
The creeping motion of a small rigid particle near a

smooth boundary

Y. ALMOG ∗

Abstract

The creeping motion of a Newtonian fluid around a particle in a smooth domain is

studied. It is proved that the force distribution on the surface of the particle can be

approximated, in the limit where the ratio between particle size and the domain’s radius

of curvature tends to zero, by the force distribution on the same particle near a flat

wall. This result is then utilized to show that the velocities of the particle in mobility

problems, or the forces acting on it in resistance problems can be approximated by

replacing the domain with a flat wall.

1 introduction

We consider the problem of a rigid particle dispersed in a Newtonian fluid, in the absence

of inertia forces, in a bounded domain with smooth boundaries. It is widely accepted that

∗Faculty of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel

1



when the both the ratios between either the particle size or its distance from the boundary

and the the local radius of curvature on the boundaries tend to zero, the local flow field can

be approximated by the creeping motion around the same particle in the presence of a flat

wall. Such an assumption was made, for instance, by Brenner & Falade [3], who calculated

the force and the torque on a spherical particle, whose velocity and rate of rotation are

prescribed, near a smooth boundary. The same assumption was made in many other works

as well (cf. [6, 10, 11, 2] to cite a few).

While the underlying assumption in [3] was frequently used in many other formal asymp-

totic expansions, it was never proved rigorously. In the present contribution, thus, it is

proved that the local flow field – represented here by the force distribution on the surface of

the particle – can be estimated by the flow field around the same particle near a flat wall.

Such a result can be useful in problems involving homogenization techniques, since it is nec-

essary in such problems to bound the error generated by the particles near the wall. The

above result can, therefore, provide an upper-bound independent of the boundary’s specific

geometry.

We prove the above result in cases where the ratio between particle size and its distance

from the wall is bounded. Further research is necessary in order to show the validity of our

result in cases where the particle’s distance from the wall is much smaller than its size (the

case ∆ → 0 using the notation in [3]).

Consider a rigid particle suspended in a homogeneous Newtonian fluid of viscosity µ = 1

(if µ ̸= 1 we can transform the coordinates into a system were µ = 1). Denote by Ω a
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convex domain in R3 with smooth boundaries (in C2,α for some 0 < α < 1), and by (u, p),

respectively, the velocity and pressure field, satisfying in the absence of inertial effects

∇ · u = 0 in Ω \B (1.1a)

∇2u = ∇p in Ω \B (1.1b)

u = u∗ on ∂Ω (1.1c)

u = U + ω × (x− x0) on ∂B (1.1d)∫
∂B

fds = F

∫
∂B

(x− x0)× fds = L ((1.1e,f))

wherein f is the surface traction,

f = σ(u) · n̂, (1.2)

where σ(u) is the stress tensor deriving from (u, p), and n̂ is the outward unit normal on

∂Ω
⋃

∂B. The vectors U and ω respectively denote the translational and angular velocities

of B, F and L respectively denote the force and torque exerted on B by the fluid, and x0

is a fixed locator point in B. Problems where U and ω are given are known as resistance

problems, and those for which F and L are prescribed have been termed mobility problems.

Denote by (ū, p̄) the ambient flow satisfying Stokes problem in Ω in the absence of the

particle B, i.e., (1.1a,b) are satisfied in the interior of Ω and (1.1c) is satisfied on ∂Ω. It is

known (cf. [9]) that the velocity field possesses the integral representation

ui(y) = ūi(y) +

∫
∂B

Tij(x,y)fj(x)dsx, (1.3)

and the pressure field is given by

p(y) = p̄(y) +

∫
∂B

Pj(x,y)fj(x)dsx. (1.4)
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In the above, (T (x,y),P (x,y)) is Green’s functions of Stokes’ problem in Ω, defined by

Tij = tij + τij , Pi = pi + πi. (1.5)

In the latter, (t, p) denotes the Stokeslet

tij(x, y) =
1

8π

(
δij
r

+
rirj
r3

)

pi(x, y) =
1

4π

ri
r3


r = x − y , (1.6)

with (τ, π) the Stokeslet image, the latter being a regular solution of the Stokes problem

satisfying (1.1a,b) in Ω and the boundary condition τij|∂Ωu
= − tij|∂Ωu

, σij(τ .k) · n̂j|∂Ωf
=

− σij(t.k) · n̂j|∂Ωf
, where t.k denotes the vector (t1k, t2k, t3k).

It is easy to show using (1.3) and (1.4) that the stress field may be expressed in the form

σij(y) = σ̄ij(y) +

∫
∂B

(σy)ij(T .k(x, y))fk(x)dsx. (1.7)

Upon letting y approach the surface of one of the particles, dot-multiplying by the inward

normal, and using the ’jump condition’ [8], it may be shown [9] that the surface traction f

satisfies the boundary integral equation

1

2
fi(y) = f̄i(y) +

∫
∂B

(σy)ij(T .k(x, y))fk(x)dsxn̂j(y) (1.8)

for y ∈ ∂B, wherein f̄ is the surface traction due to (ū, p̄), and σy(T .k) is the stress tensor

due to (T .k,P k). Together with (1.1e,f), (1.8) possesses a unique solution [9].

In the next section we prove, for mobility problems that the surface traction on a rigid

particle in Ω tends, as the (small) particle approaches the boundary, to the to surface traction
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on the same particle near a tangent plane to ∂Ω. The ambient surface traction f̄ is kept

constant in that limit. In § 3 we use the results in § 2 to prove, for mobility problems, that

the translational and angular velocities of the rigid particle in Ω respectively tend to its

translational and angular velocities in a half-space. For resistance problems we show the

same for the force and torque exerted by the fluid on the particle. Finally, in § 4 we briefly

summarize the work and address some of the difficulties that arise during the proof of the

results in § 2.

2 The surface traction

In this section we prove the following result

Theorem 1 Let Ω ⊂ R3 be a convex bounded domain with smooth boundaries (in C2,α say).

Let B ⊂ Ω denote a smooth rigid body. Denote by x0 the closest point to ∂Ω on ∂B and by

z the closest point to ∂B on∂Ω, or

d(∂B, ∂Ω) = |x− z| .

Let z = (0, 0, 0) and x0 = (0, 0, h). The outward normal to ∂Ω at z is then −ez. Denote by

Ω1/ϵ the image of Ω under the mapping

x → x

ϵ

If B is independent of ϵ, i.e., the coordinates of any point in B are unaffected by changes in

ϵ, then, ∃ϵ0 > 0 such that for every 0 < ϵ < ϵ0 and h > 0 and for every f̄ ∈ C(∂Bϵ) the

5



solutions of

1

2
f ϵ
i (y) = f̄i(y, ϵ) +

∫
∂B

(σy)ij(T
Ω1/ϵ

.k (x, y))f ϵ
k(x)dsxn̂j(y) (2.1a)∫

∂B

f ϵds = F (ϵ)

∫
∂B

(x− x0)× f ϵds = L(ϵ) (2.1b,c)

and

1

2
fW
i (y) = f̄i(y, ϵ) +

∫
∂B

(σy)ij(T
W
.k (x, y))f

W
k (x)dsxn̂j(y) (2.2a)∫

∂B

fWds = F (ϵ)

∫
∂B

(x− x0)× fWds = L(ϵ) (2.1b,c)

satisfy ∥∥f ϵ − fW
∥∥
L∞(∂B)

≤ C(α,Ω, h)ϵ1/α
∥∥fW

∥∥
L∞(∂B)

∀α > 1 . (2.3)

In the above T Ω1/ϵ

denotes the Green’s function in Ω1/ϵ and TW in the half-space z > 0.

To prove the theorem we need first to prove the following auxiliary result which establishes

convergence of the Green’s function in the limit ϵ → 0.

Lemma 1 Let Ω and T Ω be the same as in theorem 1. Denote by W the half-space z > 0

whose boundary is the tangent plane to ∂Ω at (−ϵt, 0, 0). Let TW be the Green’s function in

that half-space. Let y = (0, 0, ϵu), where u > 0 and both u and t are independent of ϵ. Then,

∃ϵ0 > 0 such that

∥T Ω − TW∥W 2,α(Ω)(y) + ∥P Ω − PW∥W 2,α(Ω)(y) ≤ C(α,Ω, u, t)ϵ3/α−2

for any 0 < ϵ < ϵ0 and α > 1.
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proof: Our first step would be to estimate T Ω(x,y)−TW (x,y) for all x ∈ ∂Ω. As T Ω(x,y) =

0 when x is on the boundary and y is in the interior of Ω we need only an estimate of TW

on ∂Ω. Denote by xp the projection of x on the xy plane and by yp the reflection of y with

respect to the xy plane. Let s = ϵ−1|xp| and δ = ϵ−1|x− xp|. Then,

r = x− y = ϵser + ϵ(−u+ δ)ez (2.4a)

rp = x− yp = ϵser + ϵ(u+ δ)ez (2.4b)

re = xp − yp = ϵser + ϵuez . (2.4c)

Figure 1 displays the various entities defined in the above. It is well known (cf. [1]) that TW

r

rp re xp

x

z

y

yp

∂Ω∂B

•

• •

•

ez

er

Figure 1: Definition of the various points and displacement vectors which are utilized in the

proof of lemma 1 and theorem1
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is given by

TW =

(
1

r
− 1

rp

)
I +

(
rr

r3
− rprp

r3p

)
+ 2u (erer − ezez) ·∇

[
urp

r3p
− 1

rp

(
I +

rprp

r2p

)
· ez

]
(2.5)

Denote by R the minimal radius of curvature of Ω at (−t, 0, 0). From the definition of Ω

it is clear that

R ≥ C .

(We shall use the notation C for any arbitrary constant in the sequel.) Hence, the following

estimate for δ holds for sufficiently large C and s < ϵ−ν for some 0 < ν < 1

δ ≤ 1

ϵ

[
R−

√
R2 − ϵ2(s+ t)2 ≤ Cϵ

s2 + t2

R

]
≤ C(s2 + t2)ϵ . (2.6)

It is easy to show that for s < ϵ−ν

∣∣∣∣1r − 1

rp

∣∣∣∣ = 1√
r2e + δ2

[
1 + 2δu

r2e+δ2

] 1
2 −

[
1− 2δu

r2e+δ2

] 1
2

[
1−

(
2δu

r2e+δ2

)2
] 1

2

≤ Cδu

ϵ [r2e + δ2]3/2
≤ C

(s2 + t2)u

[s2 + u2]3/2
≤ C

[s2 + u2]1/2

(2.7a)

As
∣∣∂re
∂s

∣∣ ≤ C we have (the gradient here is tangential to ∂Ω)

∣∣∣∣∇(
1

r
− 1

rp

)∣∣∣∣ ≤ C
(s2 + t2)u

ϵr4e
≤ C

ϵ(s2 + u2)
(2.7b)

Similarly, ∣∣∣∣∇∇
(
1

r
− 1

rp

)∣∣∣∣ ≤ C
(s2 + t2)u

ϵ2r5e
≤ C

ϵ2 [s2 + u2]3/2
(2.7c)

8



For s > ϵ−ν we have ∣∣∣∣1r − 1

rp

∣∣∣∣ ≤ C

ϵs
(2.8a)∣∣∣∣∇(

1

r
− 1

rp

)∣∣∣∣ ≤ C

ϵ2s2
(2.8b)∣∣∣∣∇∇

(
1

r
− 1

rp

)∣∣∣∣ ≤ C

ϵ3s3
(2.8c)

By splitting ∂Ω into the subdomains |y − y
′ | ≤ ϵ and |y − y

′ | > ϵ it is not difficult to

show that ∫
∂Ω×∂Ω

|u(y′
)− u(y)|α

|y′ − y|1+α
dy

′
dy ≤ Cϵ∥∇u∥αLα(∂Ω) + Cϵ1−α∥u∥αLα(∂Ω) .

Substituting ∇
(

1
r
− 1

rp

)
for u in the above yields, for sufficiently large ν (but still smaller

than unity) ∥∥∥∥1r − 1

rp

∥∥∥∥
W 2−1/α,α(∂Ω)

≤ Cϵ3/α−2 (2.9)

for any α ∈ (1,∞).

To prove that a similar estimate holds for TW we write it in the form

TW =

(
1

r
− 1

rp

)
I +

(
1

r
− 1

rp

)
rr

r2
+

(
1

r
− 1

rp

)
rr

rrp
+

+

(
rr − rprp

r3p

)
+

+ 2ϵu (erer − ezez) ·∇
[
ϵurp

r3p
− 1

rp

(
I +

rprp

r2p

)
· ez

]
(2.10)

A straightforward calculation shows that(
rr − rprp

r3p

)
+ 2ϵu (erer − ezez) ·∇

[
ϵurp

r3p
− 1

rp

(
I +

rprp

r2p

)
· ez

]
=

=
2ϵ2uδ

r3p
(erer − ezez) ·

[
3
rprp

r2p
− I

]
− 4

ϵ2uδ

r3p
ezez (2.11)
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As min(r, rp) ≥ Cre and since

∣∣∣∣rprp

r2p

∣∣∣∣ ≤ C

∣∣∣rr
r2

∣∣∣ ≤ C∣∣∣∣ rrrrp
∣∣∣∣ ≤ C

independently of ϵ, the right-hand-side of (2.10) satisfy the estimates (2.7) and (2.8). Hence,

∥∥TW
∥∥
W 2−1/α,α(∂Ω)

≤ C(α,Ω, u, t)ϵ3/α−2 (2.12)

for any α ∈ (1,∞).

As TW − T Ω is a regular solution of the Stokes equation for all x ∈ Ω, standard elliptic

estimates for the Stokes equations (cf. lemma IV-6.1 in[4]) then imply that

∥T Ω − TW∥W 2,α(Ω) + ∥P Ω − PW∥W 2,α(Ω) ≤ C(α,Ω, u, t)ϵ3/α−2 (2.13a)

for all α ∈ (1,∞).

□

Proof of theorem 1:

Let f̃ = f ϵ − fW . Subtracting (2.2) from (2.1) we obtain

1

2
f̃i(y) =

∫
∂B

(σy)ij(T
W
.k (x, y))f̃k(x)dsxn̂j(y) +

∫
∂B

(σy)ij(T
Ω1/ϵ

.k − TW
.k )(x, y)f

ϵ
k(x)dsxn̂j(y)

(2.14a)∫
∂B

f̃ds = 0

∫
∂B

(x− x0)× f̃ds = 0 (2.14b,c)
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The second integral on the right-hand side of (2.14a) can be bounded as follows: Denote

by Bϵ the image of B under the mapping

x

ϵ
→ x .

As

σ
(
TW

.k

)
(x, y) =

1

ϵ2
σ
(
TW

.k

)
(x/ϵ, y/ϵ) , (2.15)

We have∫
∂B

(σy)ij(T
Ω1/ϵ

.k − TW
.k )(x/ϵ,y/ϵ)f

ϵ
k(x/ϵ)dsx =

∫
∂Bϵ

(σy)ij(T
Ω
.k − TW

.k )(x, y)f
ϵ
k(x)dsx

By lemma 1,∣∣∣∣∫
∂Bϵ

(σy)ij(T
Ω
.k − TW

.k )(x, y)f
ϵ
k(x)dsxn̂j(y)

∣∣∣∣ ≤
≤ Cϵ2−1/α ∥f ϵ∥L∞(∂B)

{∥∥TW − T Ω
∥∥
W 2,α(Ω)

+
∥∥PW − P Ω

∥∥
W 1,α(Ω)

}
≤ Cϵ1/α ∥f ϵ∥L∞(∂B) .

(2.16)

Hence,

1

2
f̃i(y)−

∫
∂B

(σy)ij(T
W
.k (x, y))f̃k(x)dsxn̂j(y) = g(y) (2.17a)∫

∂B

f̃ds = 0

∫
∂B

(x− x0)× f̃ds = 0 (2.17b)

where

∥g∥L∞(∂B) ≤ Cϵ1/α ∥f ϵ∥L∞(∂B) (2.17c)

Since the operator on the left-hand-side of (2.17a) is invertible in the space of C(∂B)

functions satisfying (2.17b) [9, 8], and since the operator is independent of ϵ we have

∥f̃∥L∞(∂B) = ∥f ϵ − fW∥L∞(∂B) ≤ Cϵ1/α ∥f ϵ∥L∞(∂B) . (2.18)
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It is easy to show, using (2.18) that

∥f ϵ∥L∞(∂B) ≤

∥∥fW
∥∥
L∞(∂B)

1− Cϵ1/α
. (2.19)

Consequently, ∃ϵ0 such that for all 0 < ϵ < ϵ0 we have

∥f ϵ − fW∥L∞(∂B) ≤ C(α,Ω, h)ϵ1/α
∥∥fW

∥∥
L∞(∂B)

(2.20)

3 Mobility and resistance problems

In this section we utilize theorem 1 in both mobility and resistance problems. In the first

case the force and torque exerted by the fluid on the particle remain fixed, whereas the

translational and angular velocities are allowed to vary with ϵ. For resistance problems the

velocity and rate of rotation remain fixed, whereas the force and torque vary with ϵ.

For the first case we obtain the following result:

Corollary 1 Let B and Ω1/ϵ be the same as in theorem 1. Denote by W the half-space

z > 0, and let O be the closet point on ∂Ω1/ϵ to B. Let U ϵ and ωϵ respectively denote the

translational and rotational velocities of B for the following mobility problem

∇ · uϵ = 0 in Ω1/ϵ \B (3.1a)

∇2uϵ = ∇pϵ in Ω1/ϵ \B (3.1b)

uϵ = u∗ (ϵx) on ∂Ω1/ϵ (3.1c)

uϵ = U ϵ + ωϵ × (x− x0) on ∂B x0 ∈ B (3.1d)∫
∂B

f ϵds = F

∫
∂B

(x− x0)× f ϵds = L (3.1e,f)
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Let further UW and ωW denote the velocities of B for the mobility problem

∇ · uW = 0 in W \B (3.2a)

∇2uW = ∇pW in W \B (3.2b)

uW = u∗(O) on ∂W (3.2c)

uW → u∗(O) as |x| → ∞in W (3.2d)

uW = UW + ωW × (x− x0) on ∂B x0 ∈ B (3.2e)∫
∂B

fWds = F

∫
∂B

(x− x0)× fWds = L . (3.2e,f)

Then, ∃ϵ0 > 0 such that for 0 < ϵ < ϵ0 and 0 < β < 1 we have

|U ϵ −UW | ≤ C(β,Ω, h)ϵβ (3.3a)

|ωϵ − ωW | ≤ C(β,Ω, h)ϵβ (3.3b)

proof: Using the integral presentation (1.3) we can write the velocity field in the form

uϵ
i(y) = ūi (ϵy) +

∫
∂B

TΩ1/ϵ

ij (x,y)f ϵ
j (x)dsx =

= ūi(O)+

∫
∂B

TW
ij f

W
j dsx+

∫
∂B

(
TΩ1/ϵ

ij − TW
ij

)
fW
j dsx+

∫
∂B

TW
ij (f

W
j −f ϵ

j )dsx+[ūi (ϵy)− ūi(O)]

(3.4)

Denote by fW,ϵ the solution of

1

2
fW,ϵ
i (y)−

∫
∂B

(σy)ij(T
W
.k (x, y))f

W,ϵ
k (x)dsxn̂j(y) = 2ϵDij(ϵy)n̂j(y) (3.5a)∫

∂B

fW,ϵds = F

∫
∂B

(x− x0)× fW,ϵds = L . (3.5b,c)
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Where D is the symmetric part of ∇ū. By theorem 1 ∃ϵ0 > 0 such that for all 0 < ϵ < ϵ0

and 1 < α ∥∥fW,ϵ − f ϵ
∥∥
L∞(∂B)

≤ Cϵ1/α
∥∥fW,ϵ

∥∥
L∞(∂B)

. (3.6)

Furthermore, since the linear operator on the left-hand-side (3.5a) is invertible and indepen-

dent of ϵ, and since fW satisfies (2.2) we have

∥∥fW,ϵ − fW
∥∥
L∞(∂B)

≤ Cϵ ∀0 < ϵ < ϵ0 . (3.7)

Combining (3.6) and (3.7) yields, since
∥∥fW

∥∥ is bounded for h > 0,

∥∥f ϵ − fW
∥∥
L∞(∂B)

≤ Cϵ1/α ∀0 < ϵ < ϵ0 1 < α . (3.8)

Using lemma 1 and Sobolev embedding it is not difficult to show that for α1 > 3/2∣∣∣∣∫
∂B

(
TΩ1/ϵ

ij − TW
ij

)
fW
j dsx

∣∣∣∣ = ϵ−1

∣∣∣∣∫
∂Bϵ

(
TΩ
ij − TW

ij

)
fW
j dsx

∣∣∣∣ ≤
≤ Cϵ

∥∥TΩ
ij − TW

ij

∥∥
L∞(Ω)

∥f ϵ∥L∞(∂B) ≤ Cϵ3/α1−1 , (3.9a)

and by (3.8) that for any α2 > 1

∣∣∣∣∫
∂B

TW
ij (f

W
j − f ϵ

j )dsx

∣∣∣∣ ≤ Cϵ ∥T w∥L1(∂B) ≤ Cϵ1/α2 , (3.9b)

uniformly for all y ∈ ∂B. Furthermore, smoothness of ū implies that

sup
y∈∂B

|ū(ϵy)− ū(O)| ≤ Cϵ . (3.9c)

Hence,

sup
y∈∂B

∣∣∣∣uϵ
i(y)− ūi (O)−

∫
∂B

TW
ij (x,y)f

W
j (x)dsx

∣∣∣∣ ≤ C
(
ϵ3/α1−1 + ϵ1/α2 + ϵ

)
, (3.10)
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which is equivalent to the corollary.

□

Note that in the limit ϵ → 0 the ambient flow tends to be uniform, and a change in the frame

of reference would turn the limit problem (3.2) into the problem of finding the velocity of a

particle near a flat wall in a quiescent fluid.

It is now possible to consider other limit cases but the one considered in corollary 1, i.e.,

where the domain size tends to infinity but the particle size remains fixed. In fact, it suffices

to require that the ratios between either the particle size or its distance from the boundary

and the the local radius of curvature on the boundaries tend to zero, as the following corollary

proves

Corollary 2 Let Ωδ/ϵ and Bδ be the respective images of Ω1/ϵ and B under the mapping

x → δx. Let U ϵ and ωϵ respectively denote the translational and rotational velocities of Bδ

for the following mobility problem

∇ · uϵ = 0 in Ωδ/ϵ \Bδ (3.11a)

∇2uϵ = ∇pϵ in Ωδ/ϵ \Bδ (3.11b)

uϵ = u∗ on ∂Ωδ/ϵ (3.11c)

uϵ = U ϵ + ωϵ × (x− x0)u
∗ on ∂Bδ (3.11d)∫

∂Bδ

f ϵds = δF

∫
∂Bδ

(x− x0)× f ϵds = δ2L (3.11e,f)
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Let further UW and ωW denote the velocities of B for the mobility problem

∇ · uW = 0 in W \Bδ (3.12a)

∇2uW = ∇pW in W \Bδ (3.12b)

uW = u∗(O) on ∂W (3.12c)

uW → u∗(O) + as |x → ∞|in W (3.12d)

uW = UW + ωW × (x− x0) on ∂Bδ (3.12e)∫
∂Bδ

fWds = F

∫
∂Bδ

(x− x0)× fWds = L . (3.12e,f)

Then, ∃ϵ0 > 0 such that for all 0 < ϵ < ϵ0 and 0 < β < 1

|U ϵ −UW | ≤ C(β,Ω, h)ϵβ (3.13a)

|ωϵ − ωW | ≤ C(β,Ω, h)ϵβ (3.13b)

Proof: Applying the transformation x → x/δ to (3.11) and (3.12) we respectively obtain

(3.1) and (3.2). Corollary 1 can then be utilized.

□

We note, however, that in contrast to the translational and the angular velocities which

are not affected by the change of the limit, the surface traction field considerably varies. For

instance, if δ = ϵ and either F ̸= 0 or L ̸= 0 then f ϵ ∼ O(1/ϵ). For neutrally buoyant

torque-free particles it is not difficult to show that the surface traction tends to satisfy the
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integral equation

1

2
fi(y)−

∫
∂Bϵ

(σy)ij(T
W
.k (x, y))fk(x)dsxn̂j(y) = 2Dij(O)n̂j(y) y ∈ ∂Bϵ (3.14a)∫

∂Bϵ

fds = 0

∫
∂Bϵ

(x− x0)× fds = 0 , (3.14b,c)

or, equivalently, to the surface traction on a particle near a wall in a uniform shear flow.

We conclude this section by discussing the case δ = 1 for resistance problems.

Corollary 3 Let B and Ω1/ϵ be the same as in theorem 1. Let F ϵ and Lϵ respectively denote

the force and torque exerted by the fluid on B for the following resistance problem

∇ · ũϵ = 0 in Ω1/ϵ \B (3.15a)

∇2ũϵ = ∇pϵ in Ω1/ϵ \B (3.15b)

ũϵ = u∗ (ϵx) on ∂Ω1/ϵ (3.15c)

ũϵ = U + ω × (x− x0)ũ
∗ on ∂B (3.15d)∫

∂B

f ϵds = F ϵ

∫
∂B

(x− x0)× f ϵds = Lϵ (3.1e,f)

Let further FW and LW denote the force and torque on B for the resistance problem

∇ · ũW = 0 in W \B (3.16a)

∇2ũW = ∇pW in W \B (3.16b)

ũW = u∗(O) on ∂W (3.16c)

ũW → u∗(O) as |x → ∞| in W (3.16d)

ũW = U + ω × (x− x0) on ∂B (3.16e)∫
∂B

fWds = FW

∫
∂B

(x− x0)× fWds = LW . (3.2e,f)
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Then, ∃ϵ0 > 0 such that for 0 < ϵ < ϵ0 we have

|F ϵ − FW | ≤ Cϵβ (3.17a)

|Lϵ −LW | ≤ Cϵβ (3.17b)

Proof: We first reinterpret corollary 1 in terms of mobility matrices. Linearity of Stokes

flows implies that U ϵ

ωϵ

 = M ϵ

F
L

+ Lϵū (3.18a)

and that UW

ωW

 = MW

F
L

+ LW ū , (3.18b)

wherein M is a 6 × 6 mobility matrix, which is both symmetric and positive definite [5],

and Lū is the velocity of the particle in the absence of external forces and torques. The

subscripts ϵ and W have the same meaning as in corollary 1. Both M and L depend on the

domain and on particle shape and location. Corollary 1 may now be restated in the form

∥M ϵ −MW∥ ≤ Cϵβ ; ∥LW ū− Lϵū∥ ≤ Cϵβ . (3.19a,b)

Since for h > 0, the matrices M ϵ for 0 < ϵ < ϵ0 and MW are all invertible, we can

express M−1
ϵ −M−1

W in the form [7]

M−1
ϵ −M−1

W =
∞∑
k=1

M−k
W (M ϵ −MW )k
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yielding ∥∥M−1
ϵ −M−1

W

∥∥ ≤ Cϵβ . (3.20)

Consider now the resistance problems (3.16) and (3.17). In this case we have, in view of

(3.18) F ϵ

Lϵ

 = M−1
ϵ

U
ω

−M−1
ϵ Lϵū (3.21a)

and FW

LW

 = M−1
W

F
L

−M−1
W LW ū . (3.21b)

The corollary follows immediately from the above relations, (3.10b), and (3.20).

□

4 Conclusion

We have demonstrated in § 2 that the surface traction on a rigid particle near a smooth

boundary tends to the surface traction on the same particle near a flat wall. We utilize these

results in § 3 to show that the velocity and the rate of rotation of the particle, respectively,

tend to the velocity and the rate of rotation of the same particle for mobility problems. The

same result is proved for the force and torque in resistance problems.

One major obstacle which needs yet to be overcome is the limit h → 0 (or when the ratio

between particle size and its distance from the wall tends to 0). In [3] the formal asymptotic
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expansion assumes the validity of corollary 3 even when h → 0, despite the fact that the force

and torque may tend to ∞ in that limit. Nevertheless, it is (plausibly) assumed that the

correction term due to the curvature of the boundary, while not necessarily being negligibly

small, is still much smaller than the leading order term.

Using lemma 1, it is not difficult to show that the function g on the right-hand-side of

(2.17) satisfies

∥g∥L∞(∂B) ≤ Ch3/α−2ϵ1/α
∥∥fW

∥∥
L∞(∂B)

. (4.1)

However, as the integral operator on the left-hand side of (2.17) depends on h, and since

its limit as h → 0 is non-compact, it is not easy to show that the same estimate holds for

f ϵ − fW . Note that the L∞ norm of fW may tend to infinity as h → 0, as is expected from

the formal asymptotic expansions in [3].

The convexity requirement can be substantially weakened. We first note that Ω needs

to be convex only in some neighborhood of the point z, which is the point closest to the

particle B on ∂Ω. If the domain is concave near z, it seems that the same procedure, with

a few changes, can be applied in order to obtain the same results.

The results in this work were all stated and proved for a single particle. We can, however,

extend them to a multi-particle set, since theorem 1 remains valid. The distance h, from the

particle to the wall, will become the distance between this set and ∂Ω.
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