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 ON THE BIFURCATION AND STABILITY OF PERIODIC

 SOLUTIONS OF THE GINZBURG-LANDAU EQUATIONS
 IN THE PLANE*

 YANIV ALMOGt

 Abstract. The linear bifurcation and stability of periodic solutions to the Ginzburg-Landau
 equations in the plane are investigated. In particular, we find new infinite families of solutions, which
 include the few solutions previously reported in the literature. Then, the vortex structure of these
 new solutions is examined. In addition, the energy of a large class of solutions is approximated in
 the limit case for which the fundamental cell is a very thin and long rectangle. In that limit, we find
 that the energy of the solution representing the well-known triangular lattice is the lowest. Finally,
 we examine the stability of one infinite family of solutions, including both the triangular and square
 lattices, in an infinite-dimensional space of perturbations (in contrast to a previous work in which
 stability was examined only in a finite-dimensional space). We find that in addition to the triangular
 lattice other solutions are stable as well.

 Key words. superconductivity, Ginzburg-Landau, Abrikosov

 AMS subject classification. 82D55

 PII. S0036139999353693

 1. Introduction. Periodic solutions to the Ginzburg-Landau equations were

 first obtained by Abrikosov [1], who analyzed the bifurcation of these solutions from
 the normal state. Abrikosov [1] focused attention on the square lattice which is the
 only periodic solution which has one vortex in its fundamental cell. Following the

 same procedure in [1], Kleiner, Roth, and Autler [10] found that the energy of the
 triangular lattice, which is the solution possessing two vortices in its fundamental cell,
 is lower than that of the square lattice. The triangular lattice has also been observed
 in experiments [7] and is therefore believed to be the only stable periodic solution.

 In a recent contribution, Chapman [3] presented Abrikosov's analysis [1] as a
 formal asymptotic expansion by applying the framework in [11] for the bifurcation of
 weakly nonlinear solutions to the Ginzburg-Landau equations. In addition, Chapman

 [3] obtained new solutions possessing either three or four vortices within the unit cell.
 He also examined in [4] the linear stability of the square lattice and the triangular
 one and found that the square lattice is unstable, whereas the triangular lattice was
 found to be stable for two modes of perturbations.

 Evidently, linear bifurcation analysis as well as linear stability analysis are far from
 being complete. Only very few solutions, out of infinity, have been found. Further-
 more, their stability was examined only in a finite-dimensional space of perturbations.
 The present contribution extends both the linear bifurcation and the linear stability

 analyses of periodic solutions. We obtain infinite sets of solutions (including all the
 solutions that were previously derived) and describe the vortex structures manifested
 by some of these solutions. We also demonstrate that the energy of the triangular
 lattice is the lowest, at a certain asymptotic limit, in a class which may contain all
 possible weakly nonlinear periodic solutions. Finally, we examine the linear stability
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 27, 1999; published electronically July 5, 2000. The research of this author was supported by the
 David Posnack Memorial lectureship fund.
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 YANIV ALMOG

 of one of the infinite families of solutions obtained in this work. In contrast to [4] the
 space of perturbations in which stability is being examined is infinite-dimensional.

 The Ginzburg-Landau energy functional may be represented in the following
 dimensionless form [5]:

 (1.1) E = J (-E2 ?+ - + IHI2 + 1V' - iAb) dxdy,

 in which I is the (complex) superconducting order parameter such that \IT varies
 from IT1 = 0 (when the material is at a normal state) to II| = 1 (for the purely
 superconducting state). The magnetic vector potential is denoted by A (the magnetic
 field is, then, given by H = V x A), and X is the Ginzburg-Landau parameter
 which is a material property. Superconductors for which n < 1/v/2 are termed type I
 superconductors and those for which n > 1//2' have been termed type II. Note that
 E is invariant to the gauge transformation

 (1.2) 4-4 e ire ; A - A+V. V

 We seek periodic local minimizers of E in the xy plane, i.e., we require both 11I
 and H to be periodic. The Euler-Lagrange equations associated with E (the steady
 state Ginzburg-Landau equations) are given by

 (1.3a) (V4AV + A = (1

 (1.3b) -V x (V x A) = - (*V, - ,V*) + I\l2A.

 What are the natural boundary conditions of the problem? Let (4, A) be a
 solution of (1.3) and let 4 = p(x, y)ei(x'y ). Both p and H have to be periodic on the
 boundary of any fundamental periodic cell, i.e., any rectangle R = [x, x + Lx] x [y, y +

 Ly]. Let t denote either Lxi or Lyj, and let x = (x, y). Then

 (1.4) '(x + t) = eiI(Xt)'(x); A(x + t) = A(x) + VT(, t).

 Since the zero set of 4 is discrete [6] we can substitute (1.4) in (1.3) to obtain VT =
 V( (cf. also [12]). The latter is equivalent to the "boundary condition"

 1
 (1.5) p -VO - A is periodic on OR.

 -

 The above condition, together with the requirement that both p and H should
 be periodic, constitutes the natural boundary conditions of the problem. Chapman

 [3] proposed boundary conditions different than (1.5). Instead he suggested to impose
 periodicity of (KV + A) f n. Chapman's condition is, however, too restrictive. In
 fact, none of the solutions derived in [3] satisfy it.

 As the Ginzburg-Landau equations are invariant to (1.2) we may choose the gauge
 (following [1, 3]) A = (0, A(x, y), 0). Then, H = (0, 0, H(x, y)) and H = OA/Ox. We
 investigate the linear bifurcation from the normal state I =- 0, A = hx, with h serving
 as a bifurcation parameter. Following the same steps taken in [3] we assume first the
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 BIFURCATION OF ABRIKOSOV LATTICES15

 asymptotic expansion

 (1.6a) - E1/24,

 (1.6b) A hx +,Ea,

 (1.6c) h ho ,hl

 (I1.6d) a ao ,a'

 The linearized equations possess the form

 (1.7a) -1 (02V)(0) 0 24,(0)\ + 2ih(0)xO4,0(0) _0 h())XV()
 K2 19 + 0y2 ) K 0 4

 O2 a(0) i O4,(o) ,/o)(O)*
 (1.7b) 00 2 0 k Ox Ox /

 Ox2 2 K k Y ay/

 The boundary condition (1.-5) for the specific gauge we have chosen becomes, after
 linearization,

 00(x,y+Ly) 00 (x,y+LY)
 (1.8a,b) () -= y =0,

 'o(xL,y) ao(x+L,y)

 Integrating (1.8a,b) and (1.8c,d) we obtain

 (1.9a) 0(x,y+L,,) = A; 01 (x+L,y) = Kh()Lxy +E,

 where A and 0 are constants. Hence the overall variation of 0 along OR is Kh(0O Lx Ly
 Continuity of 4,OM, then, yields

 (1. 10) Kh(0)LXLY 2rrN,

 where N is the number of vortices within R, or the winding number of 4,(O)*

 If 4,(x, y) is a solution of (1.7), then so is e7-Ay 4,(X - A/K,,y). Yet, the latter
 solution is periodic in y in view of (1.9a). We can therefore substitute into (1.7)
 without any loss of generality the Fourier expansion

 72 00

 to obtain

 (1.12) = ( - k2n + hkflhx - (h(O) X)2) gn
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 YANIV ALMOG

 Note that the sequence {gn(X)}l'_1 must be in e2 for any fixed value of x. The periods
 in the x and y directions are given in terms of the new variables k and N, in view of

 (1.10) and (1.11), as
 27r kN

 (1.13) Ly L= h(

 Applying the transformation x - x - nk/rh(?) to (1.12) we obtain

 (1.14) (?0) - eikny Cg(1) x - nh(O) + Cn(2) (x- h(o)
 n=-o0

 in which g(')(x) and g(2)(x) are the fundamental solutions of (1.12) for n = 0.
 In view of (1.13), (1.9), and the periodicity of p we have

 (1.15) 0(?) (x + Lx, y) = ei(kNy?+)O (0)(x,y) .
 Substitution of the above relation into (1.14) yields

 (1.16) C =+N = eieC , j= 1,2.

 As the sequence

 Cnlg(1) (x rh(o) g+ C2g(2) - tch(?-) )=l

 must be in e2 for all x, at least one solution of (1.12) has to be in L2(R) in view of
 (1.16). Nontrivial L2 solutions to (1.12) with n = 0 exist when h(?) = r/(2n + 1).
 The largest eigenvalue is h(?) = n, with the corresponding eigenfunction

 K7fK2 ( k )2}
 (1.17) go = exp - ( x- - )

 Substituting in (1.14) we obtain the general periodic solution to (1.7a) for h(?) =

 (1.18) ?(0)= Cnexp {ikny - (x- ) ,2}

 where Cn+N = Cneie, N is a natural number, and 13 E [0, 27r). Since we may remove
 E by applying the transformation y -> y - E/kN, we shall require Cn+N = Cn in
 what follows.

 We may now solve for (1.7b) and (1.7c), and then, by applying the expansion (1.6),
 obtain the next-order balance for V(1) which is an inhomogeneous version of (1.7a).
 The orthogonality condition which must be satisfied in order for the inhomogeneous
 next-order balance to be solvable is

 -/ (2 - 1) E Cn-r+mCmCrexp {- [(r m)2+(r-n)2] } 1- Cn =

 where 0 < n < N - 1. The detailed derivation of the above condition can be found in

 [3]. It is more convenient to write the above condition in the form

 N-1 N-1

 (1.19a) E E Cn+rCn+r+mCn+mSN,rSN,m - h(1)C = 0,
 r=O m=O
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 BIFURCATION OF ABRIKOSOV LATTICES

 wherein 0 < n < N - 1,

 (1.19b) h(1) -= 2 h(l)X

 and

 oo

 (1.19c) SN,r = q(Nn+)2; q = e 2- .
 n==-oo

 As was pointed out in the beginning of this section, a few solutions to (1.19) are
 already known. The most obvious one is

 (1.20) Cn = C

 which is the only solution for N = 1. For k = i'/V2W it is known as Abrikosov's square
 lattice. For N = 2 we have, in addition to (1.20), the solution

 (1.21) C2n = C, C2n+l = ?iC,

 which for k = /Itrv/3 is known as the triangular lattice. Chapman [3] obtained some
 of the solutions for N = 3 and N = 4.

 The following transformations leave (1.19) invariant:

 (1.22a) Cn - ei?Cn Vn N, 60 E RI,

 which changes only the phase of / in view of (1.18),

 (1.22b) C, -- ei2rn/N Cn ,

 which is equivalent to the translation: y -> y + Ly/N,

 (1.22c) Cn - Cn+l,

 or equivalently, x -* x + k/K2, and a phase change in b:

 (1.22d) Cn 3 CN-n,

 or x -- -x, -* *. Another important property of any solution of (1.19) is that
 Cn(h(1)) = CVh1 ((1), as can be verified by direct substitution. This would allow
 us to consider only h(1) = 1 in what follows.

 The rest of this contribution is arranged as follows. In the next section we obtain
 some of the properties of the solutions which are analytic functions of q near q = 0.
 Some of these solutions will be derived in closed form. In section 3 we obtain the

 lattices, or the vortex structures, embedded in some of the solutions obtained in
 section 2 and discuss their symmetry properties. In section 4 we demonstrate that
 in the limit q -* 0 (1.21) has the lowest energy of all solutions which are analytic
 functions of q, and thus support the claim that the triangular lattice has the lowest

 energy of all the periodic solutions of (1.3). In section 5 we analyze the local stability of
 some of the solutions derived in section 2, including the square lattice, the triangular

 lattice, and the solution which has been obtained for N = 3 [3]. In the last section,
 we summarize the main results of this work and extend the discussion of several key
 points insufficiently emphasized within the analysis. Finally, the appendix includes
 an analysis of the geometry of periodic lattices which are invariant to 180? rotations
 with respect to each point in the lattice.
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 2. Solutions as analytic functions of q. In the following we investigate some
 of the properties of the solutions of (1.19) which are analytic functions of q near q = 0,
 i.e.,

 00

 (2.1) Cn =a ankqk.
 k=0

 In general, solutions of a polynomial system whose coefficients are analytic functions

 of a parameter (including (1.19)) need not necessarily be analytic functions of that
 parameter. For instance, the solutions may be meromorphic functions of that param-
 eter.

 In this section attention is focused, however, on analytic solutions only. Though
 we cannot prove this in general, it appears reasonable to believe that all solutions can

 essentially be described by (2.1). The exception is, of course, the degrees of freedom
 the system (1.19) may possess. It easily follows from (1.22a) that at least one degree
 of freedom always exists: the arbitrary parameter 0. Thus (2.1) can be true only when
 0(q) is analytic near q 0.

 Substituting (2.1) into (1.19) we obtain the recurrence relation

 (2.2) ank = E a(n+r)ja(n+r+s)(M-m-j)a(n+s)m,
 r2+-s2<k m,j>O

 m+j_<M

 where M(r, s) = k - r- s2. (Note that in the above r and s may be negative.) For
 k = 0 it reduces to

 (2.3) ano = anO 2anO,

 and thus lanol E {0, 1}. As an immediate corollary of (2.3), it is possible now to show
 that at least all real solutions of (1.19) must be analytic functions of q near q = 0: Any
 formal series of q derived from (2.2) must converge in some neighborhood of q = 0
 (cf. [2]). Since the number of real formal series satisfying (2.2) is (by (2.3)) 3N, which
 is, by the Bezout theorem [9], the maximal number of real solutions to (1.19), every
 real solution must have the form (2.1) in the vicinity of q = 0. This corollary supports
 our conjecture that any solution of (1.19) can essentially be described by (2.1).

 Substituting (2.3) into (2.2) with k = 1 we obtain

 (2.4) anl = [-2 + ibnl]ano,

 where the bnl 's are arbitrary. The apparent nonuniqueness of anl will be subsequently
 examined.

 Substituting (2.3) and (2.4) in (2.2) with k = 2 we obtain the solvability condition

 (2.5) a a(n+2)0a(n+1)0ano + 2a(n+l)o(ano)2a(n-l)o + a* n2)oa0 -l)oa0o } 0

 which must be satisfied whenever lanol = 1. Setting ano = exp{iOn} we obtain

 (2.6a) sin Xn+ - 2 sin Xn + sin X-l =- 0,

 where

 Xn = On+1 - 20n + 0n-1.
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 BIFURCATION OF ABRIKOSOV LATTICES

 Hence, in the case lanol = 1 for all n we must have sin Xn =const., or

 (2.7) Xn E {X, 7r - X}, where X E [-7r/2, 7r/2],

 and hence

 (2.8) cos Xn = an cos X,

 where an E {-1, 1}. Periodicity then implies

 N-1 N-1

 (2.9) Z Xn = ( -X) - Zan + N2 = 27rL
 n=O n=O

 where 0 < L < N - 1 is an integer. We may now distinguish between two different
 cases:

 N-1

 (2.10a) E an Z 0
 n=O

 and

 N-1

 (2.10b) E an = 0.
 n==0

 In the first case X can assume at most N - 1 distinct values. In the second case, solu-
 tions may exist if and only if N is divisible by 4, in which case X may assume any value
 in the interval [-7r/2, 7r/2]. The foregoing discussion thus explains the nonuniqueness
 of solutions for N = 4 which was discovered in [3], as in this case the solutions depend
 on the additional arbitrary parameter X.

 If (2.6) is satisfied, (2.2) with k = 2 yields

 (2.11) an2 = 2 [12-cosX (an+i + 2aOn + an-i) - bnl + ibn2] .

 We now focus on the special class of solutions for which ICnl = ICI for all n. Denote
 this class by A (C E A(c CN) X ICnl = ICI for all 0 < n < N - 1). Clearly, every
 solution in A must satisfy anoI = 1. Hence, from (2.11) it follows that

 (2.12) an+l + 2an + an-1 = const..

 Two different solutions for (2.12) exist:

 (2.13a,b) an = ?1; an = ?(-1)n.

 Since in case (b) ZYn=o1 an = 0, N must be divisible by 4 in this case in view of (2.9).
 In case (a) X = 2irL/N for 0 < L < N - 1 and in case (b) X is arbitrary.

 The foregoing discussion is the basis for the following result, stating the general
 structure of solutions in class A.

 THEOREM 2.1. Let C E A and Cn = ICleion. Then, either

 -1 X- -1 N27rL
 (2.14a) Xn = n+l - 20n + On-1 = N' 0 < L < N- 1,
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 YANIV ALMOG

 or

 (2.14b) (- - ); - < X < -

 Proof. We first prove that (2.14) do indeed represent solutions in class A. To this
 end, it suffices to show that they satisfy (1.19). Indeed, since

 P q

 (2.15) (On+p - On) - (On+p+q - On+q) =- E E Xn+m+k,
 m=O k=O

 and since SN,p = SN,N-p, both (2.14a) and (2.14b) satisfy (1.19).
 To prove that any C E A satisfies (2.14) we first show that for any C E A we

 must have

 (2.16a) C = exp{iO(q)}C,

 where the coefficients in the power series expansion of C E A must satisfy

 (2.16b) ank = [fk + i(-1)ndk] ano Vk > 1,

 in which fk and dk are real numbers, and O(q) is analytic near q = 0. We demonstrate
 in the following that for (2.14a) dk = 0 for all k, as the dk's reflect possible dependence
 of X on q in (2.14b).

 We prove (2.16) by invoking inductive arguments. We first show its validity for
 n = 1. To this end we need to examine (2.2) with k = 3. In view of (2.4) and (2.11)
 this relation is solvable if and only if

 (2.17) Abi = 0,

 where bi = [bli,... , bnl]T and A is an N x N symmetric matrix whose components
 are given by

 (cn+l (j - m) = 2 mod N,
 -2 (an+1 + an) (j - m) = 1 mod N,

 (2.18) Amj (an+ +4an + (an-) j = m,
 -2 (an-i + an) (m-j)=1 mod N,
 al-i (m-j)=2 mod N,
 0 otherwise.

 For both cases (2.14a) and (2.14b) A is a circulant matrix. In case (2.13a) r(A) =
 N- and kerA = span [1,... ,1]T. In case (2.13b) r(A) = N- 2 and kerA =
 span {[1,..., 1]T [-1,1,... , (-1)N]T}. Hence,

 ani = [-2 + ibl + i(-l)ndl] ano,

 where d1 = 0 in case (2.13a). Multiplication of C by exp{-iblq} demonstrates the
 validity of (2.16) for k = 1.
 Assume by induction the validity of (2.16) for 0 < k < K - 1 for any C G A.

 In case (2.13a) we assume dk = 0 as well. It is sufficient to consider only O(q) = 0 in
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 (2.16a). If not, we can obtain the next-order term for e-iO(q)C, which must be in A
 as well.

 As ICnj = ICl for all n we have

 k

 (2.19) anman(k--m) = Fk-
 m=O

 Substituting (2.16b) into the above relation with k = K we obtain

 K

 FK = 5 (fmfK-m - dmdK-m) + 2SR (anKa*o),
 m=l

 and hence

 (2.20) anK = [fK + ienK] anO.

 Substitution of (2.20) into (2.19) with k = K + 1 yields

 (2.21) R (an(K+l)ano) = fK+l - enKdl(1)n,

 wherein fK+l E IR. We now substitute (2.16b) for 1 < k < K -1 together with (2.20)
 and (2.21) into (2.2) with k = K + 2. A tedious calculation leads to the solvability
 condition

 (2.22a) AnmemK = (-1) GK,

 where

 GK = -2dlfK+l - 2d2fK + 4dlfK

 + E [2fjfK+2-m-jdm - fjdK+2-m-jfm + djdK+2-m-jdm]
 m,j> 1

 3<m+j<K

 + 5 [2fjfK+l-m-jdm - fjdK+l-m-jfm + djdK+l-m-jdm]
 m,j>l

 2<m+j<K

 + E E {fjfM-m-jdm [(-1) + (-1)r]
 2<r2+s2<K+2 m,j>l

 m+j<M

 (2.22b) - fjdM-m-jfm(-)r+ + djdM-m-jdm} ,

 and M = K + 2-r2 - s2.

 In case (2.13a) GK vanishes, and hence enK = bK. Then, multiplying C by
 exp{-ibKqK} yields a solution in A which satisfies (2.16). In case (2.13b) if GK #- 0,
 no solution to (2.22a) can exist, as the right-hand side is not orthogonal to kerA.
 Consequently, in such a case C is not a solution of (1.19) and is, therefore, not of
 any interest. If GK = 0, (2.16) is satisfied with dk $7 0, which completes the proof of
 (2.16).

 In case (2.13a), the proof of the theorem is complete since by (2.16) any solution
 must satisfy

 (2.23) Cn = eiO(q) ( fkqk) ano.
 k=0
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 If the power series on the right-hand side of (2.23) converges in some neighborhood
 of q = 0 [2], it satisfies (2.14a). In case (2.13b) any solution must be of the form

 (2.24) Cn = eiO(q) (fk + i(-l)ndk) qk ano.
 _k=0

 Let

 x(q) = arctan { E= dEqk }

 which is an analytic function near q = 0, as do = 0 and fo = 1. Then,

 (2.25) Cn = ei?(q)-C(q)lei(-1)'x(q)ano

 It is easy to show that (2.25) satisfies (2.14b). 0
 To conclude this section we present solutions for which ICnl E {(C|,0}. Two

 different types of solutions exist in this class, in addition to class A solutions:
 1. Solutions for which

 - T

 C = Co,O,... ,0, C1,... ,CN-1,... ,0

 _ R terms

 where C = [Co,C1,... ,CN-1]T c A, and R < 2 is an integer. In view of
 (1.18) we obtain, however, (C, k/R) = b(C, k), and hence this type of
 solutions is not of any particular interest.

 2. Solutions for which C3n = 0, JC3n+l1 = |C3n+21 = ICI, in which case N must
 be divisible by 3. As in class A, there are two different cases (On = arg{Cn}):

 (2.26a) 03n+4 - 203n+1 + 03n-2 = 03n+5 - 203n+2 + 03n-1 = -N/3'

 and

 (2.26b) 03n+4 - 203n+1 + 03n-2 = 03n+5- 203n+2 + 03n-1 = - b) ,

 where 0 < L < N/3 - 1 and -7r/2 < 4b < 7r/2. In case (2.26b) N must be
 divisible by 12.

 Unlike class A, we do not prove that the above types include all possible solutions for
 which ICnl E { Cl, 0}. Though it seems reasonable to believe that this is indeed the
 situation, the proof appears to be technically difficult.

 3. Vortex structure. In this section we first present the vortex structures em-

 bedded in (2.14a) and (2.26a) and analyze some of their properties. We then briefly
 sketch, via a simple numerical calculation, the dependence of the vortex location on

 the parameters k and X for the solution (2.14a) with N = 4.
 It is more convenient to present the location of the vortices by the normalized

 coordinates

 = x/Lx and r7 = y/Ly
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 rather than by the original coordinates x and y. In terms of these coordinates ;(?) is
 expressible in the form

 00

 (3.2) = S Cnei2 n"7q(N-n)2
 n=-oo

 The points at which OM) vanishes, or the vortices, for the class of solutions (2.14a)
 are given by

 (3.3) (')m, 7m) (2m+1 2(M+mL)+l) (3.3 ) ((rfm)= (2N ' 2N '

 where 0 < m < N - 1, and the integer 0 < M < N - 1 reflects the possibility of

 translating the entire lattice by multiples of 1/N in rj (arbitrary translations are not
 permitted as Cn+N = Cn), and L is defined in (2.14a). The validity of (3.3) can be
 easily verified by substituting it, together with (2.14a), into (3.2). Similarly, when
 (2.26b) is satisfied, the vortices are located at

 (3.4a) (63m, 73m) - (3m (2M 3m))

 (3.4b) (63m+1,773m+l) = ( ,m (2M + 3mL) +

 (6m+3 (4M+6mL+3))
 (3.4c) (43m+1,73m41) = t 2N 4N J

 in which 0 < M < N - 1 and 0 < m < N/3 - 1.

 Equation (3.3) represents lattices whose vortices are located along parallel straight
 lines with equal spacing between them. The separation in the r1 direction between two
 adjacent lines is exactly 1 (or Ly in the original coordinates x and y). The lattices
 which (3.4) represents are characterized by pairs of parallel lines: the spacing between
 the vortices along one of the lines in the pair is twice larger (or smaller) than the
 spacing along the other line. The separation in the 7r direction between two adjacent
 lines is 1/2 in that case. It is very easy to show that both (3.3) and (3.4) are invariant
 to the transformation

 --+ 2 -m -- 27 m -71 Vm.

 Alternatively we may state that all the lattices satisfying either (3.3) or (3.4) are
 invariant to rotations of 180? with respect to each lattice point (vortex). In the
 appendix we briefly discuss lattices which are invariant to such rotations. We show
 that their points must either be located along parallel straight lines with equal spacing

 between them (similar to the lattices satisfying (3.3)), or else be located along pairs
 of parallel straight lines in a similar manner to the lattices described by (3.4).

 Figure 3.1 displays pictures of sample lattices. In part (a) we present two lattices
 of type (3.3) for the case N = 6. The first one, whose vortices are marked by squares
 corresponds to the case L = 1, M = 0 (both lattices in Figure 3.1(a) are translated
 by N in both the ~ and r directions). All the vortices lie in that case on the principal
 diagonal of the unit cell, marked by a solid line in the figure. The second lattice
 corresponds to L = 5 and M = 0. The vortices are located on the dashed lines
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 FIG. 3.1. Sample lattices of type (3.3) (a) and (3.4) (b).

 which are separated in the ~ direction by 1/5. It is also possible to present this lattice
 by substituting L = -1 in (3.3) instead of L = 5. The vortices, marked by circles,
 are indeed located on the diagonal connecting (0, 1) and (1, 0) in the unit cell. The
 transformation L -- L ? N thus does not change the loci of the vortices but can offer
 us different explanations of the lattice structure. Figure l(b) displays a picture of a
 lattice of type (3.4) for N = 9, L = 1, and M = 0.

 From a physical point of view, the fact that the above mentioned lattices can exist
 is not surprising, since the repulsion forces between the vortices must cancel each other
 in view of the invariance to 180? rotations. As this symmetry exists independently

 of q, or the ratio between Lx and Ly, the coordinates of the vortices in the ~rj plane
 are independent of q as well (as can be seen directly from (3.3) and (3.4)). In the
 following, we prove that if C is an analytic function near q = 0 ((2.1) is satisfied),
 and if ano I = 1 for all n, then the vortex location, in the ~r7 plane, must either depend
 on q or be of the form (3.3).

 We look, then, for lattices for which dnm/dq = d7)m/dq = 0 for all 0 < m < N- 1.
 We look for the first vortex in the strip 0 < (o < 1/N. We then substitute (2.1) into
 (3.2), to obtain the leading-order balance

 (3.5)  aooq(NFo)2+ e2i27Oaroq(No _1)2 (q(NLo+1)2q(No-2)2)

 Since laool = lalol, a vortex would exist when o0 e [0, 1/N) only if ~o = 1/2N, and

 aoo + ei27 ralo = 0.

 Similar considerations would lead to the conclusion that a vortex can exist in the strip

 n/N < , < (n + 1)/N only if

 (3.6)
 2n +1

 2N  ano + ei2"na(n+l)o = 0.

 It is easy to show, by expanding ?(0) near (F, rkn) and q = 0, that the vortex which
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 1 , I I 1 ! 1

 0.875- A -0

 0.75 - A -4 oo- ------ A - oo

 0.625 - A = 1
 A->0

 0.5 -

 A -0
 0.375 -

 0.25 -

 0.125- A = 1
 A -0

 0 I I I I I I

 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

 FIG. 3.2. The loci of vortices as a function of A = L,/Ly in the normalized unit cell for the
 case (2.14b) with N = 4 and X = 0.

 can exist there must be a simple vortex. Hence, (3.6) must be satisfied simultaneously
 for n = 0,... ,N-1.

 As the O(q5/4) balance does not convey any new information on possible lattice
 geometries we move to present the O(q9/4) directly:

 (3.7) a(nl)e-12 + an2 + a(n+1)2e i2n + a(n+2)oe47 = 0.

 Substitution of (2.11) and (3.6) into (3.7) yields

 an+2 + 3an+1 - 3an - an-i = 0 V0 < n < N - 1,

 admitting the unique solution an = i1 for all n. Theorem 2.1 demonstrates that any
 solution for which Cn = i?1 is expressible in the form (2.14a), representing the lattice
 (3.3).

 Finally, we consider one of the cases in which equilibrium is not guaranteed by
 the special symmetry of the lattice. In these cases the lattice depends on q(k). Figure
 3.2 plots the loci of the vortices as a function of A = Lx/Ly in the ~rl plane for the
 solution (2.14) with N = 4 and X = 0. In general, four distinct vortices exist: two
 of them are located along the full curves and the other two along the dashed curves.

 Note that when Lx = Ly, two double vortices exist-a situation which must be highly
 unstable.
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 4. Energies. Abrikosov [1] demonstrates that the energy functional is propor-
 tional to

 1 H2 2-H
 2 + 1 + (2n2- 1)/3'

 where H is the average magnetic field, and

 I1)(0) 14

 / (- - 2'

 Thus, for n > 1/vf2 and fixed H, the free energy is minimized by minimizing /3. At a
 critical point, when C is a solution of (1.19), we have

 (4.1) =N k IICIt-2.

 Hence, when IICl12 is maximal 3 is minimal and vice versa.
 We now present an asymptotic calculation of IIC|12 in the limit q - 0, for the set

 of all the solutions of (1.19) which obey (2.1). Since

 N-1 oo k

 (4.2) |C|2 = E E E anma(k-m)q
 n=0 k=0 m=0

 we have

 N-1

 ICl2 = E lanO12 + O(q).
 n=O

 The above relation shows that as q -* 0 solutions for which ano I = 1 for all n have
 lower energy than those for which, for at least one value of n, we have IanoI = 0.

 Suppose now that lan0o = 1 for all n. Then, in view of (4.2), (2.4), and (2.11)

 (4.3a) CII2 = N 1-4q + 16 - cos X E cn q2 + O(q3)
 n=-0

 or

 (4.3b) /log(/q) 1 + 4q + cos x nq2 + O(q3)
 n=O

 Hence, /3 is minimized when X = 7r and an = 1 for all n, or alternatively, in view
 of (2.6), when Xn = 7r for all n. It is easy to show, from (2.6) that the only solution
 satisfying this requirement is (1.21).

 The above calculation demonstrates that (1.21), which represents the triangular
 lattice, has the lowest possible energy among all the solutions of (1.19) which are
 analytic near q = 0, in the limit q -* 0. The preferred value of q is found in the
 literature [1, 10, 3] by minimizing /(C, q) for fixed values of C. The exact expression
 for /3 for solutions of the type (2.14a) is given by
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 1.185 1 1 1 1

 1.18 - -

 1.175 -

 /3min 1.17 -

 1.165- -

 1.16 -

 1.155 1 1 1 1
 0 0.2 0.4 0.6 0.8 1

 X/l7

 FIG. 4.1. The dependence of the minimal value of /3, with respect to q, for the solutions (2.14a),
 on X.

 (4.4) i3(x, q) = lo ) qm2+r2e-imr
 m,r=-oo

 For the triangular lattice X = 7r, 3 is minimized at q = e-v3/2 [10, 3]. Substituting
 these values into both (4.3b) and (4.4) we obtain, by comparison, a relative error of
 O(10-5). The error for the square lattice is of the same order of magnitude.

 We conclude this section by comparing the energies of the different solutions of
 the form (2.14a). Figure 4.1 plots the dependence of the value of /, after minimization
 with respect to q, as a function of x/Tr. Applying the transformation m -+ -m in (4.4)
 we obtain /(X, q) = /3(-X, q), and hence we plot / for 0 < X < 7r only. We note that
 the square lattice (X = 0) has the highest energy, whereas the triangular lattice has
 the lowest.

 5. Linear stability. The time-dependent Ginzburg-Landau equations are [8]

 (5. 1a) T 0+- + V + (V+A) T = (1 - 12),

 (5.1b) -V x (V x A)0;b + V = 2 (*V - VX*) + I A,

 where a is a time scale and X$ is the magnetic potential. Following [4] we consider a
 small perturbation of a steady solution of (1.3). Thus,

 (5.2a) XI = 1o + 6e'ati,

 (5.2b) A = Ao + 5eatA1,

 (5.2c)
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 wherein 0 < 6 << c < 1, To, and Ao are given by the expansion (1.6), and T'i,

 A1 = (0, A (x, y), 0), 41, and a may be similarly expanded, i.e.,

 (5.3a) f_ el1/2- ,
 (5.3b) A1 - eal,

 (5.3c) 4)1 - Eil,

 (5.3d) 1 = -0) + O +E1) + ...

 (5.3e) al = a() + ea) +...

 (5.3fg) - '(0) = + e(1) + ...
 (5.3g) a = (o) + e<0(1) +

 Substituting (5.2) and (5.3) into (5.1) we obtain the leading-order balance

 .aa(?) i 1 02 (?) 02(O)) 2ih(?)x0~?) a o) h(O))2x2~?)
 (5.4a) 2 K -2 1 a2 + y2 + ay - -

 (5.4b)

 "at^- o =~ - Y o- + 0 o )1 ~ 0 o o o ' OxOy ax 2- ax + y0 x Oy )

 92 (?) a _O) (0) (0)* () _(O0)* (_ ( 0))*
 al _91 (0) (0) = yvo 0)*0 +1 y 0 1) 0, )

 (5.4c) +h()x (() 0)* + ()*

 Equation (5.4a) possesses nontrivial solutions whenever

 (5.5) 5(?) - ( -2n- ) a = h(O) -

 When h() = - all the modes are stable except for n = 0 for which a() 0. The
 periodic modes in this case are given by

 (5.6) )-) = Bn exp ikny - (x- 42)},

 and Bn = Bn+N for some natural numbers N. More generally we should consider
 Bn = Bn+lgei?, as translated mode of perturbations are also of interest. We shall,
 however, examine this case only later.

 Proceeding with the next-order balance (in powers of e) we obtain the solvability
 condition [4]

 2f2ao(1) 2B C* C C B* C CrCmCn-r+m 2 a(1)2 Bn - > 2Bn-r+mCmCr + Cn-r+mB*mCr - CrC n-r+m B 1 - 2n2 Cn n r,m -

 x exp -2 [(r-m)2 + (r - n)2] .
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 With the aid of (1.19) we obtain (for h(1) = 1)

 (5.7a)
 N-1N-1

 E Z [2Cn+rcn+r+mBn+m + Cn+rBn+r+mCn+m] SN,rSN,m - Bn - = (1) Bn,
 r=O m=0

 wherein

 (5.7b) ( = a

 The left-hand side of (5.7a) is a linear transformation of the vector B = [BO,...,
 BN-1]T E CN. Denote this transformation by T: CN -+ CN. The field above which
 we define CN must be R rather than C, otherwise T(B, B*) would not be a linear
 transformation. Our goal is then to find the eigenvalues of T. Since the field of scalars
 is JR we have 2N eigenvalues. Naturally, the eigenvalues depend on the steady solution
 C, whose stability is examined. There is, however, an infinite number of presentations

 for every solution. Consider, for instance, (1.21): we may present it as a vector in C2

 (5.8a) C = [C, i]T,

 or as a vector in C2P

 (5.8b) C = [C, iC, C, iC, ... , C, iC]T,

 or as a vector in C2PR

 (5.8c) C [C, 0,... , , iC, 0,... .0, C,.... iC].
 R terms

 In the latter case, in order to maintain Ly invariant, we need to substitute k/R instead
 of k in (1.18).

 The difference between the various presentations is not only semantic. If we adopt

 the presentation (5.8a) we will be forced to present the eigenvalue problem (5.7) in
 C2. Such an analysis has been performed by Chapman [4]. As B C C2 the analysis is
 confined to a four-dimensional perturbation space.

 Adopting the presentation (5.8a), we may consider B C C2P. Such a presentation
 allows us to consider perturbations whose period in the y direction is still Ly, but their
 period in the x direction would be PLx, where P can be set to be arbitrarily large.
 Furthermore, by applying the transformation (1.22b) we may consider translations
 by aLy in the y direction of the perturbation (5.6), where a is a rational number
 (irrational values of a can be allowed only if we replace the requirement Bn = B~n+
 by Bn = Bn+&ei9). The most general class of periodic perturbations, which can be
 examined within the present framework, is obtained by adopting the presentation
 (5.8c). Such a presentation allows for perturbations whose respective periods in the x
 and y directions are PLx and RLy, where both P and R can be set to be arbitrarily
 large.

 It is convenient to rewrite (5.7) in the form

 (5.9a) d-B = TiB + T2B*,
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 where

 N-i N-i

 (5.9b) [TiB]n = E E 2Cn+rC+r+mBn+mSN,rSN,m - Bn
 r=O m=O0

 and

 N-1N-1

 (5.9c) [T2B*] = E E CnrB:n+r+mCn+mSN,rSN,m.
 r=0 m=0

 We examine the stability of steady solutions of the form (2.14a). The transformation
 T1 can be represented in this case by an Hermitian matrix whose eigenvectors are
 given by

 (5.10) Bs)= 1 fClel n R r+s Cn \C\(/NR)1/2 0 otherwise,

 where 0 < 1, r < N/R- 1, 0 < s < R-1, and

 2i r

 The eigenvalues of T1 are given by

 00

 (5.11a) A(r,s) - 2C12 E 12+(m-_)2i(-mx+21) - 1,
 I,m=-oo

 in which

 wry

 (5.1lb) N/R

 and

 00

 (5.11c) ICl -2= 5 q12+m2 e-imx.
 I,m=-oo

 In the above X is given by (2.14a) with N replaced by N/R. We note that A(,rs) is
 real for all r and s.

 Since the eigenvectors of T1 constitute an orthonormal basis to CN above C, we
 have

 (5.12) B('* . TB(r = A(rs)mrjs

 wherein the symbol ? represents the ordinary scalar product in R1. Furthermore, it
 can be easily shown that

 B(m,j)* . T2B(r,s)* = y(r) m(/Rr+)j(Rs) ^ 'J 'T^^ ) T ' m(R/R-r+L)6jR-s)i
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 in which

 (5.14a)

 s) (_)L exp - iNRJIC2ei(2)-2 ') (l+)2+(m-_)2ei[-mx+2(m+l)
 NIR l,m=-oo

 where

 (5.14b) v =

 and J is an integer which can be set equal to 0 by appropriately applying (1.19) to
 C. Note that

 (5.15) A(r,s) = Av(N/R-r+L,R-S) (r,s) = ,N/R-r+L,R-S)

 In view of (5.12) and (5.13) we look for eigenvectors of T in the form

 (ai + ia2) B(r,s) + (bl + ib2) B(Nf/R-r+L,RS).

 We find that the linear transformation T possesses the eigenvalues

 (5.16) a(r,s) = A(r,s) ? (r,s)

 For N even and L =7 0, there are N distinct eigenvalues, in view of (5.15), and each

 eigenvalue corresponds to two independent eigenvectors. Hence, in view of (5.16) and
 (5.7b), the steady solution described by (1.18) and (2.14a) is linearly stable only if

 (5.17) ,A(rs) - <e(rs) > o.

 We allow for a weak inequality in the above since A(?'?) = [?y(?'?)| = 1 independently
 of X. It can be easily verified from (5.7) that the mode which is always marginally
 stable is B = iC (or T1 = iTo). This mode corresponds to an infinitesimal gauge
 transformation,1 i.e.,

 I =' 0o(l + i6) + 0 (62) = eiS6o + 0 (62)

 Naturally, such a transformation must be marginally stable as the Ginzburg-

 Landau equations are invariant to the transformation (1.2). Other than this special
 mode, we require that all modes would be strictly stable.

 As N/R and R may be set arbitrarily large, it is only natural to consider contin-

 uous /, v, and X. The condition (5.17) may then be written in the form

 (5.18) A(X, p, v) - I|7(X, i, v)I > 0, 0 < ,u < 7r, 0 < v < 1.

 In the above X represents the steady solution whose stability is examined, and ,A
 and v represent the mode of the perturbation. The above inequality can be solved
 numerically. Special care should be given to the vicinity of t = v = 0 where the
 solution is marginally stable. The numerical technique we utilized included thus an

 asymptotic expansion of A - 71 near / = v = 0, together with a numerical calculation

 1The author wishes to thank Dr. S. J. Chapman for pointing out this fact to him.
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 FIG. 5.1. The domain of stability of the solutions (2.14a). The area above the curve denotes

 the region of stability in the X, lg( /q)2 plane.

 on a 1000 x 1000 grid. We have examined only the interval 0 < q < 0.12. It is reasonable
 to expect that stable solutions can be found in another interval of q values, as the

 minimal energy of (1.21) is obtained for two different values of k(q): (a) k = s/~/V,

 (b) k = - /7r/v.
 Figure 5.1 displays the dependence of the interval of k values for which (5.18) is

 satisfied on the value of X. We plot it for 0 < X < 7r only, as

 A(X, ), V) = A(-X, 7r -, v),

 7(X, ,, v) = a* (-X, X - , V)

 The part of the curve which lies to the left of the minimum point denotes the minimal
 value of (log(l/q)/7r)2 for which (5.18) is satisfied as a function of x/7r, whereas
 the part of the curve to the right of it denotes the maximal one. It can be seen
 that a nonempty interval of k values where the solution is stable exists whenever

 37r/5 < X < 7r. The largest interval is obtained for X = 7r. The latter fact may be
 alternatively described by stating that (1.21) representing the triangular lattice is the
 "most stable" among the solutions (2.14a). It is important to emphasize here that
 solutions have been found stable only to perturbations for which the ratio between
 the periods in the x and y directions and the respective periods of the steady solutions
 are rational numbers. The stability to other modes of perturbations is left to future
 research.

 6. Conclusion. Previous works [1, 3] show that periodic solutions to the
 Ginzburg-Landau equation (1.3) near their bifurcation from the normal state can
 be presented by a vector C E CN, where N is the number of vortices inside the unit
 cell. The components of this vector are found by simultaneously solving N polynomial

 equations of the third order (1.19). The solutions depend on the parameter q which
 in turn depends on the ratio bet vreen the sides of the unit cell.
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 In section 2 we discuss solutions which are analytic functions of q near q = 0. We
 show that all real solutions of (1.19) must be analytic functions of q near q 0. For
 complex solutions the situation is more complicated. If we allow for nonreal C, the

 solutions can be determined, in view of (1.22a), only up to an arbitrary parameter 0
 which need not be an analytic function of q. Another arbitrary parameter X arises,
 when N is divisible by 4, in the case (2.10b). For fixed 0 and X it seems reasonable
 to conjecture that any C satisfying IC,n = 1 at q = 0 for all n must be analytic near
 q =0.

 In the remainder of section 2 we focus on analytic solutions for which ICnI = ICI
 for all n (class A). We derive the closed forms (2.14) and prove, in Theorem 1, that
 any solution in this class is representable by one of these forms. We also discuss briefly

 solutions for which ICnl E {|C|, 0} for all n. We derive the closed forms (2.26a,b) which
 are analogous, respectively, to (2.14a,b).

 In section 3 we analyze the geometrical structure of the vortex lattices which the

 closed forms (2.14) and (2.26) represent. We find that for (2.14a) the vortices are
 arranged along parallel lines with equal spacing between them. For (2.26a) all lattices
 are characterized by pairs of parallel lines: the spacing between the vortices along one

 of the lines in the pair is twice larger (or smaller) than the spacing along the other
 line. The separation in the rj direction between two adjacent lines is 1/2 in that case.

 Both the aforementioned lattice geometries are invariant to 180? rotations with
 respect to each point in the lattice. In the appendix we show that any lattice which has
 this property must be arranged according to one of the above-mentioned geometries.
 Physically it means that the repulsion forces between the vortices must balance each
 other. Such lattice geometries are therefore possible independently of the ratio between

 the sides of the unit cell (or q). We show that any solution for which ICn = 1 at q = 0
 for all n and the normalized coordinates ~ and r1 defined in (3.1) are independent of
 q must represent the lattice geometry (3.2).

 In section 4 we calculate the energies of all the solutions of (1.19) which are
 analytic near q = 0 in the limit q -O 0 up to O(q2) terms. We find that (1.21) has
 the lowest energy in that limit. We then compare between the minimal values, in

 q C [0,1), of the energies of the solutions (2.14a) and find again that the triangular
 lattice has the lowest energy. We note that these minimal values can be obtained up
 to the fourth decimal point by using the expansion (4.3) in the limit q -* 0 instead of

 the exact expression (4.4).
 In section 5 we present a linear stability analysis of the solutions (2.14a). In

 contrast to [4] in which the local stability is examined in a finite-dimensional sub-
 space corresponding to the largest eigenvalue of (5.4a), we use an infinite-dimensional
 perturbation subspace including all periodic perturbations whose periods in the nor-

 malized coordinates (3.1) are rational numbers. We find that (1.21) is not the only
 solution in the family (2.14a) which is linearly stable. It is stable, however, for the

 largest interval of q values compared to other solutions in this family.
 In section I we derived the natural boundary conditions of the problem by show-

 ing that any periodic solution of (1.3) must satisfy (1.5) (cf. also [12]). Another in-
 teresting question is, In which space can (Q, A) serve as a minimizer of E? Let
 0= p(x, y)epi(x'y). Consider the real valued function e(r) = E(? + T-T()r), A), where
 ((Tr) must be chosen so that ? + Tqr belongs to the space in which we minimize E. We
 shall assume here that this space is a subset of the space of W1'2(R) functions whose
 absolute value is periodic on the boundaries of the fundamental cell OR. Hence,
 (61)64.T1) (
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 where r must be periodic and ( can be any C1 function. Clearly, (4, A) can serve as
 a local minimizer of E only if e'(0) = 0 for all appropriate 4. Since q$ is bounded as
 T -* 0 we have

 e (0) = lim - | Vpcos(0-arg)b)+p -Vo-A sin(0 - argob) indl
 =r--0O / IR _/ V o a

 (6.2) = r -Vp-p V0-A) ndl.

 By (1.5) e'(0) would vanish for any periodic r if and only if 4 is periodic on OR. Hence,
 ' + -Tr must satisfy (1.5) for all T. Thus, Abrikosov's solutions can serve as minimizers
 for E, in a rather limited sense, if we focus on subspaces of periodic functions with
 given periods in the x and y directions.

 The stability results we have obtained indicate that the triangular lattice and
 other periodic solutions are minimizers in the above space of W1,2(R) periodic func-
 tions satisfying (1.5). The periods can be any product by integers of the minimal
 periods of the cell. Further research is necessary in order to determine the structure
 of the space when we let the above integers tend to infinity.

 The existence of stable periodic solutions is definitely a surprising result. There
 might be several explanation to the fact that stable periodic solutions to (1.3) exist in
 addition to the triangular lattice, despite the fact that none of them has been observed
 in experiments. For instance, the initial conditions in their domain of attraction cannot
 be set in real situations, they may become unstable shortly after the bifurcation when
 the magnetic field is further decreased, the interaction with the boundaries may play
 an important role, etc.

 Appendix. Lattices invariant to 180? rotation. Consider the set (rik, k) E
 R2/Z2, where 0 < k < N - 1. We look for the geometrical structure of the lattices
 which are invariant to 180? rotation, or

 Vk, j 3n s.t. j - k =-(,n - Wk); r/j - Ok = -(r/n - /k).

 Let ~0 = %ro = 0. Then, invariance to rotation implies that the ~ components are
 equally spaced on [0,1], i.e.,

 m

 30<M_<N-1 s.t. VO0<m<M-1 3k s.t. k =-M,

 where 1 < M < N. Denote by lm the number of lattice points for which ~ = m/M. The
 lattice's symmetry implies that the 1m's must be arranged in pairs, i.e., 12j = lo and
 12j+1 = 11 (0 < j < M/2 - 1). If M is odd, we must have 11 = lo. Otherwise, assume
 without loss of generality 10 < 11. Suppose that 1j = 1/M. Symmetry implies the
 existence of a lattice point at (2~1, 2r7,). Another lattice point must exist at (1, 771 +
 1/11). Rotating the lattice with respect to the latter point by 180?, we find that
 (2m1,2771) becomes (0,2/11) at which another lattice point must reside. Hence,

 2 _ p

 11 10

 and hence, as lo < 11, we must have p < 2. If p = 1, then 11 = 210, otherwise 11 = lo
 for p = 2.

 We now rescale r/ by 10, i.e., r = r//lo. The lattice is still periodic in 7/, with period
 Lv = 1. In the rescaled unit cell we have lo0 = 1 and 11 e {1, 2}. In the case 11 = 1 the
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 BIFURCATION OF ABRIKOSOV LATTICES

 lattice points are located along parallel straight lines with equal spaces between them.
 The separation in the -j direction between two adjacent lines is exactly 1. In the case
 11 = 2, the lattice is characterized by pairs of parallel lines: the spacing between the

 lattice points along one of the lines in the pair is twice larger (or smaller) than the
 spacing along the other line. The separation in the rj direction between two adjacent
 lines is 1/2 in that case.

 Acknowledgments. The author wishes to thank Professors Itai Shafrir and
 Jacob Rubinstein for their suggestions and comments.
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