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Abstract. We consider the linearization of the time-dependent Ginzburg-Landau system near
the normal state. We assume that a constant magnetic field and an electric current are applied
through the sample, which captures half of the plane, inducing thereby, a linearly varying
magnetic field. In the limit of small normal conductivity we prove that if the electric current is
lower than some critical value, the normal state loses its stability. For currents stronger than
this critical value, the normal state is stable. To obtain this stability result we analyze both
the spectrum and the pseudo-spectrum of the linearized operator. The critical current tends, in
this small conductivity limit, to another critical current which had been obtained for a reduced
model which neglects magnetic field effects.
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1. Introduction

Consider a superconductor placed at a temperature lower than the critical one. If an electric
current is applied through the sample it will induce a magnetic field, and as is well-understood
from numerous experimental observations [22], a sufficiently strong current will force the super-
conductor to arrive at the normal state. If the current is then lowered, the normal state would
lose stability and the sample would become superconducting again. In addition to experimental
observations a similar pattern of behaviour has also been obtained theoretically by analyzing
the stability of the normal state for the time dependent Ginzburg-Landau system, but with the
induced magnetic field neglected [14, 3].
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In a recent contribution [4] we analyzed the stability of the normal state in the presence of
an electric current which induces a magnetic field, but in the absence of a boundary. We offered
an analysis of a two-dimensional setting, i.e, in R2, which is the simplest case where one can
consider the effect of a magnetic field induced by a current, with boundary effects ignored. We
found in [4] that the normal state is always stable, irrespectively of current intensity. This result
is in line with those obtained for a reduced model where the magnetic field has been neglected
[14, 3] .

In the present contribution we introduce the effect of the boundary of the sample. With
magnetic field neglected this effect has been analyzed by considering a one-dimensional problem
on the half-line R+ = {x ∈ R : x > 0} with a Dirichlet boundary condition at x = 0, which
stands for a normal/superconducting interface [14, 3]. Due to this effect the normal state loses
its stability when the current is weaker than a certain critical value. It has been proved in [3]
that the critical current for a large bounded three-dimensional domain is bounded from above
by the one-dimensional value. Furthermore, for a current below the critical one, a short-time
instability was proven [3] (the question whether the normal state is unstable for such domains
and currents is still open).

We expect the boundary effect on the stability of the normal state in the presence of an
induced magnetic field, to be similar to their effect in the absence of magnetic fields [14, 3].
To examine the boundary’s impact, we consider here a problem in the half-plane R2

+. If our
expectation is correct, then in a similar fashion to [14, 3] the normal state would lose its stability
for currents lower than some critical value, which we obtain here in the limit of small normal
conductivity.

Assuming that a magnetic field described by He is perpendicularly applied to the sample, the
time-dependent Ginzburg-Landau system can be written as follows (see for instance [5, 6, 9, 10,
14, 21, 23]):

∂tψ + iκΦψ = ∇2
κAψ + κ2(1− |ψ|2)ψ in (0, T )× R2

+,

κ2curl2A + σ(∂tA +∇Φ) = κ Im (ψ̄∇κAψ) + κ2curlHe in (0, T )× R2
+,

ψ = 0, − σ
κ2

∂Φ
∂ν = J on ∂R2

+,

(1.1)

where ψ is the order parameter, A is the magnetic potential, Φ is the electric potential, the
Ginzburg-Landau parameter of the superconductor is denoted by κ, the normal conductivity of
the sample is denoted by σ, the magnitude of the dimensionless electric current is denoted by
J , and the applied magnetic field is denoted by He. In (1.1) we use the notation

∇κAψ = ∇ψ − iκAψ, ∇2
κAψ = ∆ψ − i[2A · ∇ψ + ψ divA]− |A|2ψ,

where i =
√
−1. The half-plane R2

+ is defined in the following manner

R2
+ = {(x, y) ∈ R2 : y > 0} .

The triplet (ψ,A,Φ) should also satisfy an initial condition at t = 0.
A solution (ψ,A,Φ) to (1.1) is called a normal state solution if ψ ≡ 0. From (1.1) we see

that if (0,A,Φ) is a time-independent normal state solution then (A,Φ) satisfies the following
equation

κ2curl2A + σ∇Φ = κ2curlHe in R2
+ . (1.2)

By taking the divergence of (1.2) we obtain{
∆Φ = 0 in R2

+,
∂Φ
∂ν = −κ2J

σ on ∂R2
+.

(1.3)
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Since we expect solutions of (1.3) to represent the electric potential at the normal state near
the boundary of a large bounded domain, we look for solutions with bounded gradient (or
∇Φ ∈ L∞(R2

+)). Assuming that the current is of constant magnitude J along ∂R2
+, and that its

direction is always perpendicular to it, we obtain that the unique solution to (1.3) which obeys
these assumptions is given, up to an additive constant, by

Φ =
κ2J

σ
y . (1.4)

Assuming further that the applied magnetic field is, like the current, of constant magnitude
as well, we obtain

He = hiz,
throughout the entire sample. Here ix, iy and iz denote the canonical basis in R3. Hence,
we consider an applied magnetic field which is perpendicular to the sample and parallel to its
surface. Under these additional assumptions, equation (1.2) admits the following solution

A =
1
2J

(Jx+ h)2iy . (1.5)

For the above A and Φ, (0,A,Φ) is a normal state solution of (1.1). Note that the magnetic
field

H = curlA = (Jx+ h)iz,
is the sum of the constant applied magnetic field hiz and a linear term Jxiz induced by the
electric current.

The linearization of (1.1) near the normal state solution (0,A,Φ) obtained above yields a
linear equation{

∂tψ + iκ3Jy
σ ψ = ∆ψ − iκ

J (Jx+ h)2∂yψ − ( κ2J )2(Jx+ h)4ψ + κ2ψ in (0, T )× R2
+,

ψ = 0 on ∂R2
+.

(1.6)

Applying the transformation

(t, x, y) →
(
t, x− h

J
, y

)
we obtain{

∂tψ + iκ3Jy
σ ψ = ∆ψ − iκJx2∂yψ −

(
(κJ2 )2x4 − κ2

)
ψ in (0, T )× R2

+,

ψ = 0 on ∂R2
+.

(1.7)

In the present contribution we analyze the asymptotic behavior of the solutions of (1.7) for
large t. We assume J > 0 in the sequel. Otherwise we may either consider the complex conjugate
of (1.7) or apply the transformation y → −y. Hence, we can rescale t, x, and y by applying

t→ (κJ)2/3t, (x, y) → (κJ)1/3(x, y), (1.8)

yielding {
∂tu = −(A0,c − λ)u in (0, T )× R2

+,

u = 0 on ∂R2
+,

(1.9)

where A0,c is the differential operator defined by

A0,c = D2
x + (Dy −

1
2
x2)2 + icy , (1.10)

with
Dx = −i∂x, Dy = −i∂y, c ∈ R+ ,
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and

c =
κ2

σ
, λ = λ0 ≡

κ4/3

J2/3
, u(t, x, y) = ψ

(
(κJ)−2/3t, (κJ)−1/3x, (κJ)−1/3y

)
.

As the operator A0,c is defined on smooth functions only, it is necessary to extend its domain
to include also weakly differentiable functions. We use the Lax-Milgram theorem to this end.
Consider the sesquilinear form defined on Ṽ × Ṽ by

(u, v) 7−→ ã(u, v) = 〈Dxu , Dxv〉+ 〈(Dy −
x2

2
)u , (Dy −

x2

2
)v〉+ ic

∫ +∞

0
yuv̄dxdy, (1.11)

where
Ṽ = H1,mag

0 (R2
+,C) ∩ L2(R2

+,C; y dxdy) , (1.12)

and H1,mag
0 (R2

+,C) is the closure of C∞c (R2
+,C) under the norm

u 7−→
√
‖u‖2 + ‖Dxu‖2 + ‖(Dy −

x2

2
)u‖2.

Here and thereafter we use L2(R2
+) to denote the usual L2 space of real-valued functions,

L2(R2
+,C) to denote the L2 space of the complex-valued functions, and use L2(R2

+; y dxdy)
and L2(R2

+,C; y dxdy) to denote the related spaces with measure ydxdy. We use ‖ · ‖ and 〈·, ·〉
to denote the L2 norm and L2 inner product on R2

+:

‖u‖ = ‖u‖L2(R2
+) =

(∫
R2

+

|u|2dx
)1/2

, 〈u, v〉 =
∫

R2
+

uv̄dx.

Denote further by q̃ the associated form

Ṽ 3 u 7−→ q̃(u) = ã(u, u) .

Observing that, when c 6= 0, there exists α > 0 such that

q̃(u) ≥ α‖u‖2
Ṽ
, for all u ∈ Ṽ ,

we use the Lax-Milgram theorem to extend A0,c into the unbounded operator A+
c on L2(R2

+,C)
whose domain D(A+

c ) is the set of the u ∈ Ṽ such that the map

C∞c (R2
+,C) 3 v 7−→ ã(u, v)

extends as an anti-linear form on L2(R2
+,C), which we denote by 〈A+

c u, · 〉. Hence we have

D(A+
c ) = {u ∈ Ṽ : A+

c u ∈ L2(R2
+,C)},

and
ã(u, v) = 〈A+

c u, v〉 , ∀u ∈ D(A+
c ), ∀v ∈ Ṽ .

Once the definition of the extended operator A+
c has been formulated, we may write

A+
c = D2

x + (Dy −
1
2
x2)2 + icy . (1.13)

Note that A+
c is not self-adjoint but we have

(A+
c )∗ = A+

−c .

In the present contribution we analyze the spectrum of A+
c , denoted by σ(A+

c ), and the
semi-group associated with A+

c , which we denote by exp(−tA+
c ).

By the methods of [4], we can easily prove the following :
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Proposition 1.1. For any c > 0, A+
c has a compact resolvent. Moreover, if E0(β) denotes the

ground state energy of the anharmonic oscillator

− d2

dx2
+

(x2

2
− β

)2
,

and if
E∗0 = inf

β∈R
E0(β) , (1.14)

then
σ(A+

c ) ⊂ {λ ∈ C , Reλ ≥ E∗0}. (1.15)

As mentioned earlier, our interest is in the effect that the Dirichlet boundary condition in
(1.9) has on the spectrum σ(A+

c ) and on the semigroup exp(−tA+
c ). Thus, it is interesting to

compare them with the analogous entities for the whole-plane problem. Recall that in [4] we
denoted by A the operator corresponding to the extension of A0,c from C∞c (R2,C) to its closure
under the associated graph norm.

Recall further, that for the whole plane problem the spectrum of A is invariant under trans-
lations in a direction parallel to the imaginary axis. This property, together with the fact that
the resolvent of A is compact, has the consequence that σ(A) must be empty and that the
decay of the semigroup exp(−tA) is faster than any exponential rate. On the other hand, for
the half-plane problem discussed in the present paper, such an invariance principle doesn’t hold
for σ(A+

c ). Hence, we do not expect σ(A+
c ) to be empty. Instead, we expect that eigenvalues

of A+
c would exist, and that the system of corresponding eigenfunctions would be complete in

L2(R2
+,C). We provide here a proof of the former statement in the asymptotic regime c→ +∞,

and leave the proof of the latter, as well as the discussion of the limit c→ 0, to future research.
The main results of this paper are the following:

Theorem 1.2. There exists c0 ≥ 0 such that if c ≥ c0 then

σ(A+
c ) 6= ∅.

Furthermore, there exists µ(c) ∈ σ(A+
c ) which behaves according to the following expansion as

c→ +∞:

µ(c) ∼ c2/3 exp(i
π

3
)α0 + λ1 exp(−iπ

6
) c−1/3 +O(c−5/6) , (1.16)

where −α0 is the rightmost zero point of the Airy’s function [1], and λ1 is given by (4.13).
Finally, let

µm(c) = inf
z∈σ(A+

c )
Re z . (1.17)

Then, for all c ≥ c0 we have

µm(c) ∼ Reµ(c) +O(c−5/6) . (1.18)

The lower bound of (1.18) is obtained in Proposition 3.5, whereas the upper bound is proved
in Corollary 6.2.

The next result is valid for all c > 0.

Theorem 1.3. If σ(A+
c ) 6= ∅, then

lim
t→+∞

− log ‖ exp(−tA+
c )‖

t
= µm(c) . (1.19)
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One can easily obtain from (1.16) and (1.18) the critical current Jc, for which the normal
state loses its stability in the case when the electric current is perpendicular to the surface and
the applied magnetic field is parallel to it. In fact for 0 < λ < µm the zero solution of (1.9) is
stable, whereas for λ > µm it is unstable, as is manifested by Proposition 7.1 (see also [3] for
the discussion of the case where the magnetic field is absent). From (1.16) and (1.18) we obtain
that

Jc
σ

= cµ−3/2
m =

[α0

2
+
√

3λ1

2c
+O(c−3/2)

]−3/2
. (1.20)

Note that the critical current is independent of the applied magnetic field He = hiz, whose sole
effect is to translate the x coordinate by h/J .

From (1.20) we see that for a large value of c

Jc
σ
∼

[α0

2

]−3/2[
1− 3

√
3λ1

2α0c
+O(c−3/2)

]
. (1.21)

When neglecting the induced magnetic field the critical current can be evaluated for all c > 0
(cf. [14, 3]). In this case we have

Jc
σ

=
[α0

2

]−3/2
.

Consequently, one can persuasively argue that the simplified model, where the magnetic field
is neglected [14, 3, 18, 17, 19], can be obtained from the linearized Ginzburg-Landau system in
the limit c→ +∞.

The above results significantly differ from those obtained previously for the problem in the
entire plane [4]. In the case of the half-plane the critical current is positive, meaning that the
normal state becomes unstable for sufficiently small currents. In contrast, for the entire plane
problem the normal state is stable for every non-zero current. This suggests that for a sample of
finite size, if the current is lowered below some critical value, then instability would be initiated
near the boundary. For the reduced model [14], where the magnetic field is neglected, it has
been demonstrated numerically for a one-dimensional setting, that the emerging superconducting
phase eventually captures the whole domain. The presence of a magnetic field, may however
have a stabilizing effect, and hence, one can expect a stable bifurcation of a thin surface layer
of superconducting material from the normal state.

In this paper we focus our attention on the Dirichlet boundary condition ψ = 0 on ∂R2
+ given

in (1.1) as it represents a normal/superconducting interface. Other boundary conditions such as
the Neumann condition ∂ψ

∂ν = 0 on ∂R2
+, or the generalized Neumann condition (∇−iA)ψ ·ν = 0,

are also of great interest to mathematicians and physicists.
As a final remark, note that the present contribution focuses on the special case where the

electric current is perpendicular to the surface and the applied magnetic field is parallel to it.
Though this case is encountered frequently in experiments, where the potential is often constant
on the surface, the more general case where the electric current and the applied magnetic field
are arbitrarily directed is also of significant interest.

The rest of this work is arranged as follows: In the next section we transform A+
c into a new

operator via analytic dilation and prove the relation between σ(A+
c ) and the spectrum of the

transformed operator. In § 3 we outline the scheme of the proof of Theorem 1.2. In § 4, we use
formal asymptotics to estimate the principal eigenvalue of A+

c and the corresponding eigenmode
(the approximate eigenmode is usually called quasimode in the literature). To bound the error
resulting from the approximation of the exact eigenmode by the quasimode, we prove in § 5
some elliptic estimates. These estimates are used in § 6 to complete the proof of Theorem 1.2.
Finally, in § 7, we prove Theorem1.3.
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2. Analytic Dilation

In this section, we assume c 6= 0 and apply a technique inspired by the wisdom acquired
during the study of the resonances of some Schrödinger operators by Aguilar and Combes [2] or
Combes and Thomas [7] (see also Simon [20, p. 498-500] for a survey and Davies [8, Lemma 5]).

For technical reasons it is easier to consider, instead of A+
c , the unitarily equivalent operator:

P = e−ix
2y/2A+

c e
ix2y/2 = (Dx + xy)2 +D2

y + icy . (2.1)

Its associated sesquilinear form is given by

a(u, v) = 〈(Dx + yx)u , (Dx + yx)v〉+ 〈Dyu , Dyv〉+ ic〈y1/2u , y1/2v〉 ,

whose domain is given by

V ={u ∈ L2(R2
+,C) : (Dx + yx)u ∈ L2(R2

+,C) ,

Dyu ∈ L2(R2
+,C) , y1/2u ∈ L2(R2

+,C) , u(·, 0) = 0} .

The condition u(·, 0) = 0 is to be understood in the sense of trace. Note that V ⊂ H1
loc(R2

+,C),
hence every u ∈ V has trace lying in H1/2

loc (∂R2
+,C). For later reference we note the obvious fact

that V is dense in L2(R2
+,C).

Let θ ∈ C. Using a variant of the argument in [2], we introduce the dilation operator

u 7−→ (U(θ)u)(x, y) = e−θ/2 u(eθx , e−2θy) . (2.2)

Set then
Pθ := U(θ)−1PU(θ) = e2θ (Dx + yx)2 − e−4θ ∂2

y + ic e2θ y , (2.3)

with the associated sesquilinear form aθ given by

(u, v) 7−→ aθ(u, v) =e2θ〈(Dx + yx)u , (Dx + yx)v〉

+ e−4θ〈Dyu , Dyv〉 + ice2θ〈y1/2u , y1/2v〉 .
(2.4)

The domain of all sesquilinear forms aθ is still given by V × V independently of θ. We denote
by qθ the corresponding quadratic form :

qθ(u) = aθ(u, u) .

Lemma 2.1. If θ varies in R, then the spectrum of Pθ is independent of θ.

Proof. Since U(θ) is unitary for all θ ∈ R, it follows from (2.3) that Pθ is unitarily equivalent
to P for all θ ∈ R. It follows that the spectrum of Pθ is independent of θ if we restrict θ to the
real line.

However, as we need to consider complex values of θ in the sequel, we have to first establish
holomorphic dependence on θ ∈ C, in a sense to be made more precise (cf. [15]), of σ(Pθ). To
this end we first prove the following lemma.
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Lemma 2.2. Let
D0 = {z ∈ C : −π

8
< Im z <

π

24
} .

Then, the forms
q̃θ := e−2θ−iπ/4qθ, θ ∈ D0, (2.5)

constitute a holomorphic family of type (a).

Proof. For the precise definition of a type (a) holomorphic family of forms the reader is referred
to [15, section VII.4.2]. To show that the forms (2.5) are of type (a), we have to show that, for
all θ ∈ D0, the form q̃θ given in (2.5) is sectorial and closed (see [15, p.310, 313]).

To show q̃θ is sectorial, we need to estimate the size of the numerical range of the form qθ,
namely the set

{z ∈ C : ∃u ∈ V with ‖u‖ = 1 and z = qθ(u)}. (2.6)

For every u ∈ V we have

qθ(u) = e2θ
(
‖(Dx + yx)u‖2 + ic‖y1/2u‖2

)
+ e−4θ‖∂yu‖2 . (2.7)

Consequently, we obtain that

min{−4 Im θ, 2 Im θ} = αm ≤ arg qθ(u) ≤ αM = max{−4 Im θ, 2 Im θ +
π

2
} , (2.8)

and hence ∣∣ arg e−2θ−iπ/4qθ(u)
∣∣ ≤ max{π

4
, |6 Im θ +

π

4
|} .

Since
|6 Im θ +

π

4
| < π

2
, ∀θ ∈ D0,

we have ∣∣ arg q̃θ(u)
∣∣ =

∣∣ arg e−2θ−iπ/4qθ(u)
∣∣ < π

2
, ∀θ ∈ D0 ,

from which sectoriality easily follows.
Finally, we need to verify that the form q̃θ is closed. This is an immediate consequence of

(2.7), the completeness of the space H1,mag
0 (R2

+,C), and the definition of closeness for sesquilin-
ear forms (cf. [15, Section VI.1.3]) .

Remark 2.3. One can show that Pθ is a type B holomorphic family of operators (see [15, p.395]
for the definition) in the larger region

−π
6
< Im θ <

π

12
.

For the purpose of this work, it suffices to prove this property for every θ ∈ D0, a fact which
follows immediately from Lemma 2.2 and [15, Theorem VII.4.2].

Using the same technique as in the proof of [4, Proposition 2.4], the resolvent of Pθ can be
shown to be compact for every θ ∈ D0. Hence, we may use [15, Theorem VII.1.9] together with
the fact, proved in Lemma 2.1, that σ(Pθ) is independent of θ for θ ∈ R, to obtain the following:

Proposition 2.4. The spectrum of Pθ is independent of θ in D0.

As a corollary we get, by taking θ = −i π12 , the following:
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Corollary 2.5. The spectrum of A+
c satisfies:

σ(A+
c ) ⊂ {λ ∈ C : Reλ ≥ 1

2
|c|2/3α0} , (2.9)

where α0 is the ground-state energy of the Dirichlet realization of the Airy operator

L = D2
y + y , (2.10)

on R+.

We recall that −α0 is the rightmost zero point of the standard Airy function Ai, and

ψ0(y) = Ai(y − α0) (2.11)

is the eigenfunction of the operator L on R+ with Dirichlet boundary condition at y = 0,
associated with the eigenvalue α0. More generally, if −αk ∈ R− (k ∈ N) denotes the (k + 1)’th
zero of Airy’s function, then

ψk(y) = Ai(y − αk) (2.12)
is the eigenfunction of L on R+ with Dirichlet boundary condition at y = 0, associated with αk.

3. The Scheme of the Proof of the Main Results

In this section we outline the main steps of the proof of Theorem 1.2. Our goal is, thus, to
obtain an estimate, in the large c limit, for the real part of the leftmost eigenvalue of A+

c in C.
An immediate corollary would then be that σ(A+

c ) 6= ∅.
Instead of dealing with σ(A+

c ), it is more convenient to analyze the spectrum of the operator
Pθ which is given by (2.3), and is obtained from A+

c using analytic dilation. For

θ = −i π
12
.

we have
P−i π

12
= eiπ/3(D2

y + cy) + e−iπ/6(Dx + xy)2 .

Special emphasis should be given to the fact that P−i π
12

is not unitarily equivalent to A+
c . Hence,

analytic dilation facilitates the analysis of the spectrum of A+
c , but the decay of the associated

semi-group has to be obtained using a different approach. Since we consider large values of c it
is natural to introduce the small parameter

ε =
1
c
.

We define another operator via the (real) dilation

Bε := ε2/3eiπ/6U(− ln
ε

6
)−1P−i π

12
U(− ln

ε

6
) , (3.1)

where U is defined in (2.2). Explicitly we have

Bε := ε
(
Dx + xy

)2 + i
(
D2
y + y

)
. (3.2)

The domain of Bε is
D(Bε) = {u ∈ Ṽ : Bεu ∈ L2(R2

+,C)},
where Ṽ is given by (1.12).

From the foregoing discussion it follows that σ(A+
c ) can easily be obtained from σ(Bε). In

fact, any property we prove for the latter, including the next proposition, can be translated into
a similar property of the former.
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Proposition 3.1. There exists ε0 > 0 such that for ε ∈ (0, ε0) we have σ(Bε) 6= ∅. Furthermore,
there exists λ ∈ σ(Bε) such that

|λ− iα0 − ελ1| < Cε3/2 for all 0 < ε < ε0, (3.3)

where −α0 is the rightmost zero point of the Airy’s function [1], and λ1 is given by (4.13) in
Section 4.

The proof of the proposition is divided into four main steps.
Step 1.

The first step entails the construction of quasimodes. Note that for a self-adjoint operator,
a quasimode provides us with an upper bound for the bottom of the spectrum, via a varia-
tional principle, and hence the spectrum cannot be empty. For the non-self-adjoint operator
Bε, we construct the quasimodes in the next section, where we also obtain a formal asymptotic
expansion, presented in Proposition 3.2, for the associated eigenvalue.

Denote by S
(
R2

+

)
the space of the fast decay smooth functions defined on R2

+ (cf. [12] for the
precise definition), and by S

(
R2

+,C
)

the corresponding space of complex-valued functions.

Proposition 3.2. There exist uj (j = 0, 1) in S
(
R2

+,C
)
∩ D(Bε) with ‖u0‖ = 1 and λ1 ∈ R,

such that for {
uapp
ε (x, y) = u0(x, y) + εu1(x, y),
γε = iα0 + ελ1,

(3.4)

we have

(Bε − γε)uapp
ε = ε2fε , (3.5)

with fε being uniformly bounded in (0, ε0) for any norm on S
(
R2

+,C
)
.

Proposition 3.2 is proved in Section 4.

Remark 3.3. To describe the topology in S
(
R2

+,C
)
, it is sufficient to use the family of norms

f 7−→ pk(f) =
∑

p+q+r+s≤k
‖xpyq∂rx∂syf‖ , (3.6)

for k ∈ N. We use this definition in the sequel whenever a norm appears in our calculations,
except for the rare cases where the exact form of the norm should be introduced.

Step 2.
We next show the existence of ρ > 0 such that the circle

Cε,ρ = {λ ∈ C : |λ− γε| = ρε3/2} (3.7)

does not intersect with the spectrum of Bε for sufficiently small ε. Once this disjointedness is
established, we can define the associated projector :

Πε =
i

2π

∮
Cε,ρ

(Bε − λ)−1 dλ . (3.8)
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Step 3.
Then we show that the projector Πε does not identically vanish. To this end it suffices to

show that
Πεu

app
ε 6= 0 (3.9)

for the same uapp
ε given in (3.4).

To prove (3.9) we represent (3.5) in the form

uapp
ε =

ε2

λ− γε
fε −

1
λ− γε

(Bε − λ)uapp
ε ,

which leads to

i(Bε − λ)−1uapp
ε =

iε2

λ− γε
(Bε − λ)−1fε −

i

λ− γε
uapp
ε .

Integrating the above identity with respect to λ around Cε,ρ in the positive direction we obtain

Πεu
app
ε = uapp

ε +
iε2

2π

∮
Cε,ρ

1
λ− γε

(Bε − λ)−1fε dλ . (3.10)

It then remains to show that the right-hand-side of (3.10) does not identically vanish.
Step 4.

Using (3.10) we see that to prove (3.9), it is sufficient to uniformly control the L2 norm of
(Bε − λ)−1fε for all λ on the circle Cε,ρ. In fact we prove the following

Proposition 3.4. There exist positive constants ρ, C and ε0 and k0 ∈ N such that, for all
ε ∈ (0, ε0], λ ∈ Cε,ρ, and f ∈ S

(
R2

+,C
)

we have

‖(Bε − λ)−1f‖ ≤ Cε−3/2pk0(f) , (3.11)

where pk0 is the norm defined in (3.6).

Proposition 3.4 will be proved at the end of Section 4.
We can then conclude from (3.10) and (3.11) the existence of positive constants C and ε0,

such that, for any ε ∈ (0, ε0],
‖Πεu

app
ε ‖ ≥ 1− Cε1/2 . (3.12)

Then for small ε one can conclude (3.9) from (3.12).

To complete steps 2 and 4, we analyze the equation :

(Bε − λ)w = f , (3.13)

with f ∈ S
(
R2

+,C
)

and w ∈ D(Bε). We perform this task in Section 5, where we derive various
estimates of the solution w of (3.13). In addition, we prove there the following result:

Proposition 3.5. Let

Db,ε =
{
λ ∈ C : 0 < Reλ ≤ ελ1 − bε3/2 and 0 < Imλ− α0 ≤ 3λ1ε

}
. (3.14)

Then, there exist positive b0 and ε0 such that for all ε ∈ (0, ε0) and b > b0 we have

Db,ε ∩ σ(Bε) = ∅.

Note that since

Im 〈Bεu, u〉 = 〈Lu, u〉 ≥ α0‖u‖2 and Re 〈Bεu, u〉 ≥ 0 ,

it follows that
σ(Bε) ⊂ Sb,ε, (3.15)
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where

Sb,ε =

λ ∈ C

∣∣∣∣∣∣
Reλ > ελ1 − bε3/2 and 0 < Imλ ≤ α0 + 3λ1ε

or
Reλ > 0 and Imλ ≥ α0 + 3λ1ε

 . (3.16)

The lower bound in (1.18) now immediately follows from (3.15) and (3.16).
Proposition 3.5 is proved in Section 6.

4. Constructions of Quasimodes

The main result in this section is the following Proposition 4.1, which implies Proposition 3.2
in section 3.

Proposition 4.1. Let Bε be the operator defined in (3.2). There exists a sequence

{uj(x, y)}+∞
j=0 ⊂ S

(
R2

+,C
)
∩D(Bε) (4.1)

with ‖u0‖L2 = 1 and a sequence
{λj}+∞

j=0 ⊂ C
with ij+1λj being real for all j ≥ 0 and

λ0 = iα0 , (4.2)

where α0 is the lowest eigenvalue of the Airy operator L defined in (2.10) in R+ with homogeneous
Dirichlet condition at y = 0, such that

Bε
( +∞∑
j=0

εjuj(x, y)
)
∼

( +∞∑
j=0

εjλj

)( +∞∑
j=0

εjuj(x, y)
)

(4.3)

in the sense of formal expansions in ε.

Remark 4.2. We note that if ε had been purely imaginary, then (4.3) would have implied by the
spectral theorem the existence of an eigenvalue λ(ε) admitting the complete asymptotic expansion

λ(ε) ∼
+∞∑
j=0

εjλj .

Since our interest is in the non-self-adjoint case where ε is real, a more complicated approach
has to be adopted in order to prove the existence of an eigenvalue of Bε.

Proof. It is sufficient to show how one can obtain uj and λj for j ≤ 2. Higher order terms can
similarly be obtained. We first derive the O(εj) balance from (4.3) for every j ≥ 0. Suppose
that the sequence in (4.1) satisfies (4.3) in the sense of formal expansions in ε. Balancing the
coefficients of εj in each side of (4.3) we obtain

i(D2
y + y)u0 = λ0u0,

i(D2
y + y)uj + (Dx + xy)2uj−1 =

∑
`+m=j

λ`um, j ≥ 1. (4.4)

Step 1. The O(ε0) balance gives :(
i(D2

y + y)− λ0

)
u0(x, y) = 0 . (4.5)

It follows immediately that λ0 = iα0, in accordance with (4.2). Furthermore, it follows that u0

must be in the form
u0(x, y) = φ0(x)ψ0(y) , (4.6)
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where ψ0(y) is the L2-normalized (real-valued) first eigenfunction of the Airy operator L =
D2
y + y, defined in (2.10), in R+ with Dirichlet boundary at y = 0, associated with the lowest

eigenvalue α0. It is well-known that ψ0 is in S(R+) (see [1]). We leave φ0 undetermined as it
cannot be obtained from (4.5).

Step 2. The O(ε) balance reads :

i
(
(D2

y + y)− α0

)
u1(x, y) + (Dx + xy)2u0(x, y) = λ1u0(x, y) . (4.7)

A necessary condition for the solvability of (4.7) is obtained by taking the scalar product (in the
y-variable) of both sides of (4.7) by ψ0. Since u1 ∈ S

(
R2

+,C
)
∩D(Bε) we have that u1(x, 0) = 0.

Integration by parts then yields∫ +∞

0
[(D2

y + y − α0)u1]ψ̄0dy = 0.

Since ‖ψ0‖L2(R+) = 1, we have that∫ +∞

0
[(Dx + xy)2φ0(x)]ψ0(y)2dy = K0φ0(x) , (4.8)

where K0 is the following differential operator

K0(x,Dx) = (Dx + αx)2 + (β2 − α2)x2 , x ∈ R , (4.9)

in which

α =
∫ +∞

0
yψ0(y)2dy , β2 =

∫ +∞

0
y2ψ0(y)2dy . (4.10)

Combining (4.7), (4.8), and (4.9) gives

K0φ0(x) = λ1φ0(x) . (4.11)

Since yψ0(y) is not a multiple of ψ0, it follows from Cauchy-Schwarz inequality, that the
following strict inequality holds

α < β . (4.12)

Hence K0 is an harmonic oscillator, whose lowest eigenvalue is
√
β2 − α2. Consequently,

λ1 =
√
β2 − α2 , (4.13)

and φ0 is the corresponding L2-normalized eigenfunction. Explicitly, φ0 is a complex Gaussian :

φ0(x) = a exp(
iα

2
x2) exp(−1

2

√
β2 − α2x2) , (4.14)

where the constant a is chosen so that ‖φ0‖L2(R) = 1.
The solvability of (4.7) now easily follows: since L is self-adjoint, and all its eigenvalues are

simple, it follows that

(Dx + xy)2u0(x, y)− λ1u0(x, y) ⊥ Ker{L − α0} , ∀x ∈ R .

As L − α0 is a Fredholm operator with index zero, the solvability of (4.7) readily follows.
Consequently, u1 is expressible in the form

u1(x, y) = u0
1(x, y) + φ1(x)ψ0(y) , (4.15)

where u0
1 is the unique solution of (4.7) belonging to (span{ψ0})⊥ for all x ∈ R, i.e.,∫ +∞

0
u0

1(x, y)ψ0(y)dy = 0 . (4.16)
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Step 3. Consider next the O(ε2) balance:

i
(
(D2

y + y)− α0

)
u2(x, y) + (Dx + xy)2u1(x, y) = λ1u1(x, y) + λ2u0(x, y) . (4.17)

A first necessary condition for solving (4.17) is obtained by taking the scalar product in the
y-variable of the both sides of (4.17) with ψ0. Using (4.8) and (4.15) we obtain∫ +∞

0
[(Dx + xy)2u1(x, y)]ψ0(y)dy = K0φ1(x) +

∫ +∞

0
[(Dx + xy)2u0

1(x, y)]ψ0(y) dy.

Combining the above with (4.16) then yields

(K0 − λ1)φ1 = λ2φ0 −
〈
ψ0, ((Dx + xy)2 − λ1)u0

1(x, y)
〉
L2(R+)

. (4.18)

A second solvability condition is obtained by taking the L2 scalar product of both sides of
(4.18) with φ0 in the x-variable. Using (4.11) we arrive at∫

R
[(K0 − λ1)φ1]φ0dx =

∫
R
[(K0 − λ1)φ0]φ1 dx = 0 .

Hence,

λ2 =
∫

R

〈
ψ0, ((Dx + xy)2 − λ1)u0

1(x, y)
〉
L2(R+)

φ0 dx

=
〈
u0 , ( (Dx + xy)2 − λ1)u0

1(x, y)
〉
L2(R2

+)
.

(4.19)

With this choice of λ2, (4.18) satisfies the necessary condition for solvability, which is also
a sufficient condition. We can then choose φ1 to be the unique solution of (4.18) which is
orthogonal to φ0.

Substituting φ1 into (4.15) we obtain u1. Then, (4.17) satisfies the necessary condition for
solvability, which is also sufficient by the same argument applied in Step 2. Thus, the solution
of (4.17) assumes the form

u2(x, y) = u0
2(x, y) + φ2(x)ψ0(y) , (4.20)

where u0
2 is uniquely determined by the orthogonality condition∫ +∞

0
u0

2(x, y)ψ0(y)dy = 0 . (4.21)

It is easy to show that the uj ’s are all in S(R2
+,C) in view of the fact that both L and K0 include

an unbounded potential as y and |x| respectively tend to infinity.
This completes the proof of Proposition 4.1.

Proof of Proposition 3.2.
Proposition 3.2 readily follows from Proposition 4.1.

5. Resolvent Estimates

Our goal in this section is to prove Proposition 3.4 by estimating the resolvent of Bε for
λ ∈ Db,ε, where Db,ε ⊂ C was given by (3.14).
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5.1. Preliminary estimates.
We begin by establishing the following approximation.

Lemma 5.1. Let φ be a real-valued C∞ function which together with its derivatives is bounded
for x ∈ R, and w ∈ S(R2

+,C) ∩D(Bε). Then∫
R2

+

φ(x)2(Bεw) w̄ dxdy = ‖φDyw‖2 + ‖y1/2φw‖2 + εW, (5.1)

where W ∈ L2(R2
+,C) satisfies

‖W‖ ≤ ‖(Dx + xy)(φw)‖2 + ‖φ′w‖2. (5.2)

Proof. Since w vanishes on ∂R2
+, we can integrate by parts and the term involving the integral

on the boundary ∂R2
+ vanishes. We therefore have∫

R2
+

φ(x)2(Bεw) w̄ dxdy =ε
∫

R2
+

{|φ(Dx + xy)w|2 + 2iφφ′w̄(Dx + xy)w} dxdy

+ i

∫
R2

+

(|φDyw|2 + y|φw|2) dxdy.
(5.3)

Taking the imaginary part of (5.3) we obtain :

Im
∫

R2
+

φ(x)2(Bεw) w̄ dxdy

=‖φDyw‖2 + ‖y1/2φw‖2 + 2εRe
∫

R2
+

φφ′[w̄(Dx + xy)w]dxdy .
(5.4)

The integral in the last term in the right side can be rewritten as :

Re
∫

R2
+

φφ′[w̄(Dx + xy)w]dxdy = Re
∫

R2
+

φ′[w̄(Dx + xy)(φw)]dxdy.

Consequently, we may conclude that∣∣∣Re
∫

R2
+

φφ′[w̄(Dx + xy)w]dxdy
∣∣∣ ≤ ‖(Dx + xy)(φw)‖ ‖φ′w‖ . (5.5)

For the real part of the integral on the left-hand-side of (5.1) we have

Re
∫
φ(x)2(Bεw) w̄ dxdy

=ε
∫

R2
+

{|φ(Dx + xy)w|2 + iφφ′[w̄(Dx + xy)w − w(Dx + xy)w]} dxdy

=ε‖φ(Dx + xy)w − iφ′w‖2 − ε‖φ′w‖2 = ε‖(Dx + xy)(φw)‖2 − ε‖φ′w‖2 .

(5.6)

Combining (5.5) and (5.6) yields∣∣∣ ∫
R2

+

φ(x)2(Bεw) w̄ dxdy − ‖φDyw‖2 + ‖y1/2φw‖2
∣∣∣ ≤ 2ε

(
‖(Dx + xy)(φw)‖2 + ‖φ′w‖2

)
, (5.7)

which completes the proof of the lemma.

We continue by establishing the following estimates, which are valid for λ values in a much
greater range than those proved in the next subsection.
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Lemma 5.2. Let (f, w) ∈ S
(
R2

+,C
)
× D(Bε) satisfy (3.13). Given any C > 0, there exist

constants ε0 and Ĉ, and, for any half-integer k ≥ 1/2, a constant Ck, such that, for any

λ = iα0 + εµ1 (5.8)

with
|µ1| ≤ C, ε ∈ (0, ε0],

we have
|x|kw ∈ L2(R2

+,C), |y|kw ∈ L2(R2
+,C), x∂xw ∈ L2(R2

+,C),
with

‖|x|kw‖ ≤ Ck

[
‖w‖+ ε−1‖(|x|k−1/2 + 1)f‖

]
, (5.9a)

‖ykw‖ ≤ Ck

[
‖w‖+ ‖(yk−1/2 + 1)f‖

]
, (5.9b)

‖|x|k∂xw‖ ≤ Ck

[
‖w‖+ ε−1‖(|x|k+3/2 + yk+3/2 + 1)f‖

]
, (5.9c)

‖yk∂xw‖ ≤ Ck

[
‖w‖+ ε−1‖(|x|5/2 + yk+1 + 1)f‖+ ‖yk−1/2∂xf‖

]
, (5.9d)

‖∂xxw‖ ≤ Ĉ
[
‖w‖+ ε−1‖(|x|7/2 + y7/2 + 1)f‖+ ‖y3/2∂xf‖+ ε−1‖∂xf‖

]
. (5.9e)

Proof. Step 1. We first obtain an estimate of ‖(∇+ ixyîy)w‖.
To this end, let v ∈ Ṽ be compactly supported in the interior of R2

+, where Ṽ was defined in
(1.12). Multiplying (3.13) by v̄ and integrating by parts yields∫

R2
+

{ε(Dx + xy)w · (Dx + xy)v + iDyw ·Dyv + iywv̄ − λwv̄} dxdy =
∫

R2
+

fv̄ dxdy . (5.10)

For n ≥ 1, let ηn ∈ C∞(R, [0, 1]) satisfy

ηn(t) =


0 if |t| < 1,
1 if 2 < |t| < 4n,
0 if 6n < |t|,

(5.11)

and

|η′n| ≤
C0

n
.

Let m ≥ 0 and set v(x, y) = |x|mη2
n(x)w(x, y) in (5.10). We compute

(Dx + xy)w · (Dx + xy)v =|(Dx + xy)(|x|m/2ηnw)|2 − |w(|x|m/2ηn)′|2

+ 2i|x|m/2ηn(|x|m/2ηn)′Re [w̄(Dx + xy)w] .

We can thus write (5.10) in the form

ε

∫
R2

+

{|(Dx + xy)(|x|m/2ηnw)|2 − |w(|x|m/2ηn)′|2} dxdy

+ i

∫
R2

+

{2ε|x|m/2ηn(|x|m/2ηn)′Re [w̄(Dx + xy)w] + |x|mη2
n|Dyw|2 + y|x|mη2

n|w|2} dxdy

− (iα0 + εµ1)
∫

R2
+

|x|mη2
n|w|2 dxdy =

∫
R2

+

|x|mη2
nfw̄ dxdy .

(5.12)

Here we have used the assumption (5.8).
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Taking the real part of (5.12) we get

ε

∫
R2

+

{|(Dx + xy)(|x|m/2ηnw)|2 − |w(|x|m/2ηn)′|2 − Reµ1|x|mη2
n|w|2} dxdy

= Re
∫

R2
+

|x|mη2
nfw̄ dxdy .

Hence we have∫
R2

+

∣∣∣(Dx + xy)(|x|m/2ηn(x)w)
∣∣∣2 dxdy

=Reµ1‖|x|m/2ηnw‖2 + ‖|(|x|m/2ηn)′w‖2 + ε−1Re 〈|x|m/2ηnw , |x|m/2ηnf〉 .
(5.13)

Taking the imaginary part of (5.12) yields∫
R2

+

{2ε|x|m/2ηn(|x|m/2ηn)′Re [w̄(Dx + xy)w] + |x|mη2
n|Dyw|2 + y|x|mη2

n|w|2} dxdy

− (α0 + ε Imµ1)
∫

R2
+

|x|mη2
n|w|2 dxdy = Im

∫
R2

+

|x|mη2
nfw̄ dxdy.

Hence,
‖|x|m/2ηnDyw‖2 + ‖y1/2|x|m/2ηnw‖2

=(α0 + ε Imµ1)‖|x|m/2ηnw‖2 + Im 〈ηn|x|m/2w, ηn|x|m/2f〉

− 2ε
∫

R2
+

|x|m/2ηn(|x|m/2ηn)′Re [w̄(Dx + xy)w] dxdy.

(5.14)

The last term in the right side of (5.14) can be estimated by using (5.5) with φ(x) = |x|m/2ηn(x).
Thus,∣∣∣∫

R2
+

|x|m/2ηn(|x|m/2ηn)′Re [w̄(Dx + xy)w] dxdy
∣∣∣ ≤ ‖(Dx + xy)(|x|m/2ηnw)‖‖(|x|m/2ηn)′w‖ .

From the above and (5.14) we obtain

‖|x|m/2ηnDyw‖2 ≤(α0 + ε Imµ1)‖|x|m/2ηnw‖2 + Im 〈|x|m/2ηnw , |x|m/2ηnf〉

+ 2ε‖(Dx + xy)(|x|m/2ηnw)‖ ‖(|x|m/2ηn)′w‖.
(5.15)

The necessary estimate of ‖(∇+ ixyîy)w‖ is obtained by summing up (5.13) and (5.15).

Step 2. Next we show that there exists c1, such that, if φ ∈ C1
c (R2

+,C), then

‖|x|1/2φ‖2 ≤ c1

[
‖(Dx + xy)φ‖2 + ‖Dyφ‖2 + ‖φ‖2

]
. (5.16)

To prove (5.16), we use the same trick as in [4] (line above (2.23)) and write, for φ with
compact support inside R2

+, the identity∫
R2

+

x2

√
1 + x2

|φ|2dxdy = −i
∫

x√
1 + x2

[Dx + xy,Dy]φ φ̄ dxdy,

where [Dx + xy,Dy] denotes the commutator of Dx + xy and Dy. Expanding the bracket and
after an integration by part, we obtain∫

R2
+

x2

√
1 + x2

|φ|2dxdy ≤ 3
∫

R2
+

(|(Dx + xy)φ|2 + |Dyφ|2 + φ|2) dxdy . (5.17)
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Step 3. Let (f, w) ∈ S
(
R2

+,C
)
×D(Bε) . In this step we claim the existence of a constant c2,

independent of (f, w), such that for any non-negative real number m, and for all 0 < ε ≤ 1, we
have :

‖|x|(m+1)/2ηnw‖ ≤ c2

[
‖|x|m/2ηnw‖+ ‖w‖+ ε−1‖|x|m/2f‖

]
. (5.18)

Here the cut-off function ηn is defined by (5.11).
We first note that, since w ∈ Ṽ , by approximation, (5.16) holds for

φ(x, y) = |x|m/2ηn(x)w(x, y)

with m ≥ 0. Consequently, we obtain

‖|x|(m+1)/2ηn(x)w‖2 ≤c1
[
‖(Dx + xy)(|x|m/2ηn(x)w)‖2

+ ‖Dy(|x|m/2ηn(x)w)‖2 + ‖|x|m/2ηn(x)w‖2
]
.

(5.19)

We use Cauchy inequality to control the term

2ε‖(Dx + xy)(xm/2ηnw)‖ ‖(|x|m/2ηn)′w‖

on the right-hand-side of (5.15), and then substitute (5.13) and (5.15) into (5.19). We then
obtain the existence of c3 > 0, such that

‖|x|(m+1)/2ηnw‖2 ≤c3
[
(Reµ1 + α0 + ε Imµ1 + 1)‖|x|m/2ηnw‖2 + (1 + ε)‖|(|x|m/2ηn)′|w‖2

+ ε−1Re 〈|x|m/2ηnw, |x|m/2ηnf〉+ Im 〈|x|m/2ηnw, |x|m/2ηnf〉
]

≤c3
[
(Reµ1 + α0 + ε Imµ1 + 3)‖|x|m/2ηnw‖2 + (1 + ε)‖|(|x|m/2ηn)′|w‖2

+ (ε−2 + 1)‖|x|m/2ηnf‖2
]
.

(5.20)
Recall that ηn(x) = 0 for |x| ≤ 1, and that

|η′n(x)| ≤ η2n(x), |x|m/2ηn(x) ≤ 1 + η2n(x) for |x| ≥ 2.

Hence
‖|(|x|m/2ηn)′|w‖2 ≤‖| m

2|x|
(|x|m/2ηnw)‖2 + ‖|x|m/2η′n(x)w‖2

≤m2‖|x|m/2ηnw‖2 + ‖|x|m/2η2n(x)w‖2

≤(2m2 + 2)(‖w‖2 + ‖|x|m/2η2n(x)w‖2),

(5.21)

and
‖|x|m/2ηnw‖2 ≤ 2‖w‖2 + 2‖|x|m/2η2n(x)w‖2. (5.22)

Next, we insert back (5.21) and (5.22) into (5.20), and obtain the existence of c4, such that for
all 0 < ε ≤ 1 we have

‖|x|(m+1)/2ηnw‖2 ≤c4(1 +m2 + α0 + |µ1|)(‖w‖2 + ‖|x|m/2η2n(x)w‖2)

+ c4ε
−2‖|x|m/2ηnf‖2 .

(5.23)

Hence, (5.18) is proved.
Step 4. Proof of (5.9a). Setting first m = 0 in (5.18) we obtain

‖|x|1/2ηnw‖ ≤ c2(‖ηnw‖+ ‖w‖+ ε−1‖f‖) ≤ c2(2‖w‖+ ε−1‖f‖).
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Letting n go to +∞ then yields

‖|x|1/2w‖ ≤ c2(2‖w‖+ ε−1‖f‖). (5.24)

Consequently, (5.9a) holds with k = 1/2. For a general half integer k, the proof of (5.9a) now
follows by recursively applying the above procedure.

Step 5. Proof of (5.9b). Let m ≥ 0 and insert v(x, y) = ymη2
n(y)w̄(x, y) into (5.10) to obtain∫

R2
+

{εymη2
n(y)|(Dx + xy)w|2 + iymη2

n(y)|Dyw|2 + i(ymη2
n(y))

′w̄Dyw

+ iym+1η2
n(y)|w|2 − λymη2

n(y)|w|2} dxdy =
∫

R2
+

ymη2
n(y)fw̄ dxdy.

From the imaginary part of the above identity and (5.8) we obtain that∫
R2

+

{ymη2
n(y)|Dyw|2 + (ymη2

n(y))
′Re (w̄Dyw) + ym+1η2

n(y)|w|2

− (α0 + ε Imµ1)ymη2
n(y)|w|2} dxdy = Im

∫
R2

+

ymη2
n(y)fw̄ dxdy.

Therefore,

‖ym/2ηn(y)Dyw‖2 + ‖y(m+1)/2ηnw‖2

≤(α0 + ε Imµ1)‖ym/2ηn(y)w‖2 + ‖(ym/2ηn(y))′wym/2ηn(y)Dyw‖

+ |Im 〈ηn(y)ym/2w , ηn(y)ym/2f〉|

≤(α0 + ε Imµ1)‖ym/2ηn(y)w‖2 +
1
4
‖(ym/2ηn(y))′w‖2 + ‖ym/2ηn(y)Dyw‖2

+
1
2
‖ym/2ηn(y)w‖2 +

1
2
‖ym/2ηn(y)f‖2.

Hence,

‖y(m+1)/2ηnw‖2 ≤(α0 + ε Imµ1 +
1
2
)‖ym/2ηn(y)w‖2 +

1
4
‖(ym/2ηn(y))′w‖2

+
1
2
‖ym/2ηn(y)f‖2.

(5.25)

Setting m = 0 in (5.25) we obtain, for sufficiently large n, that

‖y1/2ηnw‖2 ≤ (α0 + ε Imµ1 + 1)‖w‖2 + ‖f‖2.

Letting n→ +∞ in the above inequality yields the existence of c5 such that :

‖y1/2w‖2 ≤ c5(‖w‖2 + ‖f‖2) .

Invoking inductive arguments we get (5.9b) easily.
Step 6. Proof of (5.9c). For a half integer k ≥ 1/2 we use (5.13) with m = 2k, and then let

n→ +∞, to obtain the existence of c6 such that :

‖∂x(|x|kw)‖2 ≤ c6(‖|x|kw‖2 + ‖w‖2) + ε−1‖|x|kw‖ ‖|x|kf‖+ ‖|x|k+1yw‖2 .

Combining the above inequality with (5.9a) and (5.9b) and the following inequality (which
immediately follows from Young’s inequality)

|x|py2 ≤ 1
p+ 1

[
p|x|p+1 + y2p+2

]
(5.26)
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completes the proof of (5.9c) .
In the interest of brevity, we drop from now on the argument involving the cut-off function

ηn (including the limit n→ +∞).
Step 7. Proof of (5.9d). We differentiate (3.13) with respect to x to obtain

ε
[
(Dx + xy)2∂xw − 2iy∂xw + 2xy2w

]
+ i(D2

y + y)∂xw − λ∂xw = ∂xf. (5.27)

Taking the inner product of (5.27) with ∂xw yields

ε‖(Dx + xy)∂xw‖2 − 2iε〈y∂xw, ∂xw〉+ 2ε〈xy2w, ∂xw〉
+ i‖Dy∂xw‖2 + i〈y∂xw, ∂xw〉 − λ‖∂xw‖2 = 〈∂xf, ∂xw〉.

(5.28)

Step 7.1. For the case k = 1/2, the imaginary part of the above identity reads

‖Dy∂xw‖2 + (1− 2ε)‖y1/2∂xw‖2 + 2ε Im 〈xy2w, ∂xw〉 − (α0 + ε Imµ1)‖∂xw‖2 = Im 〈∂xf, ∂xw〉.

Hence, for 0 < ε ≤ 1/4 we have

‖y1/2∂xw‖2 ≤ 4
[
(α0 + ε Imµ1 + 1)‖∂xw‖2 + ε2‖x∂xw‖2 + ‖y2w‖2 + ‖∂xf‖2

]
.

We next estimate the first two terms on the right-hand-side of the above inequality using (5.9c)
with k = 0 and k = 1 respectively. The third term is then estimated using (5.9b) with k = 2 to
obtain

‖y1/2∂xw‖ ≤ c
[
‖w‖+ ε−1‖(|x|3/2 + y3/2 + 1)f‖+ ‖(|x|5/2 + y3/2 + y5/2 + 1)f‖+ ‖∂xf‖

]
.

Since

‖|x|3/2f‖ ≤ ‖(|x|5/2 + 1)f‖, ‖y3/2f‖ ≤ ‖(y5/2 + 1)f‖,

we get

‖y1/2∂xw‖ ≤ c
[
‖w‖+ ε−1‖(|x|5/2 + y5/2 + 1)f‖+ ‖∂xf‖

]
.

Hence (5.9d) is proved for k = 1/2.
Step 7.2. For the case k = 1, we take the inner product of (5.27) with y∂xw to obtain

ε‖y1/2(Dx + xy)∂xw‖2 − 2iε‖y∂xw‖2 + 2ε〈xy2w, y∂xw〉+ i‖y1/2Dy∂xw‖2

+ i〈∂y∂xw, ∂xw〉+ i‖y∂xw‖2 − λ〈∂xw, y∂xw〉 = 〈y1/2∂xf, y
1/2∂xw〉.

(5.29)

As w ∈ D(Bε) implies w(x, 0) = 0, we have that ∂xw(x, 0) = 0. Consequently,

〈∂y∂xw, ∂xw〉 = 0.

The imaginary part of (5.29) then reads

‖y1/2Dy∂xw‖2 + (1− 2ε)‖y∂xw‖2 + 2ε Im 〈xy2w, y∂xw〉

− (α0 + ε Imµ1)‖y1/2∂xw‖2 = Im 〈y1/2∂xf, y
1/2∂xw〉.

Hence, for 0 < ε ≤ 1/4, we obtain

‖y∂xw‖2 ≤ 4
[
(α0 + ε Imµ1 + 1)‖y1/2∂xw‖2 + ‖y1/2∂xf‖2 + ε2‖x∂xw‖2 + ‖y3w‖2

]
. (5.30)
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To estimate ‖y1/2∂xw‖2 on the right-hand-side we may use (5.9d) for k = 1/2. It seems, however,
more transparent to use instead the following inequality∫

R2
+

yn−l|∂xw|2dx ≤
1

N l+1

∫
{y≥N}

yn+1|∂xw|2dxdy +
∫
{0≤y≤N}

yn−l|∂xw|2 dxdy

≤ 1
N l+1

‖y(n+1)/2∂xw‖2 +Nn−l‖∂xw‖2 ,

(5.31)

which holds for all N > 0. The above inequality, with N being sufficiently large, n = 1, and
l = 0, combined together with (5.30), yields

‖y∂xw‖2 ≤ c7

[
‖∂xw‖2 + ‖y1/2∂xf‖2 + ε2‖x∂xw‖2 + ‖y3w‖2

]
. (5.32)

Combining the above, (5.9b) (for k = 3), and (5.9c) (for k = 0 and 1) yields the existence of ε0,
c8 and c9, such that, for all ε ∈ (0, ε0] we have

‖y∂xw‖ ≤c8
[
‖w‖+ ε−1‖(|x|3/2 + y3/2 + 1)f‖+ ‖y1/2∂xf‖2

+ ε‖w‖+ ‖(|x|5/2 + y5/2 + 1)f‖+ ‖w‖+ ‖(y5/2 + 1)f‖
]

≤c9
[
‖w‖+ ε−1‖(|x|5/2 + y5/2 + 1)f‖+ ‖y1/2∂xf‖

]
,

(5.33)

which completes the proof of (5.9d) for k = 1.
Step 7.3. Finally, we consider the case k = (m + 1)/2. Upon taking the inner product of

(5.27) with ym∂xw for an integer m ≥ 1, we use the identity

i〈D2
y∂xw, y

m∂xw〉 = i‖Dy(ym/2∂xw)‖2 − im2

4
‖y(m/2−1)∂xw‖2 −mIm

∫
R2

+

ym−1∂y∂xw ∂xw̄ dxdy ,

to obtain

ε‖ym/2(Dx + xy)∂xw‖2 − 2iε‖y(m+1)/2∂xw‖2 + 2ε〈ym+2w, x∂xw〉+ i‖Dy(ym/2∂xw)‖2

− im2

4
‖ym/2−1∂xw‖2 −mIm

∫
R2

+

ym−1∂y∂xw ∂xw̄ dxdy + i‖y(m+1)/2∂xw‖2 − λ‖ym/2∂xw‖2

=〈ym/2∂xf, ym/2∂xw〉 .

The imaginary part of the above is given in the form

‖Dy(ym/2∂xw)‖2 − m2

4
‖ym/2−1∂xw‖2 + (1− 2ε)‖y(m+1)/2∂xw‖2

+ 2ε Im 〈ym+2w, x∂xw〉 − (α0 + ε Imµ1)‖ym/2∂xw‖2 = Im 〈ym/2∂xf, ym/2∂xw〉 .

Hence, there exists c10, such that, for all 0 < ε ≤ 1/4, we have

‖y(m+1)/2∂xw‖2 ≤c10{‖ym/2−1∂xw‖2 + ‖ym+2w‖2 + ε2‖x∂xw‖2

+ ‖ym/2∂xw‖2 + ‖ym/2∂xf‖2} .
(5.34)

To complete the proof we use (5.31) with n = m twice: with l = 0 to control ‖ym∂xw‖, and
with l = 2 to control ‖ym−2∂xw‖. For sufficiently large N , depending only on c9, (5.34) can be
converted into the form

‖y(m+1)/2∂xw‖2 ≤ c11

[
‖∂xw‖2 + ε2‖x∂xw‖2 + ‖ym+2w‖2 + ‖ym/2∂xf‖2

]
. (5.35)
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Using (5.9c) with k = 0 and k = 1, and (5.9b) with k = m + 2, we derive from (5.35) the
following estimate

‖y(m+1)/2∂xw‖ ≤ c12

[
‖w‖+ε−1‖(|x|3/2 +y3/2 +1)f‖+‖(|x|5/2 +y5/2 +ym+3/2)f‖+‖ym/2∂xf‖

]
.

Observing that

‖|x|3/2f‖ ≤ ‖(|x|5/2 + 1)f‖, ‖(y3/2 + y5/2)f‖ ≤ 2‖(ym+3/2 + 1)f‖,
(we use these inequalities frequently in the sequel without referring to them anymore) we obtain

‖y(m+1)/2∂xw‖ ≤ c13

[
‖w‖+ ε−1‖(|x|5/2 + ym+3/2 + 1)f‖+ ‖ym/2∂xf‖

]
. (5.36)

Thus, (5.9d) is true for k = (m+ 1)/2.
Step 8. Proof of (5.9e). The real part of (5.28) reads

ε‖(Dx + xy)∂xw‖2 + 2εRe 〈y2w, x∂xw〉 − εReµ1‖∂xw‖2 = Re 〈∂xf, ∂xw〉. (5.37)

Since
‖(Dx + xy)∂xw‖2 = ‖∂xxw‖2 + ‖xy∂xw‖2 + 2Im 〈xy∂xw, ∂xxw〉 ,

we obtain
‖∂xxw‖2 ≤8‖xy∂xw‖2 + 2‖y2w‖2 + (1 + 2|µ1|)‖∂xw‖2 + ε−2‖∂xf‖

≤2‖y2w‖2 + (1 + 2|µ1|)‖∂xw‖2 + 4‖x2∂xw‖2 + 4‖y2∂xw‖2 + ε−2‖∂xf‖.

Using the above, (5.9b) with k = 2, (5.9c) with k = 0 and k = 2, and (5.9d) with k = 2, we
obtain the existence of c and ε0 such that

‖∂xxw‖ ≤ c
[
‖w‖+ ε−1‖(|x|7/2 + y7/2 + 1)f‖+ ‖y3/2∂xf‖+ ε−1‖∂xf‖

]
.

This verifies (5.9e).

It seems worthwhile to note that, if one conducts the various computations in the proof
of Lemma 5.2 differently, it is possible to get better estimates for (5.9e). However, all these
estimates would fit into the general form

‖∂2
xxw‖ ≤ C

[
‖w‖+ ε−1p(f)

]
,

for an appropriately defined norm p on S.

5.2. Projection on (span{ψ0})⊥.
We begin by recalling from (2.11) the definition of π‖, the orthogonal projector on the com-

plex 1-dimensional linear subspace generated by ψ0. Then, we introduce the complementary
projection

π⊥ = I − π‖, (5.38)
where I is the identity map. Making use of topological tensor products, we introduce

Π‖ = π‖ ⊗ I and Π⊥ = π⊥ ⊗ I ,

which are orthogonal projectors acting on

L2(R2
+,C) = L2(R+,C)⊗̂L2(R,C) .

For u in L2(R2
+,C), we write

u‖ = Π‖u and u⊥ = Π⊥u .
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It is easy to show that for all u ∈ D(L), where L is the Airy operator defined in (2.10), we have

α0‖u‖|‖2 + α1‖u⊥‖2 ≤ 〈Lu, u〉 , (5.39)

where α0 and α1 are the lowest and the second eigenvalues of L, and α1 > α0.
Given ε > 0, λ ∈ Cε,ρ and f ∈ S(R2

+,C), let w ∈ D(Bε) be the solution of (3.13). Write

w = w‖ + w⊥. (5.40)

We next show that for a suitable choice of ρ, w⊥ is small, compared with w‖, if ε and f are
sufficiently small.

Lemma 5.3. There exist positive constants C, k0 and ε0 such that, for any ε ∈ (0, ε0], if
λ = λ(µ1) is given by (5.8), and if (w, f) ∈ D(Bε)× S(R2

+,C) satisfies (3.13), then we have:

‖w⊥‖2 ≤ 1
α1 − α0 − 2ε|µ1|

[
ε|µ1|‖w‖‖2 + ‖w‖‖f‖

]
, (5.41a)

‖x2w⊥‖2 ≤ C
[
ε‖w‖2 + ε−1‖(1 + x2)f‖2

]
, (5.41b)

‖x∂xw⊥‖2 ≤ C
[
ε‖w‖2 + ε−1pk0(f)2

]
, (5.41c)

where pk0 is a norm in S(R2
+,C) defined in (3.6).

Proof. Step 1. We prove (5.41a). Let w be the solution of (3.13). Recalling (5.8) we take the
inner product of (3.13) with w and then obtain by considering the imaginary part of the new
expression:

〈(L − µ0)w,w)〉 = Im 〈f, w〉 , (5.42)

with

µ0 = Imλ = α0 + ε Imµ1 (5.43)

It follows from this and (5.39) that,

(α1 − α0 − ε Imµ1)‖w⊥‖2 − ε Imµ1‖w‖‖2 ≤ ‖f‖ ‖w‖ ,

from which we deduce (5.41a) for small ε.

Step 2. We prove (5.41b). Taking the inner product of (3.13) with x2kw, where k is any
positive integer, and computing as in (5.3), we obtain

〈f, x2kw〉 =〈Bεw − λw, x2kw〉 = 〈ε(Dx + xy)2w,w〉+ 〈(iL − λ)w, x2kw〉

=ε‖xk(Dx + xy)w‖2 + 2kiε〈(Dx + xy)w, x2k−1w〉+ 〈(iL − λ)w, x2kw〉

=ε‖xk(Dx + xy)w‖2 + 2kiε〈(Dx + xy)(xkw), xk−1w〉 − 2k2ε‖xk−1w‖2

+ 〈(iL − λ)(xkw), xkw〉.

Combining the imaginary part of the above identity and (5.42) yields

2kε Re 〈(Dx + xy)(xkw), xk−1w〉+ 〈(L − µ0)(xkw), xkw〉 = Im 〈xkf, xkw〉 .

We next make the obvious observation that

π‖(x
kw) = xkπ‖w = xkw‖, π⊥(xkw) = xkπ⊥w = xkw⊥.
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Thus, from (5.39) it follows that,

α0‖xkw‖‖2 + α1‖xkw⊥‖2 ≤ 〈L(xkw), xkw〉

≤µ0‖xkw‖2 + ‖xkf‖‖xkw‖+ 2kε‖(Dx + xy)(xkw)‖‖xk−1w‖

≤µ0‖xkw‖‖2 + µ0‖xkw⊥‖2 +
1
2
ε−1‖xkf‖2 +

ε

2
‖xkw‖2

+ kε‖xk−1w‖2 + kε‖(Dx + xy)(xkw)‖2.

(5.44)

To control the last term in the right side of (5.44) we use (5.13) with m = 2k to obtain the
existence of c1 for which we have

kε

∫
R2

+

|(Dx + xy)(xkw)|2 dxdy

≤kReλ‖xkw‖2 + kε‖(xk + kxk−1)w‖2 + k‖xkw‖‖xkf‖

=kε(λ1 + µ1)‖xkw‖2 + 2kε‖xkw‖2 + 2k2ε‖xk−1w‖2 +
k

2
ε‖xkw‖2 +

k

2
ε−1‖xkf‖2

≤c1ε(‖xkw‖2 + ‖xk−1w‖2) +
k

2
ε−1‖xkf‖2.

Substituting it back into (5.44) we derive the existence of c2 such that

(α0 − µ0)‖xkw‖‖2 + (α1 − µ0)‖xkw⊥‖2 ≤ c2ε(‖xkw‖2 + ‖xk−1w‖2) + c2ε
−1‖xkf‖2 .

By (5.43) and (5.9a) we then have

(α1 − α0)‖xkw⊥‖2

≤ε Imµ1(‖xkw‖‖2 + ‖xkw⊥‖2) + c2ε(‖xkw‖2 + ‖xk−1w‖2) + c2ε
−1‖xkf‖2

≤c3ε(‖xkw‖2 + ‖xk−1w‖2) + c3ε
−1‖xkf‖2

≤c4ε
[
‖w‖2 + ε−2‖(|x|k−1/2 + |x|k−3/2 + 1)f‖2)

]
+ c2ε

−1‖xkf‖2

=c4ε‖w‖2 + (c2 + c4)ε−1‖xk + |x|k−1/2 + |x|k−3/2 + 1)f‖2.

Hence
(α1 − α0)‖xkw⊥‖2 ≤ c5ε‖w‖2 + c5ε

−1‖(xk + 1)f‖2 , (5.45)

which with k = 2 yields (5.41b).
Step 3. Proof of (5.41c). We first differentiate (3.13) with respect to x (see also (5.27)) to

obtain
(iL − λ)(∂xw) + ε∂x(Dx + xy)2w = ∂xf .

Then, taking the inner product of the above identity with x2∂xw yields

〈(iL − λ)(x∂xw) , x∂xw〉+ ε〈∂x(Dx + xy)2w , x2∂xw〉 = 〈∂xf , x2∂xw〉 .

The imaginary part, with the aid of (5.43), receives the form

〈(L − µ0)(x∂xw), x∂xw〉 = Im 〈∂xf, x2∂xw〉 − ε Im 〈∂x(Dx + xy)2w , x2∂xw〉

=Im 〈∂xf, x2∂xw〉+ 2ε ‖xy1/2∂xw‖2 − ε Im 〈y2w, x3∂xw〉+ ε Im 〈(Dx + xy)2∂xw , x2∂xw〉 .

Note that

〈(Dx + xy)2∂xw , x2∂xw〉 = ‖x(Dx + xy)∂xw‖2 + 2〈∂xxw, x∂xw〉+ 2i‖xy1/2∂xw‖2.
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Consequently, we have

〈(L − µ0)(x∂xw), x∂xw〉 =Im 〈∂xf, x2∂xw〉 − ε Im 〈y2w, x3∂xw〉

+ 2ε Im 〈∂xxw, x∂xw〉+ 2ε ‖xy1/2∂xw‖2.

Combining the above with (5.39) we obtain

(α0 − µ0)‖x∂xw‖‖2 + (α1 − µ0)‖x∂xw⊥‖2

≤〈(L − µ0)(x∂xw), x∂xw〉

≤‖∂xf‖‖x2∂xw‖+ ε‖y2w‖‖x3∂xw‖+ 2ε|〈∂xxw, x∂xw〉|+ 2ε‖xy1/2∂xw‖2 ,

which together with (5.43) yields

(α1 − µ0)‖x∂xw⊥‖2

≤Cε
[
‖x2∂xw‖‖2 + ‖x∂xw‖2 + ‖y2w‖2 + ‖x3∂xw‖2 + ‖〈∂xxw, x∂xw〉|+ ‖xy1/2∂xw‖2

]
+ ε−1‖∂xf‖2

≤Cε
[
‖y2w‖2 + ‖x∂xw‖2 + ‖x2∂xw‖2 + ‖x3∂xw‖2 + ‖y∂xw‖2 + ‖∂xxw‖2

]
+ ε−1‖x∂xf‖2.

Using (5.9b) with k = 1, (5.9c) with k = 1, 2, 3, (5.9d) with k = 1, and (5.9e) we obtain, for all
0 < ε ≤ 1/4, that

(α1 − µ0)‖x∂xw⊥‖2

≤Cε{‖w‖2 + ε−2‖(1 + |x|9/2 + y9/2)f‖2 + ‖(y1/2 + y3/2)∂xf‖2 + ε−2‖∂xf‖2}+ ε−1‖x∂xf‖2.

Hence, (5.41c) is verified for 0 < ε ≤ 1/4, with

p(f)2 = ‖(1 + |x|9/2 + y9/2)f‖2 + ‖(1 + |x|+ y3/2)∂xf‖2 .

We are now ready for the final stage of Step 4 of the proof for the main results stated in
Section 3, in which we obtain an estimate of the norm of the solution w = (Bε−λ)−1f of (3.13)
for λ ∈ Cε,ρ and f ∈ S. Recall that every λ on the circle Cε,ρ obeys the form

λ = λ(δ) = γε + εδ(ρ, φ, ε) , (5.46)

where γε is given in (3.4), and

δ(ρ, φ, ε) := ρ exp(iφ) ε1/2, φ ∈ [0, 2π). (5.47)

Lemma 5.4. There exist k0 ∈ N, ρ0 > 0, and C > 0, such that for any w satisfying (3.13) with
λ ∈ Cε,ρ and ρ > ρ0 it holds that

∃ ε0(ρ) : 0 < ε < ε0(ρ) =⇒ ‖w‖ ≤ C(ε|δ|)−1pk0(f), (5.48)

where pk0 is the norm in S(R2
+,C) given in Lemma 5.3.

Proof. Step 1. Let

w1(x) =
∫ +∞

0
w(x, y)ψ0(y)dy.

Then,
w‖(x, y) = w1(x)ψ0(y), ‖w‖‖ = ‖w1‖L2(R).
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Taking the inner product of (3.13) with ψ0 in L2(R+,C) with respect to the variable y, and
dividing the resulting equation by ε we obtain

D2
xw1 − 2ix∂x〈w, yψ0〉y − i〈w, yψ0〉y + x2〈w, y2ψ0〉y −

λ− iα0

ε
w1 =

1
ε
〈f, w〉y, (5.49)

where 〈·, ·〉y denotes the inner product in L2(R+,C). Having in mind the definition (4.9)-(4.10)
of the operator K0, we can rewrite D2

xφ, for any smooth φ, in the form

D2
xφ = K0φ+ 2iαx∂xφ+ iαφ− β2x2φ. (5.50)

Therefore,

D2
xw1 − 2ix∂x〈w, yψ0〉y − i〈w, yψ0〉y + x2〈w, y2ψ0〉y

=K0w1 − 2ix∂x[〈w, yψ0〉y − αw1]− i[〈w, yψ0〉y − αw1] + x2[〈w, y2ψ0〉y − β2w1]

=K0w1 − 2ix∂x〈w⊥, yψ0〉y − i〈w⊥, yψ0〉y + x2〈w⊥, y2ψ0〉y,
(5.51)

where we have used the identities:

〈w, yψ0〉y − αw1 =
∫ +∞

0
yψ0(w − w1(x)ψ0(y))dy = 〈w − w‖, yψ0〉y = 〈w⊥, yψ0〉y,

〈w, y2ψ0〉y − β2w1 =
∫ +∞

0
y2ψ0(w − w1ψ0)dy = 〈w − w‖, y

2ψ0〉y = 〈w⊥, y2ψ0〉y.

We then combine (5.49) and (5.51), using (5.46) and (5.47) to get

(K0 − λ1 − δ)w1 = g, (5.52)

where
g = 2ix〈∂xw⊥, yψ0〉y + i〈w⊥, yψ0〉y − x2〈w⊥, y2ψ0〉y + ε−1〈f, ψ0〉y.

Step 2. We next estimate ‖g‖. Since

‖x〈∂xw⊥, yψ0〉y‖2
L2(R) ≤

∥∥∥x‖yψ0‖L2(R+)‖∂xw⊥‖L2(R+)

∥∥∥2

L2(R)

≤‖yψ0‖2
L2(R+)‖x∂xw⊥‖

2 ≤ C‖x∂xw⊥‖2,

and since there exists C > 0 such that

‖x2〈y2ψ0 , w⊥〉y‖2
L2(R) ≤ C‖x2w⊥‖2,

we have
‖g‖2

L2(R) ≤ C
[
‖x∂xw⊥‖2 + ‖w⊥‖2 + ‖x2w⊥‖2 + ε−2‖f‖2

]
. (5.53)

Consequently, by (5.41) we have, for some k0,

‖g‖2
L2(R) ≤ C

[
ε ‖w‖2 + ε−2pk0(f)2

]
. (5.54)

Step 3. As the operator K0 is self-adjoint we obtain from (5.52) and the spectral theorem [16]
that for any fixed ρ > 0 there exists ε0(ρ) > 0 such that for all 0 < ε < ε0(ρ) we have

‖w1‖L2(R) ≤ 2
‖g‖L2(R)

|δ|
. (5.55)

Substituting (5.54) into (5.55) we obtain for some k0 ∈ N,

‖w1‖L2(R) ≤ C1|δ|−1
[
ε1/2‖w‖+ ε−1pk0(f)

]
. (5.56)
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By (5.41a), there exists C2 > 0 such that, for small ε,

‖w‖2 ≤ C2

[
‖w‖‖2 + ‖w‖‖f‖

]
,

and hence, noting that ‖w1‖L2(R) = ‖w‖‖, we have that

‖w1‖2
L2(R) ≥

1
2C2

[
‖w‖2 − C2

2‖f‖2
]
. (5.57)

Using the above inequality together with (5.56), we obtain the existence of k0 and C3 such that

‖w‖2 ≤ C2
2‖f‖2 + 2C2‖w1‖2

L2(R) ≤ C3δ
−2

[
ε‖w‖2 + ε−2pk0(f)2

]
, (5.58)

which is valid for all ε ∈ (0, ε0(ρ)).
Let then

ρ0 =
√

2C3 .

For a given ρ > ρ0, we obtain from (5.58) that for all ε ∈ (0, ε0(ρ)), there exist k0 ∈ N and
C4 > 0 such that

‖w‖ ≤ C4(εδ)−1pk0(f) .

As an immediate consequence of Lemma 5.4 we obtain

Proposition 5.5. Let w satisfy (3.13) with f ≡ 0 and λ ∈ Cε,ρ, where ε is small enough. Then
w ≡ 0.

Proof of Proposition 3.4.
(3.11) follows from (5.48) with |δ| = ρε1/2.

The other consequences of Lemma 5.4 have been described at the end of Section 3.

6. Existence, Upper and Lower Bounds

It is now possible to state the following existence result:

Proposition 6.1. Let
γε = iα0 + ελ1, (6.1)

where α0 is the first eigenvalue of the Airy operator L and λ1 is the first eigenvalue of the
operator K0 defined in (4.9). Then there exist ε0 > 0 and C > 0 such that, for all 0 < ε < ε0,

σ(Bε) ∩B(γε, Cε3/2) 6= ∅. (6.2)

Proof. The proof follows immediately from (3.10) and (5.48).

By (5.48) it follows that Bε − λ is injective for λ ∈ C(ε, ρ) with ε small enough. As Bε has a
compact resolvent it immediately follows that λ 6∈ σ(Bε).

Coming back to our initial operatorA+
c we deduce from Proposition 6.1 the following corollary:

Corollary 6.2. The operator A+
c defined in the introduction admits at least one eigenvalue

µ = µ(c) having the following expansion as |c| → +∞:

µ(c) = c2/3 exp(i
π

3
)α0 + λ1 exp(−iπ

6
) c−1/3 +O(c−5/6) . (6.3)
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Clearly, (6.3) establishes the upper bound in (1.18). To obtain the lower bound we need to
prove first Proposition 3.5.

Proof of Proposition 3.5. The resolvent of Bε being compact, it is sufficient to show that
there are no eigenvalues in Db,ε. Let then λ ∈ Db,ε, where Db,ε is given by (3.14), and let
w ∈ D(Bε) satisfy

(Bε − λ)w = 0 .
We note first that, for fixed b and sufficiently small ε > 0, both (5.9) and (5.41) hold for λ ∈ Db,ε.
Furthermore, despite the fact that Lemma 5.4 is stated for λ ∈ Cε,ρ (see (5.46), (5.47)), we can
still use (5.54), (5.57), and even (5.52) as long as we appropriately modify the definition of δ.
More precisely, λ = γε + εδ ∈ Db,ε means that instead of (5.47) we have

−λ1 < Re δ ≤ −bε1/2, 0 < Im δ ≤ 3λ1 .

We can thus take the inner product with respect to x, in L2(R,C), of (5.52) with w1, defined in
the proof of Lemma 5.4, to obtain

−Re δ‖w1‖2
L2(R) ≤ Re 〈(K0 − λ1)w1, w1〉x − Re δ‖w1‖2

L2(R) = 〈g, w1〉x ≤ ‖g‖L2(R)‖w1‖L2(R) ,

where g was defined after (5.52). By (5.54), with f = 0, it then follows that

bε1/2‖w1‖L2(R) ≤ Cε1/2‖w‖ .
Using (5.57) with f = 0 then yields

b√
2C2

‖w‖ ≤ C‖w‖ .

For sufficiently large b we must then have w ≡ 0, which means that λ is not an eigenvalue.

7. Decay of the Semi-Group

In this section we apply a technique which was applied first in [13] to obtain stability of the
normal states for the linearized one-dimensional Ginzburg-Landau system, in the absence of any
magnetic field (induced or applied). The linear operator in this case is the Dirichlet realization
of the complex Airy operator in R+ [14], which we denote here by Q. In [3], it has been shown
that when λ lies to the left of σ(Q), then

‖e−t(Q−λ)u0‖L2(R+) −−−−→
t→+∞

0 ,

when u0 belongs to a certain dense set in L2(R+). In [13] the validity of the above has been
extended to any u0 ∈ L2(R+). We use the technique in [13] to obtain a similar result, but this
time for the operator A+

c , i.e., we prove Theorem 1.3. This desired outcome is a consequence of
the following proposition.

Recall the definition of µm(c) in (1.17).

Proposition 7.1. For any ω satisfying

ω < µm , (7.1)

there exists Mω > 0 such that,

‖G(t)‖L(L2(R2
+,C)) ≤Mω exp(−ωt) . (7.2)

Furthermore, for any ω > µm we have that

‖eωtG(t)‖L(L2(R2
+,C)) ≥ exp{(ω − µm)t} (7.3)
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Note that by (2.9) we have that

inf
z∈σ(A+

c )
Re z ≥ 1

2
|c|2/3α0 .

Furthermore, for a sufficiently large value of c, in view of (1.18), we can approximate µm using
(6.3). In the unlikely event that for some value of c, the spectrum of A+

c is empty we may set
µm = +∞, i.e., (7.2) would hold for all ω ∈ R, and (7.3) would become redundant.

We prove (7.2) with A+
c replaced by P defined in (2.1) since they are unitarily equivalent by

(2.1). In order to make use of the Gearhart-Prüss Theorem (see the Appendix) we need the
following lemma:

Lemma 7.2. Let µm be the number defined in (7.1). For any real number α satisfying α < µm ,
there exists a constant C, such that for all λ with Reλ ≤ α we have

‖(P − λ)−1‖ ≤ C . (7.4)

Proof. Without loss of generality we assume α > 0. Let then λ be such that Reλ < α. Clearly,
λ lies outside the spectrum of A+

c , and hence outside the spectrum of P as well. Consequently,
once we manage to prove boundedness of the resolvent (P − λ)−1 as |λ| → +∞ (for Reλ < α),
then the lemma will be proved.

We distinguish between three different subdomains of C:
(1) Reλ ≤ −α.
(2) Imλ→ −∞, and Reλ ∈ (−α, α).
(3) Imλ→ +∞, and Reλ ∈ (−α, α).

In the first region we use the inequality

Re 〈(P − λ)u, u〉 = ‖(Dx + yx)u‖2 + ‖Dyu‖2 − Reλ‖u‖2 ≥ (E∗0 − Reλ)‖u‖2 , (7.5)

where E∗0 was given in (1.14), to obtain that

‖(P − λ)−1‖ ≤ 1
E∗0 + α

.

In the second case we use the inequality

Im 〈(P − λ)u, u〉 =
∫

R2
+

(y − Imλ)|u|2 ≥ −Imλ‖u‖2 , (7.6)

yielding immediately that

‖(P − λ)−1‖ ≤ 1
|Imλ|

.

Consequently, it remains necessary to control the norm of the resolvent only in the third case.
Next, we prove the lemma in the third case. To this end, we borrow ideas from semi-classical

analysis. The main idea of the proof is to approximate (P − λ)−1 by a sum of two different op-
erators: one of them should serve as a good approximation when applied to functions supported
near the boundary, while the other one should take care of functions whose support lies far away
from the boundary.

The first component in the above decomposition is thus derived from the Dirichlet realization
of the differential operator

(Dx + yx)2 +D2
y + i(y − Imλ)− Reλ ,

for (x, y) in the band

S = R× (0,
Imλ

2
) .
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Denote the resolvent of this operator by

R1(λ) : L2(S,C) → H1
mag(S,C).

Since (7.6) still holds for the above Dirichlet realization, we easily obtain that

‖R1(λ)‖ ≤ 2
Imλ

. (7.7)

Furthermore, by (7.5), which remains valid for the problem in S, we have, for u = R1f ,

‖DyR1(λ)f‖2 = ‖Dyu‖2 ≤ ‖(P − λ)u‖‖u‖+ Reλ‖u‖2

≤‖f‖‖R1(λ)f‖+ |α|‖R1(λ)f‖2 ≤
( 2

Im |λ|
+

4|α|
|Imλ|2

)
‖f‖2.

Hence

‖DyR1(λ)‖ ≤
[ 2
|Imλ|

]1/2
+

2α1/2

|Imλ|
. (7.8)

Far from the boundary, we attempt to approximate the resolvent of the same differential
operator on R2, neglecting the boundary effect. Denote this resolvent by R2(λ). Recall from
[4] that the norm ‖R2(λ)‖ is independent of Imλ because the problem in R2 is invariant to
translations in y variable. Since R2(λ) is an entire function in λ, we easily obtain a uniform
bound on ‖R2(λ)‖ for Reλ ∈ [−α,+α]. Hence,

‖R2(λ)‖ ≤ C1(α). (7.9)

We now use a partition of unity in the y variable in order to construct an approximate inverse
Rapp(λ) for P − λ. We shall then prove that the difference between the approximation and
the exact resolvent is well controlled as Imλ → +∞. Define then the following pair of cutoff
functions in C∞(R+, [0, 1]):

φ(t) = 1 on [0, 3/8] , φ = 0 on [1/2,+∞),

ψ(t) = 1 on [0, 1/4] , ψ = 0 on [3/8,+∞) ,

and then set
φλ(y) = φ

( y

Imλ

)
, ψλ(y) = ψ

( y

Imλ

)
.

The approximate inverse Rapp(λ) is then constructed as

Rapp(λ) = φλR1(λ)ψλ +R2(λ)(1− ψλ) , (7.10)

where φλ and ψλ denote the operators of multiplication by the functions φλ(y) and ψλ(y). Thus,

φλ : D(R−1
1 ) → D(P),

ψλ : L2(R2
+,C) → L2(S,C),

1− ψλ : L2(R2
+,C) → L2(R2,C).

From (7.7) and (7.9) we get, for sufficiently large Imλ,

‖Rapp(λ)‖ ≤ C3(α). (7.11)

Note that
φλψλ = ψλ, (7.12)

and that

|φ′λ(y)| ≤
C

|Imλ|
, |φ′′λ(y)| ≤

C

|Imλ|2
. (7.13)
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Next, we apply P − λ to Rapp to obtain that :

(P − λ)Rapp(λ) = I + [P, φλ]R1(λ) (7.14)

where I is the identity operator, and

[P, φλ] ≡ Pφλ − φλP = [D2
y, φλ] = − 2i

Imλ
φ′

( y

Imλ

)
Dy −

1
(Imλ)2

φ′′
( y

Imλ

)
. (7.15)

Here we have used (7.10), (7.12) and the fact that

(P − λ)R1(λ)ψλu = ψλu, ∀u ∈ L2(R2
+,C).

Using (7.7), (7.8), and (7.15) we then easily obtain, for Imλ large enough,

‖[P, φλ]R1(λ)‖ ≤ C4(α)
|Imλ|3/2

. (7.16)

Hence, if |Imλ| is sufficiently large then I + [P, φλ]R1(λ) is invertible in L(L2(R2
+,C)), and

‖(I + [P, φλ]R1(λ))−1‖ ≤ C5(α). (7.17)

Finally, since
(P − λ)−1 = Rapp(λ) ◦ (I + [P, φλ]R1(λ))−1 ,

we have that
‖(P − λ)−1‖ ≤ ‖Rapp(λ)‖

∥∥(
I + [P, φλ]R1(λ)

)−1∥∥ .
Using (7.11) and (7.17) we find that (7.4) is true.

Proof of Proposition 7.1. The proof of (7.2) follows immediately from the Gearhart-Prüss
Theorem and (7.4).

To prove (7.3) we note that since the resolvent of P is compact, the spectrum is discrete.
Let λm ∈ C denote an eigenvalue with real part which equals µm. There is clearly at least one
eigenfunction associated with λm which we denote by um. We prove (7.3) by observing that

G(t)um = ume
−λmt.

Appendix A. Some Results Related to Pseudospectra

We recall that, for any ε > 0, the ε-pseudospectra of a linear operator A is defined by

Σε(A) =
{
λ ∈ C : ‖(A− λ)−1‖ > 1

ε

}
, (A.1)

with the convention that
‖(A− λ)−1‖ = +∞ if λ ∈ σ(A).

We have ⋂
ε>0

Σε(A) = σ(A) . (A.2)

We define, for any accretive closed operator A, for ε > 0, the ε-pseudospectral abscissa

α̂ε(A) = inf
z∈Σε(A)

Re z . (A.3)
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We also define the growth bound of A by

ω̂0(A) = lim
t→+∞

1
t

log ‖ exp(−tA)‖. (A.4)

We mention also that
α̂ε(A) ≤ inf

z∈σ(A)
Re z . (A.5)

Theorem A.1 (Gearhart-Prüss). Let A be a densely defined closed operator in a Hilbert space
X such that −A generates a contraction semi-group and let α̂ε(A) and ω̂0(A) denote the ε-
pseudospectral abscissa and the growth bound of A respectively. Then

lim
ε→0+

α̂ε(A) = −ω̂0(A) . (A.6)

We refer to [11] for a proof.
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