(x1, xi1) ≤ 2
[
d2

p1

(
x1, nω/

√
hexκ

)
+ d2

p1

(
xi1, nω/

√
hexκ

)]
,

we have that

|u(i)
0 (x)| ≤ Cαε

α/2N

{
−1

4
hexκ

[
d2

p1

(
x1, xi1

)
− 2

ε2κ2

]}
. (3.41)

To prove that u
(i)
0 decays in the x2 direction we note that

w
(i)
0 = e−ihexκx1x2u

(i)
0
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satisfy the problem 
(

i
κ
∇− hexx2î1

)2

w
(i)
0 = hex

κ
w

(i)
0

w
(i)
0 (x1 + L1, x2) = w

(i)
0 (x1, x2)

w
(i)
0 (x1, x2 + L2) = w

(i)
0 (x1, x2)e

iκhexL2x1

.

Consequently, w
(i)
0 must decay in the x2 direction according to (3.41). We thus obtain

|u(i)
0 (x)| ≤ Cαε

α/2N

{
−1

4
hexκ

[
d2

p1

(
x2, xi2

)
− 2

ε2κ2

]}
. (3.42)

Combining (3.42) and (3.41) yields (3.37a), from which one can easily prove (3.37b)
using standard elliptic estimates.

Step 2.2: Prove (3.29).

Substituting (3.31) and (3.37) into (3.36) we obtain

|ũ(x)| ≤ Cα

[
εα +Ne−

1
ε2

]
.

Since L1L2 ≤ |Ω| we have
N ≤ Cε2κ2 .

Consequently, in view of (3.4) (3.29) is proved.

�

4 Upper and lower bounds

All the results of the previous section could have been formulated for any solution of the
Euler-Lagrange equations. In this section we concentrate, however, on the energy functional

ER(ψ,A) =

∫
R

(
−|ψ|2 +

|ψ|4

2
+ |h− hex|2 +

∣∣∣∣ iκ∇ψ + Aψ

∣∣∣∣2
)
. (4.1)

We obtain estimates for it in terms of the reduced functional JR which appears in theorem
1.1. We start by proving the following upper bound

Lemma 4.1 Let η be defined by (3.35), and let u0 and ũ be defined by (3.20). Then, for all
v ∈ UR

ER(ηψκ, Aκ) ≤ JR(v) + Cαε
α−1 (L1L2)

1/2

κ
(4.2a)
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where

JR(v) = −ε2
∫

R

|v|2 +
1

2

∫
R

|v|4 (4.2b)

Furthermore, ∫
R

|ũ|4 ≤ Cαε
2α

∫
R

|u0|4 + Cα

[
ε2α (L1L2)

1/2

κ
+ (L1L2)

αε7α

]
. (4.3)

Proof: Following [24], let η̃ denote a smooth cutoff function satisfying

η̃ =


1 x ∈ R
0 x ∈ A2

1 x ∈ Ω \R d(x, ∂R) ≥ 3
κε

|∇η̃| ≤ Cκε |∇2η̃| ≤ Cκ2ε2 . (4.4)

Where

Ak =
{
x ∈ Ω \R | k − 1

κε
≤ d(x, ∂R) ≤ k

κε

}
,

Let further

ψ̃ =

{
η̃vp d(x, ∂R) ≤ 3

2κε
or x ∈ R

η̃ψκ d(x, ∂R) ≥ 3
2κε

and x ∈ Ω \R
(4.5a)

where vp denotes a periodic extension, according to (3.33), of some v ∈ UR, and Ã satisfies

Ã =

{
Â x ∈ R ∪ A1

Aκ d(x, ∂R) ≥ 2
κε

and x ∈ Ω \R ,
(4.5b)

and,

‖∇ × Ã− hex‖L∞(Ω) ≤ Cε2 . (4.5c)

(cf. [24])
In view of the above, since (ψκ, Aκ) is the minimizer of E in H we have

E(ψ̃, Ã) ≥ E(ψκ, Aκ) .

Consequently,

0 ≤ E(ψ̃, Ã)− E(ψκ, Aκ) = ER(v, Â)− ER(ψκ, Aκ)+

+

∫
A

∣∣∣∣( iκ∇+ Ã

)
ψ̃

∣∣∣∣2 − ∣∣∣∣( iκ∇+ Aκ

)
ψκ

∣∣∣∣2 +

∫
A
|∇ × Ã− hex|2 − |∇ × Aκ − hex|2

+
1

2

∫
A

[
|ψ̃|4 − |ψκ|4

]
−
∫
A

[
|ψ̃|2 − |ψκ|2

]
(4.6)
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where
A = A1 ∪ A2 ∪ A3

By (4.5) and (3.11) we have∫
A
|∇ × Ã− hex|2 ≤ Cαε

4α (L1L2)
1/2

κε
∀α < 1 (4.7)

Moreover, by (4.4) and (3.11) we have∫
A3

∣∣∣∣( iκ∇+ Ã

)
ψ̃

∣∣∣∣2 − ∣∣∣∣( iκ∇+ Aκ

)
ψκ

∣∣∣∣2 ≤ Cαε
α−1 (L1L2)

1/2

κ
. (4.8)

To estimate the effect of∫
A1

∣∣∣∣( iκ∇+ Ã

)
ψ̃

∣∣∣∣2 − ∣∣∣∣( iκ∇+ Aκ

)
ψκ

∣∣∣∣2 ≤ Cαε
α−1 (L1L2)

1/2

κ

we choose first v ∈ UR such that ∫
R

|v|4 ≤ ε4L1L2 , (4.9)

which yields ∫
R

|v|2 ≤ ε2L1L2

In this case∫
A1

∣∣∣∣( iκ∇+ Â

)
η̃vp

∣∣∣∣2 =

∫
R∪A1

∣∣∣∣( iκ∇+ Â

)
η̃vp

∣∣∣∣2
−
∫

R

∣∣∣∣( iκ∇+ Â

)
vp

∣∣∣∣2 =

∫
A1

η̃2|vp|2 ≤
∫
A1

|vp|2 .

Let
vp

l = vp(x1 + l1, x2 + l2) ,

where 0 ≤ l1 ≤ L1 and 0 ≤ l2 ≤ L2. Clearly,∫
R

(∫
A
|vp

l |
2

)
dl1dl2 = |A|

∫
R

|v|2 .

Consequently,

inf
(l1,l2)∈R

∫
A
|vp

l |
2 ≤ |A|

|R|

∫
R

|v|2 ≤ Cε
L1L2

κ
.

Denote by (l1m, l2m) the values of l1 and l2 which minimize the L2(A) norm of vp
l and let

vm = vp(x1 + l1m, x2 + l2m) .
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If we choose vp = vm in (4.5a) we obtain∫
A1

∣∣∣∣( iκ∇+ Â

)
η̃vm

∣∣∣∣2 ≤ Cε
L1L2

κ
.

Combining the above with (4.8) we obtain∫
A

∣∣∣∣( iκ∇+ Ã

)
ψ̃

∣∣∣∣2 ≤ Cαε
α−1 (L1L2)

1/2

κ
. (4.10)

Combining (4.6), (4.7), (4.9), and (4.10) we obtain

ER(ψκ, Aκ) ≤ ER(vm, Â) + Cαε
α−1 (L1L2)

1/2

κ
∀α < 1 .

Since
ER(vm, Â) = JR(vm) = JR(v) ,

(4.2) is proved as long as (4.9) holds. To prove (4.2) for any v ∈ UR, we write

JR(γv) = −ε2γ2

∫
R

|v|2 +
1

2
γ4

∫
R

|v|4 .

It is easy to show that for a given v ∈ UR, JR(γv) is minimal for

γ2
0 = ε2

∫
R
|v|2∫

R
|v|4

.

Let w = γ0v. Then, ∫
R

|w|4 = ε2
∫

R

|w|2 , (4.11)

and hence ∫
R

|w|2 ≤ ε2L1L2 .

Consequently,

ER(ψκ, Aκ) ≤ JR(w) + Cαε
α−1 (L1L2)

1/2

κ
≤ JR(v) + Cαε

α−1 (L1L2)
1/2

κ
∀α < 1 .

which proves (4.2).
Let η be given by (3.35). It is easy to show that

ER(ηψκ, Aκ) ≤ ER(ψκ, Aκ) + Cαε
α−1 (L1L2)

1/2

κ
. (4.12)

By (3.26), (3.20), and (2.9) we obtain

ER(ηψκ, Aκ) ≥ −ε2
∫

R

|u0|2 +
1

2

∫
R

η4|ψκ|4 +

∫
R

|ũ|2 − Cα(L1L2)
αε5 . (4.13)
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Combining the above and (4.2) with v = u0 we obtain that∫
R

|ũ|2 ≤ 1

2

∫
R

|u0|4 + Cα

[
εα−1 (L1L2)

1/2

κ
+ (L1L2)

αε5
]
.

By (3.29) we then have∫
R

|ũ|4 ≤ Cαε
2α

∫
R

|u0|4 + Cα

[
ε2α (L1L2)

1/2

κ
+ (L1L2)

αε7α

]
.

�

Using (4.3) we can obtain a lower bound for ER(ψκ, Aκ) in terms of the reduced functional
JR.

Lemma 4.2 Let η be given by (3.35) and u0 be given by (3.20). Then,

ER(ψκ, Aκ) ≥ JR(u0)− Cα

[
εα−1 (L1L2)

1/2

κ
+ (L1L2)

αε5
]

(4.14)

for all α < 1.

Proof: By (4.12) and (4.13) we have that

ER(ψκ, Aκ) ≥ −ε2
∫

R

|u0|2 +
1

2

∫
R

η4|ψκ|4 − Cα(L1L2)
αε5 − Cαε

α−1 (L1L2)
1/2

κ
(4.15)

for all α < 1.
Since,

η4|ψκ|4 ≥ |u0|4 − 4|u0|3|ũ| ,
we have by (4.3) and Hölder inequality that∫

R

η4|ψκ|4 ≥
∫

R

|u0|4[1−Cαε
α/2]−Cα

[
(L1L2)

αε5 + εα−1 (L1L2)
1/2

κ

]1/4 [∫
R

|u0|4
]3/4

. (4.16)

By (4.3) we also have that

‖u0‖L4(R) ≤ ‖ηψκ‖L4(R) + ‖ũ‖L4(R) ≤ ‖ηψκ‖L4(R)+

+ Cα

[
εα/2 + (L1L2)

αε5 + εα−1 (L1L2)
1/2

κ

]1/4

‖u0‖L4(R) . (4.17)

To estimate ‖u0‖L4(R), we thus need an estimate for ‖ηψκ‖L4(R). By (3.28), (3.35), and
(2.9) we have that∫

R

η4|ψκ|4 ≤ ε2
∫

R

η2|ψκ|2 + Cα

[
(L1L2)

αε5 + εα−1 (L1L2)
1/2

κ

]
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(recall that ‖u0‖L2(R) ≤ ‖ηψκ‖L2(R)). Consequently,∫
R

η4|ψκ|4 ≤ ε4L1L2 + Cα

[
(L1L2)

αε5 + εα−1 (L1L2)
1/2

κ

]
We note that by (3.17) the first term on the right-hand-side of the above inequality is much
greater than the second one if α is sufficiently close to 1, such that

(L1L2)
1−α � ε .

Consequently ∫
R

|ηψκ|4 ≤ 2ε4L1L2 ,

and hence, by (4.17) we obtain ∫
R

|u0|4 ≤ 2ε4L1L2 .

Substituting in (4.16) and then in (4.15) we obtain (4.14).

�

Proof of theorem 1.1: Combining (4.2) and (4.14) we obtain

JR(u0) ≤ JR(v) + Cα

[
εα−1 (L1L2)

1/2

κ
+ (L1L2)

αε5
]

(4.18)

To prove (1.4a) we thus need an estimate for infv∈UR
JR(v). Let

β = inf
v∈UR

B(v) = L1L2 inf
v∈UR

∫
R
|v|4(∫

R
|v|2
)2 . (4.19)

Since UR is finite-dimensional, it is easy to show that there exists w ∈ UR satisfying∫
R

|w|4 = βL1L2

(∫
R

|w|2
)2

. (4.20)

Furthermore, since β is invariant to the transformation w → γw for every γ ∈ R we can
choose w such that (4.11) is satisfied. Combining (4.11) and (4.20) we obtain∫

R

|w|2 = ε2
L1L2

β

Thus, in view of (4.11)

JR(w) = −1

2
ε2
∫

R

|w|2 = −ε4L1L2

2β
.
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In [2, 10, 4] B(v) was calculated in various cases. In particular, it was found that when v is
the well-known square lattice, i.e, when

v = C
N−1∑
n=0

fn ,

where fn is given by (2.5b), that
B(v) ≈ 1.18

independently of N and the scale of R. It follows therefore, in view of (4.19) that

inf
v∈UR

JR(v) ≤ −Cε4L1L2 , (4.21)

where C > 0. Substituting (4.21) into (4.18) we obtain (1.4b).
To prove (1.4a) we write∫

R

|ψκ − u0|2 ≤ 2

[∫
R

|η − 1|2|ψκ|2 +

∫
R

|ũ|2
]
.

The right-hand-side of the above inequality can be bounded utilizing (3.21) and (3.19) to
obtain ∫

R

|ψκ − u0|2 ≤ Cε2
∫

R

|u0|2 + Cα(L1L2)
αε5 + Cαε

α−1 (L1L2)
1/2

κ
. (4.22)

Since ‖u0‖L2(R) ≤ ‖ψκ‖L2(R) we need a lower bound for ‖u0‖L2(R) to complete the proof of
(1.4a). To this end we use (1.4b) and (4.21) to obtain

β

2L1L2

‖u0‖4
L2(R) − ε2‖u0‖2

L2(R) ≤ JR(u0) ≤ −Cε4L1L2 ,

from which we obtain
‖u0‖2

L2(R) ≥ Cε2L1L2 .

Substituting in (4.22) proves (1.4a).
�

5 Conclusion

Let R(κ, ε) = [0, L1]× [0, L2], where L1 and L2 are given by (3.17). In the previous sections
the following main results were proved:

1. We proved that the L2(R) distance of ψκ from the space of Abrikosov solutions in R,
UR is much smaller than the L2(R) norm of ψκ.

2. We proved that the energy, which is given by (1.4d), of the projection of ηψκ on UR,
where η is given by (3.35), is approximately the minimum over all UR of (1.4d).
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We note that the above results do not show that ψκ is nearly periodic, inasmuch as ev-
ery function in L2(R) can be approximated by a periodic function. Nevertheless, since the
energy of the above projection is close to the minimum of JR over UR, we can obtain an
approximation of ψκ by studying a much simpler minimization problem than the minimiza-
tion of (1.1) in H. It is widely believed that the minimizer of JR in UR (which is a finite
dimensional space), is the well-known triangular lattice [2, 10, 4], as long as N , in (3.17),
is even. If in addition to that, any u ∈ UR whose energy is close to the minimum must be
close, in some sense to the triangular lattice, then ψκ is indeed nearly periodic.

It is seems worthwhile to note here that the direction of the lattice cannot be determined
by the energy considerations applied in the previous sections. Thus if

u′0(x) = u0(Qx) ; Â′ = hexQ

[
0
x1

]
,

where Q is a 2 × 2 rotation matrix, then, since the cells affected by the rotation are only
those near the boundary, we have that∣∣∣ER(u′0, Â

′)− ER(u0, Â)
∣∣∣ ≤ C

(L1L2)
1/2

κ
.

Clearly, the above error is indistinguishable by the lower and upper bounds, (4.14) and (4.2),
obtained in § 4.

Finally, we note that the limitations (3.4) could have been replaced by the weaker as-
sumptions

1

κ
� ε4 ; (L1L2)

1/2 � 1

κε4
,

if only we could overcome the crudeness of the estimate (3.16). However, to extend the
analysis to the case ε4 ∼ O(1/κ), a completely different approach is necessary, since in that
case the surface energy, which is of O(1/κ) is at least equally important to ER which is of
O(ε4L1L2).
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