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Abstract

The linearized Ginzburg-Landau equations in both semi-infinite strips and rect-

angles are transformed into equivalent one-dimensional integral equations. Then, the

properties of the integral equations are utilized to prove that the onset field for semi-

infinite strip is isolated. We solve the integral equations numerically to obtain the

onset field for both rectangles and semi-infinite strips. A formal asymptotic expansion

of the onset field in the long rectangle limit is obtained as well. Using this formal

expansion we show that the onset field converges in this limit faster than any finite

exponential rate, and, as a byproduct, that the onset mode in a semi-infinite strip must

be asymptotically symmetric.

1 Introduction

Consider a planar superconducting body which is placed in a sufficiently low temperature

(below the critical one) under the action of an external magnetic field . It is known both
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from experiments [15] and rigorous analysis [10] that for sufficiently strong magnetic field

the normal state would prevail. If the field is then decreased, there is a critical field, depend-

ing on the sample’s geometry, where the material would enter the superconducting state.

For samples with boundaries, this field is known as the onset field. We shall refer to the

bifurcating mode of the super-conducting order parameter as the onset mode.

The simplest case in which the bifurcation from the normal state to the superconducting

one was calculated is the case of a half-plane [17]. Even in this simple case the onset field is

substantially larger than the bifurcation field on the real line [9]. Furthermore, it was found

by Saint-James and De-Gennes [17] that superconductivity is concentrated in this case near

the boundary. This phenomenon, which appears in the presence of boundaries have been

termed, therefore, surface superconductivity. The significance of Saint-James and de Gennes’

solution [17] extends far beyond the simple, one-dimensional example of a half-plane. It was

proved, first for films [5], then for discs [3], and finally for general two-dimensional domains

with smooth boundaries [14, 8], that as the domain’s scale tends to infinity the onset field

tends to de-Gennes’ value. If the boundaries include wedges the onset field will be larger

than de-Gennes’ value [4, 11, 18, 12].

In the present contribution we focus on semi-infinite strips and long rectangles. In [2]

a few relevant results were obtained for these domains. Let S denote the semi-infinite strip

{(x, y)| − l ≤ x ≤ l, 0 ≤ y} and let RL denote the rectangle {(x, y)| − l ≤ x ≤ l, 0 ≤ y ≤ L}.

Denote further by hS the onset field of S, by hL the onset field of RL, and by h1D the onset

field of the interval [−l, l]. The following relevant results were proved in [2]:
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1. hS exists and is greater than h1D.

2. The onset mode of S decays exponentially fast as y → ∞, or is O(e−γy). The value of

γ can be easily obtained once hS is determined.

3. hL ≥ hS. Furthermore, hL −−−→
L→∞

hS.

Many of the results in [2] were obtained using Fourier analysis. In the present contri-

bution we employ Fourier analysis once again to obtain integral equations equivalent to the

bifurcation problems in S and RL. We then utilize the properties of the equation in S to

prove isolation, on the h axis, of hS. We then provide formal arguments, showing that hL

converges faster than any exponentially rate to hS as L → ∞, and that the onset mode in

S is asymptotically symmetric with respect to x as y → ∞. Finally, we obtain hL and hS

by numerically solving the formerly derived integral equations. Once hS is obtained, the

exponential rate of decay of the onset mode in S, for large y, is evaluated.

The Ginzburg-Landau energy functional may be represented in the following dimension-

less form [7]:

E =

∫ (
−|ψ|2 + |ψ|4

2
+ |H|2 +

∣∣∣∣1κ∇ψ − iAψ

∣∣∣∣2
)
dxdy (1.1)

in which Ψ is the (complex) superconducting order parameter, such that |Ψ| varies from

|Ψ| = 0 (when the material is at a normal state) to |Ψ| = 1 (for the purely superconducting

state). The magnetic vector potential is denoted by A (the magnetic field is, then, given

by H = ∇ × A), and κ is the Ginzburg-Landau parameter which is a material property.

Superconductors for which κ < 1/
√
2 are termed type I superconductors, and those for which
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κ > 1/
√
2 have been termed type II. Note that E is invariant under the gauge transformation

Ψ → eiκθψ; A → A+∇θ. (1.2)

We look for local minimizers of E in the semi-infinite strip S, or in the rectangle RL in the

the case where the applied magnetic field is constant and perpendicular to the plane. The

Euler-Lagrange equations associated with E (the steady state Ginzburg-Landau equations)

are given by

(
i

κ
∇+A

)2

Ψ = Ψ
(
1− |Ψ|2

)
, (1.3a)

−∇× (∇×A) =
i

2κ
(Ψ∗∇Ψ−Ψ∇Ψ∗) + |Ψ|2A. (1.3b)

The natural boundary conditions satisfied on ∂S for this problem are

(
i

κ
∇+A

)
ψ · n̂ = 0, (1.4a)

H = hẑ. (1.4b)

As the Ginzburg-Landau equations are gauge-invariant, we may choose the gauge (following

[1, 6]) A = (0, A(x, y), 0). Thus, H = (0, 0, H(x, y)) and H = ∂A/∂x. We then linearize

(1.3) near the normal state Ψ ≡ 0, A = hx, to which end we assume the asymptotic expansion
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(ϵ≪ 1)

Ψ = ϵ1/2ψ, (1.5a)

A = hx+ ϵa, (1.5b)

h = h(0) + ϵh(1) + . . . , (1.5c)

a = a(0) + ϵa(1) + . . . , (1.5d)

ψ = ψ(0) + ϵψ(1) + . . . . (1.5e)

Applying the transformations

x1 = κx, y1 = κy, h1 =
h(0)

κ
,

the linearized form of (1.3a) becomes (we omit the superscripts 1 and (0) in the following)

−
(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+ 2ihx

∂ψ

∂y
= ψ − h2x2ψ. (1.6)

The boundary condition (1.4a) for the specific gauge we have chosen becomes after lineariza-

tion on ∂S

ψx(±l, y) = 0; iψy(x, 0) + hxψ(x, 0) = 0. (1.7a,b)

On ∂RL we have to add the boundary condition

iψy(x, L) + hxψ(x, L) = 0. (1.8)

The rest of this work is arranged as follows: In the next section we derive integral

equations equivalent to (1.6) together with (1.7) in S or together with (1.7) and (1.8) in RL.

In § 3 we prove isolation of hS, in § 4 we show, using formal arguments, that hL ∼ hS+O(e
−λL)
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for any λ > 0, and that ψ(x, y) ∼ ψ̄(−x, y) as y → ∞. Finally, in § 5, we solve the integral

equation from § 2 numerically.

2 Integral equations

Theorem 1 Let h = hS. Then, any solution of the problem

−
(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+ 2ihx

∂ψ

∂y
= ψ − h2x2ψ − l ≤ x ≤ l, 0 ≤ y (2.1a)

ψx(±l, y) = 0; iψy(x, 0) + hxψ(x, 0) = 0 (2.1b,c)

must satisfy

1

2
ψ(x, 0) =

1

2π
PV

∫ ∞

−∞
i

∫ l

−l
(hs− ω)G(x, s, ω)ψ(s, 0)dsdω (2.2)

where P.V denotes the principal value and

G(x, s, ω) = m(h)


[U(η)U ′(−ξ(l)) + U(−η)U ′(ξ(l))] [U ′(−ξ(−l))U(ξ) + U ′(ξ(−l))U(−ξ)]

U ′(ξ(−l))U ′(−ξ(l))− U ′(ξ(l))U ′(−ξ(−l))
, x < s,

[U(η)U ′(−ξ(−l)) + U(−η)U ′(ξ(−l))] [U ′(−ξ(l))U(ξ) + U ′(ξ(l))U(−ξ)]
U ′(ξ(−l))U ′(−ξ(l))− U ′(ξ(l))U ′(−ξ(−l))

, x > s,

(2.3a)

wherein

m(h) =
Γ(1/2 + a)

2
√
πh

, (2.3b)

ξ = ξ(x, ω) is given by

ξ =

√
2

h
(hx− ω),

and η = ξ(s, ω), U(x) ≡ U(a, x) is a parabolic cylinder function of the first kind, and

a = −1/2h.
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Conversely, suppose for some h = h̃S, ∃f ∈ C2[−l, l] satisfying f ′(±l) = 0 and

1

2
f(x) =

1

2π
PV

∫ ∞

−∞
ϕ̂(x, ω)dω, (2.4a)

where

ϕ̂(x, ω) = i

∫ l

−l
(hs− ω)G(x, s, ω)f(s)ds. (2.4b)

Then, h̃S ≤ hS. Furthermore, if h̃S = hS, then the function

ϕ(x, y) =
1

2π
PV

∫ ∞

−∞
eiωyϕ̂(x, ω)dω (2.5)

is a solution of (2.1)

Proof: Suppose first that ψ satisfies (2.1). Upon multiplying (2.1a) by exp {−iωy} and

integrating by parts we obtain that

ψ̂(x, ω) =

∫ ∞

0

e−iωyψ(x, y)dy (2.6)

satisfies

− ψ̂′′ +
[
(hx− ω)2 − 1

]
ψ̂ = i(hx− ω)ψ(x, 0) (2.7a)

ψ̂′(±l) = 0, (2.7b)

where ψ̂′ = ∂ψ̂
∂x
. Hence,

ψ̂(x, ω) = i

∫ l

−l
(hs− ω)G(x, s, ω)ψ(s, 0)ds. (2.8)
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Note that G(x, s, ω) is well defined since the denominator in (2.3a) does not vanish for all

ω ∈ R when h > h1D (cf. [6, 4, 2]). In view of (2.6) the inverse Fourier transform of ψ̂ is

1

2π
PV

∫ ∞

−∞
eiωyψ̂(x, ω)dω =



ψ(x, y), y > 0,

1
2
ψ(x, 0), y = 0,

0, y < 0.

. (2.9)

Hence,

1

2
ψ(x, 0) =

1

2π
PV

∫ ∞

−∞
ψ̂(x, ω)dω. (2.10)

Substituting (2.8) together with (2.10) into (2.1b) we obtain (2.2).

Suppose now that for some h ≥ hS, ∃f ∈ C2[−l, l] satisfying f ′(±l) = 0 and (2.4). In [2]

it was demonstrated that

G(x, s, ω) =G(x, s, ω, h) =
1

|ω|
[
G1(x, s, ω, h)e

−|ω||x−s|

+G2(x, s, ω, h)e
−|ω|(2l−x−s) +G3(x, s, ω, h)e

−|ω|(2l+x+s)] , (2.11a)

where, as ω → ∞,

G1 = |ω|1
2

(ω − hs)a−1/2

(ω − hx)a+1/2
exp

{
1

2
h(s2 − x2)

}[
1 +O(

1

ω2
)

]
(2.11b)

G2 = |ω|1
2

(ω − hl)2a

(ω − hx)a+1/2(ω − hs)a+1/2
exp

{
1

2
h(2l2 − s2 − x2)

}[
1 +O(

1

ω2
)

]
(2.11c)

G3 = |ω|1
2

(ω + hl)2a

(ω − hx)a+1/2(ω − hs)a+1/2
exp

{
1

2
h(2l2 − s2 − x2)

}[
1 +O(

1

ω2
)

]
,

(2.11d)
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whenever x < s. For the cases x > s and ω → −∞ we use the identity

G(x, s, ω, h) = G(s, x, ω, h) = G(−x,−s,−ω, h). (2.12)

Hence, applying Laplace’s method it is not difficult to show that for |ω| ≫ 1

ϕ̂(x, ω) ∼ −if(x)
ω

− ihx
f(x)

ω2
+O(

1

ω3
). (2.13)

As ϕ̂ satisfies

− ϕ̂′′ +
[
(hx− ω)2 − 1

]
ϕ̂ = i(hx− ω)f(x) (2.14a)

ϕ̂′(±l) = 0, (2.14b)

and since by (2.13) f ′(±l) = 0, the function

φ = ϕ̂+ i
f(x)

ω

must satisfy

− φ′′ +
[
(hx− ω)2 − 1

]
φ = −ihxf +

i

ω

[
(h2x2 − 1)f − f ′′] (2.15a)

φ′(±l) = 0. (2.15b)

Hence,

φ(x, ω) =

∫ l

−l
G(x, s, ω)

{
−ihsf +

i

ω

[
(h2s2 − 1)f − f ′′]} ds, (2.16)

from which we can deduce the O(ω−3) term in the asymptotic expansion of ϕ̂(x, ω):

ϕ̂(x, ω) ∼ −if(x)
ω

− ihx
f(x)

ω2
− i

(h2x2 + 1)f + f ′′

ω3
+O(

1

ω4
). (2.17)
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Subtituting the above expansion into (2.14a) yields

ϕ̂′′(x, ω) ∼ −if
′′(x)

ω
+O(

1

ω2
), (2.18)

and hence

ϕ̂′(x, ω) ∼ −if
′(x)

ω
+O(

1

ω2
). (2.19)

Consider then the function ϕ(x, y) defined in (2.5). By (2.13) ϕ(x, y) is differentiable

twice in x and y for any y ̸= 0. Furthermore,

ϕ(x, 0+)− ϕ(x, 0−) = f(x), (2.20a)

∂ϕ

∂y
(x, 0+)− ∂ϕ

∂y
(x, 0−) = ihxf(x). (2.20b)

By (2.16), (2.17), (2.18), and (2.20) the various derivatives of ϕ are given by

ϕx(x, y) =
1

2π
PV

∫ ∞

−∞
eiωyϕ̂′(x, ω)dω, (2.21a)

ϕxx(x, y) =
1

2π
PV

∫ ∞

−∞
eiωyϕ̂′′(x, ω)dω, (2.21b)

ϕy(x, y) =
1

2π
PV

∫ ∞

−∞
eiωy

[
iωϕ̂(x, ω)− f(x)

]
dω, (2.21c)

ϕyy(x, y) =
1

2π
PV

∫ ∞

−∞
eiωy

[
−ω2ϕ̂(x, ω)− i(hx+ ω)f(x)

]
dω. (2.21d)

Obviously, by (2.14b) we have

ϕx(±l) = 0 ∀y ̸= 0. (2.22)

Furthermore, by (2.21) we have

−
(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
+ 2ihx

∂ϕ

∂y
= ϕ− h2x2ϕ − l ≤ x ≤ l, y ̸= 0 (2.23)
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It remains yet to check the conditions satisfied by ϕ for y = 0+. As, by (2.4a),

1

2

[
ϕ(x, 0+) + ϕ(x, 0−)

]
=

1

2π
PV

∫ ∞

−∞
ϕ̂(x, ω)dω =

1

2
f(x), (2.24)

combination with (2.20a) yields

ϕ(x, 0−) = 0. (2.25)

Hence, for y < 0, ϕ(x, y) is a solution of (2.23) and (2.22) together with the Dirichlet

boundary condition ϕ(x, 0) = 0.

Suppose now that the problem in the lower semi-infinite strip x ∈ [−l, l], y < 0 admits

only the trivial solution. Then, as ϕy(x, 0
−) = 0, we have by (2.20)

ϕy(x, 0
+) = ihxϕ(x, 0+) (2.26)

and the theorem follows. Hence, it remains necessary to show that no solution other than

the trivial one exists to (2.23) and (2.22) for y < 0 together with ϕ(x, 0) = 0.

Applying the transformation y → −y ϕ → ϕ∗, the problem for y < 0 becomes identical

with the same problem for y > 0. Let then,

λ(h) = inf
ψ∈H1(S,C)
∥ψ∥L2(S)=1

∫
S

∣∣(∇− ihxĵ)ψ
∣∣2dxdy, (2.27a)

λD(h) = inf
ψ∈H1(S,C)

∥ψ∥L2(S)=1 ; ψ(x,0)=0

∫
S

∣∣(∇− ihxĵ)ψ
∣∣2.dxdy (2.27b)

Suppose first that h > hS. Then, λD(h) ≥ λ(h) > 1 (cf. [2]), and hence no nontrivial

solutions exist to (2.22), (2.23), and ϕ(x, 0) = 0 (cf. [3]).

Hence, the upper critical field of (2.4) h̃S must be exactly hS. Furthermore, let h = hS.

In this case λ(hS) = 1 and hence λD(hS) ≥ 1. If λD(hS) > 1 then ϕ(x, y) ≡ 0 for y < 0 and
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hence, (2.5) is indeed a solution of (2.1). Even if λD(hS) = 1 no nontrivial solution can exist

to (2.22), (2.23), and ϕ(x, 0) = 0, otherwise it must be the minimizer of the quadratic forms

on the right-hand-side of both (2.27a) and (2.27b), and as no solution but the trivial one

can satisfy both (2.25) and (2.26) on y = 0 the theorem is proved.

□

In addition to the integral equation it is possible to derive similar integral equations for

the rectangle RL = {(x, y)| − l ≤ x ≤ l ; 0 ≤ y ≤ L} as the following theorem states:

Theorem 2 Let h = hL. Then, any solution of the problem

−
(
∂2ψL

∂x2
+
∂2ψL

∂y2

)
+ 2ihx

∂ψL

∂y
= ψL − h2x2ψL − l ≤ x ≤ l, 0 ≤ y, (2.28a)

ψLx (±l, y) = 0 ; iψLy (x, 0) + hLxψ
L(x, 0) = iψLy (x, L) + hLxψ

L(x, L) = 0 (2.28b)

must satisfy

−1

2
[ψL(x, 0) + ψL(x, L)] =

1

L
PV

∞∑
n=−∞

ψ̂L(x, nχ), (2.29a)

−1

2
[ψL(x, L)− ψL(x, 0)] =

1

L
PV

∞∑
n=−∞

ψ̃L(x, (n+ 1/2)χ), (2.29b)

where χ = 2π/L and

ψ̂L(x, ω) = −i
∫ l

−l
(hs− ω)G(x, s, ω)[ψ(s, L)− ψ(s, 0)]ds, (2.30a)

ψ̃L(x, ω) = i

∫ l

−l
(hs− ω)G(x, s, ω)[ψ(s, 0) + ψ(s, L)]ds. (2.30b)
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Conversely, suppose for some h ∃f, g ∈ C2[−l, l] satisfying f ′(±l) = g′(±l) = 0 and

−1

2
g =

1

L
PV

∞∑
n=−∞

ϕ̂L(x, nχ), (2.31a)

−1

2
f =

1

L
PV

∞∑
n=−∞

ϕ̃L(x, (n+ 1/2)χ), (2.31b)

where

ϕ̂L(x, ω) = −i
∫ l

−l
(hs− ω)G(x, s, ω)f(s)ds, (2.32a)

ϕ̃L(x, ω) = i

∫ l

−l
(hs− ω)G(x, s, ω)g(s)ds. (2.32b)

Then, h ≤ hL. Furthermore, if h = hL, then the function

ϕL(x, y) =
1

L
PV

∞∑
n=−∞

ϕ̂L(x, nχ)einχy (2.33)

is a solution of (2.28)

Proof: The proof of (2.30) is very similar to the proof of (2.2) in theorem1. Interested

readers can find the details in [2]. The converse statement is proved as follows: Let

φL(x, y) =
1

L
PV

∞∑
n=−∞

ϕ̃L(x, nχ)einχy, (2.34a)

ΨL = ϕL + φLe
1
2
iχy. (2.34b)

Following the same steps used in the proof of the converse statement in theorem 1 it is not

difficult to show that

−
(
∂2ΨL

∂x2
+
∂2ΨL

∂y2

)
+ 2ihx

∂ΨL

∂y
= ΨL − h2x2ΨL − l ≤ x ≤ l, 0 ≤ y (2.35a)

ψLx (±l, y) = 0 ; ψL(x, 0) = ΨL(x, L) = 0 . (2.35b)
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One can then define

λL(h) = inf
ψ∈H1(RL,C)
∥ψ∥L2(RL)=1

∫
RL

∣∣(∇− ihxĵ)ψ
∣∣2dxdy (2.36a)

λLD(h) = inf
ψ∈H1(RL,C)

∥ψ∥L2(RL)=1 ; ψ(x,0)=ψ(x,L)=0

∫
RL

∣∣(∇− ihxĵ)ψ
∣∣2dxdy (2.36b)

As RL is compact, λL < λLD, and consequently, non-trivial solutions for (2.35) can exist only

if h < hL. Let then h ≥ hL and suppose that the system (2.31) is satisfied by appropriate f

and g. Then, by (2.32a) and (2.33) we have

ϕL(x, L)− ϕL(x, 0) = f(x), (2.37a)

∂ϕL

∂y
(x, L)− ∂ϕ

∂y
(x, 0) = ihxf(x). (2.37b)

and hence

ϕLy (x, y)
∣∣L
y=0

= ihx ϕL(x, y)
∣∣L
y=0

. (2.38)

As ΨL ≡ 0 for h ≥ hL we have

ϕy(x, 0) + ϕy(x, L) =

[
φLy (x, y) +

1

2
iχφ(x, y)

]∣∣∣∣L
y=0

. (2.39)

However, by (2.32b) and (2.34)

φL(x, L)− φL(x, 0) = g(x), (2.40a)

∂φL

∂y
(x, L)− ∂φ

∂y
(x, 0) = i

(
hx− 1

2
χ

)
g(x). (2.40b)

Since by (2.31a)

ϕ(x, 0) + ϕ(x, L) = g, (2.41)

the theorem is proved.

□
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3 Isolation of the onset field

In the following we demonstrate an application of Theorem 1: we show that the onset field

hS for the semi-infinite strip S is isolated. Explicitly we prove the following result

Theorem 3 There exists δ > 0 such that ∀h ∈ (hS − δ, hS) (2.1) is satisfied by the trivial

solution only.

It should first be noted that in some cases the onset field is not isolated. Consider, for

instance, the onset problem for an infinite strip

−
(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+ 2ihx

∂ψ

∂y
= ψ − h2x2ψ, −l ≤ x ≤ l, y ∈ R, (3.1a)

ψx(±l, y) = 0. (3.1b)

Substituting the ansatz

ψ(x, y) = F (x)e−iωy, (3.2)

we obtain

F ′′ −
[
(hx− ω)2 − 1

]
F = 0, F ′(±l) = 0. (3.3a,b)

Let h(ω) denote the largest value of h, for given ω ∈ R, for which (3.3) admits non-trivial

solutions. It can be shown (cf. [5]) that the onset field in this case,

h1D = h(ω0) = sup
ω∈R

h(ω). (3.4)

In addition to (3.4) it was shown (cf. [5]) that h(ω) is continuous, and that for every ω ̸= ±ω0

h(ω) ̸= h1D. Hence, h(ω) is not constant near ω0 and therefore, h1D is not isolated.

In order to prove theorem 3 we need the following auxiliary result:
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Lemma 1 The integral operator L : C[−l, l] → C[−l, l] defined by

Lf =
1

2π
PV

∫ ∞

−∞
dω

∫ l

−l
(hs− ω)G(x, s, ω)f(s)ds (3.5)

is compact, and holomorphic in h for h > h1D.

Proof: To prove the lemma we show that

Lf =

∫ l

−l
K(x, s, h)f(s)ds (3.6)

where K(x, s, h) is continuous in both x and s and holomorphic in h. To this end we write

L in the form

Lf =
1

2π

∫ ∞

0

dω

∫ l

−l
[(hs− ω)G(x, s, ω) + (hs+ ω)G(x, s,−ω)] f(s)ds. (3.7)

We then apply to (3.7) the asymptotic expansion (2.11) together with the identity (2.12) to

obtain, for x ≤ s and ω ≫ 1,

(hs− ω)G(x, s, ω) + (hs+ ω)G(x, s,−ω) ∼

sinh

{
h

2
(x2 − s2)

}
e−ω(s−x) +

1

ω

{
(s− x)F1(x, s)e

−ω(s−x) +

+(2l − s− x)F2(x, s)e
−ω(2l−s−x) + (2l + s+ x)F3(x, s)e

−ω(2l+s+x)}+O(ω−2). (3.8)

The exact form of the functions F1, F2, and F3 can be obtained but need not concern us

since they are all bounded. Similar expansion can be obtained for x ≥ s.

By (3.8)

∫ ∞

0

[
(hs− ω)G(x, s, ω) + (hs+ ω)G(x, s,−ω)− sinh

{
h

2
(x2 − s2)

}
e−ω(s−x)

]
dω (3.9)
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converges uniformly. The monotone convergence theorem guarantees, therefore, that

∫ ∞

0

dω

∫ x

−l
[(hs− ω)G(x, s, ω) + (hs+ ω)G(x, s,−ω)] f(s)ds =∫ x

−l
ds

∫ ∞

0

[(hs− ω)G(x, s, ω) + (hs+ ω)G(x, s,−ω)] f(s)dω. (3.10)

A similar equality can be derived for x ≥ s.

Let then,

K(x, s, h) =

∫ ∞

0

[(hs− ω)G(x, s, ω) + (hs+ ω)G(x, s,−ω)] dω. (3.11)

It is possible to express K(x, s, h) in the form

K(x, s, h) = K1(x, s, h) +K2(x, s, h), (3.12a)

where

K1(x, s, h) =


sinh{h

2
(x2−s2)}
s−x x ̸= s,

0 x = s,

(3.12b)

and K2(x, s, h) is continuous in view of the above-established uniform convergence.

To prove that L is holomorphic in h we show that K(x, s, h) is holomorphic in some

neighbourhood of the real line for h > h1D. The size of this neghibourhood should be fixed

for all (x, s) ∈ [−l, l]2. Then, theorem VII-2.6 in [13] would prove that L is holomorphic as

well.

Clearly, K1(x, s, h) is an entire function in h for all x and s. Inasmuch as (hs −

ω)G(x, s, ω) + (hs + ω)G(x, s,−ω) is holomorphic for h > h1D, and in view of the uniform
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convergence of the integral (3.9), K2(x, s, h) is holomorphic as well for h > h1D.

□

To complete the proof of theorem 3 we consider the equation

L(h)f = λf. (3.13)

By theorem 1, non-trivial solutions to (3.13) would exist for h = hS, λ = 1/2. By lemma

1 this eigenvalue has finite multiplicity, and hence, since L is holomorphic and by theorem

VII-1.9 in [13] we obtain that λ = 1/2 is satisfied either

1. for all h > h1D,

or,

2. for a finite set of values in [h1D + δ, hS] for any δ > 0.

However, (2.4) does not admit any non-trivial solutions for h > hS by theorem 1. Hence,

the second option is the viable one, which proves theorem 3.

4 The onset field in the long rectangle limit

It was demonstrated in [2] that the onset field of the rectangle RL tends to the onset field

of the semi-infinite strip S, or that hL → hS. In the following we attempt to derive the next

order term of the asymptotic behaviour in that limit. To this end, we first derive a new set

of integral equations in replace of (2.4) and (2.28), which, in contrast to the latter set of

equations, is real and self-adjoint.
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Consider first the problem in S. It is not difficult to show, using integration by parts,

that

1

2π
PV

∫ ∞

−∞
eiωy

[
iωψ̂(x, ω)− ψ(x, 0)

]
dω =



∂ψ(x,y)
∂y

, y > 0,

1
2
∂ψ(x,y)
∂y

(x, 0), y = 0,

0, y < 0.

. (4.1)

Substituting the above identity, (2.8), and (2.9) into (2.1c) we obtain

1

2π
PV

∫ ∞

−∞

[
(hx− ω)

∫ l

−l
G(x, s, ω)(hs− ω)ψ(s, 0)ds− ψ(x, 0)

]
dω = 0. (4.2)

In a similar manner we can obtain the equation

1

L
PV

∞∑
n=−∞

[
(hx− nχ)

∫ l

−l
G(x, s, nχ)(hs− nχ) ψ(s, y)|L0 ds− ψ(x, y)|L0

]
= 0 (4.3)

for the problem in RL.

Equation (4.2), though complicated, has a major advantage on (2.4): it is a real self-

adjoint equation, and is, therefore, the most natural way to present (2.1) in Fourier space.

Obviously, (4.2) must have real solutions, for if f(x) is a solution then so is f̄(x). The fact

that if f(x) is a solution of (2.4) then f̄(x) is not, may seem puzzling but can be easily

resolved: It is not difficult to show, following the same procedure used to prove theorem 1,

that if f(x) is a solution of (4.2), then

ϕ(x, y) =
1

2π
PV

∫ ∞

−∞
eiωy

∫ l

−l
i(hs− ω)G(x, s, ω)f(s)dsdω (4.4)

is a solution of (2.1). However, if we substitute f(x) = ψ̄(x, 0), where ψ(x, y) is a solution
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of (2.1), we obtain ϕ(x, y) = −ψ̄(x,−y), or equivalently

ϕ(x, y) =



0, y > 0,

1
2
ψ̄(x, 0), y = 0,

−ψ̄(x,−y), y < 0.

(4.5)

We notice that ϕ(x, 0−) ̸= 0, which explains why ϕ(x, 0−) cannot solve (2.4). Consequently,

there are solutions of (4.2) which do not satisfy (2.4), that when substituted into (4.5) yield

solution ϕ(x, y) of (2.1) for which ϕ(x, 0+) ̸= f(x). Hence, keeping the above in mind, we

can treat (4.2) as a real self-adjoint equation which is equivalent to (2.1).

We seek an approximation for a solution (fL(x), hL) of (4.3). We expect that the leading

order term, as L → ∞, would be a solution of (4.2). Hence, it is necessary to approximate

the difference between the left-hand-sides of (4.2) and (4.3) in that limit.

In order to approximate the above difference we first rewrite (4.3) in the form

1

L

∞∑
n=−∞

[
Φ̂L(x, nχ) + Φ̂L(x,−nχ)

]
= 0, (4.6)

wherein

Φ̂L(x, ω) = (hLx− ω)

∫ l

−l
(hLs− ω)G(x, s, ω)fL(s)ds− fL(x). (4.7)

It is not difficult to show, using (2.11), that

ΦL(x, ω) + ΦL(x,−ω) ∼ −h
2x2

ω2
fL(x) (4.8a)

and that

∂ΦL

∂ω
(x, ω)− ∂ΦL

∂ω
(x,−ω) ∼ 2h2x2

ω3
fL(x) (4.8b)
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as ω → ∞. Hence,∫ ∞

−∞
|ΦL(x, ω) + ΦL(x,−ω)|+

∣∣∣∣∂ΦL

∂ω
(x, ω)− ∂ΦL

∂ω
(x,−ω)

∣∣∣∣ dω <∞. (4.9)

Consequently, ΦL(x, ω) + ΦL(x,−ω) is both absolutely integrable and of bounded variation

in ω, and thus, one can apply the Poisson summation formula to obtain

1

L
PV

∞∑
n=−∞

Φ̂L(x, nχ) =
1

2π

∞∑
n=−∞

PV

∫ ∞

−∞
e−iωnLΦ̂L(x, ω)dω. (4.10)

The function Φ̂L(x, ω) is holomorphic in ω except for a countable number of points where

U ′(ξ(−l, ω))U ′(−ξ(l, ω))− U ′(ξ(l, ω))U ′(−ξ(−l, ω)) = 0. (4.11)

For h > h1D there exist a strip of analyticity of Φ̂L(x, ω), ℑω < γ, where the above equation

is not satisfied [2]. Hence,

PV

∫ ∞

−∞
e−iωnLΦ̂L(x, ω)dω ∼ O(e−γnL) as L −→ ∞. (4.12)

Consequently, we can obtain the following approximate form of: (4.3)

PV

∫ ∞

−∞
Φ̂L(x, ω)dω ∼= −PV

∫ ∞

−∞
e−iωL

[
Φ̂L(x, ω) + Φ̂L(x,−ω)

]
dω +O(e−2γL). (4.13)

As the right-hand-side of (4.13) is of O(e−γL) we substitute into both sides the formal

asymptotic expansion

hL = hS + e−γLh(1)(L) +O(e−2γL), (4.14a)

fL = fS + e−γLf (1)(L) +O(e−2γL), (4.14b)

where h(1)(L) and f (1)(L) are O(1) as L→ ∞. Let

Φ̂S(x, ω) = i(hSx− ω)

∫ l

−l
(hSs− ω)G(x, s, ω)fS(s)ds− fS(x). (4.15)
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Using the same complex plane techniques applied in [2], it is not difficult to show that∫ ∞

−∞
Φ̂S(x, ω)e

iωLdω ∼= 2πie−γL
[
eiαLRes

{
ω+, Φ̂S

}
+ e−iαLRes

{
ω−, Φ̂S

}]
+O(e−2γL),

(4.16)

where ω+ = α + iγ and ω− = −α + iγ are the closest points to the real axis in the upper

half of the complex plane where (4.11) is satisfied (in the case α = 0 which is expected to

take place for sufficiently small l we have ω+ = ω−). The following assumptions were made

while deriving (4.16):

1. There are at most two poles of Φ̂S(x, ω) on the line ℑω = γ.

2. Either Res
{
ω+, Φ̂S

}
̸= 0 or Res

{
ω−, Φ̂S

}
̸= 0.

If assumption 1 is not satisfied it would be necessary to introduce additional terms into the

right-hand-side of (4.16) corresponding to the additional roots of (4.11). If assumption 2 is

violated, higher order terms must be obtained.

In addition to the above assumptions it is convenient to assume that both ω+ and ω−

are simple poles of Φ̂S, an assumption which can be proved in the limit l → ∞. In [2] it is

demonstrated that

Res
{
ω+, ψ̂

}
= AC+g(x), (4.17a)

where

g(x) = U(ξ(x, ω+
0 ))U

′(ξ(l,−ω+
0 )) + U(−ξ(x, ω+

0 ))U
′(−ξ(l,−ω+

0 )) (4.17b)

C+ =

∫ l

−l
g(s)(hSs− ω+)fS(s)ds (4.17c)
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and A is a constant which can be determined in principle. The other residue is given by

Res
{
ω−, ψ̂

}
= ĀC̄−ḡ(−x) (4.17d)

where

C− =

∫ l

−l
g(s)(hSs− ω+)fS(−s)ds. (4.17e)

Substituting (4.14-4.17) into (4.13), and applying the transformation ω → hω to the

integration dummy variable, we obtain, by equating terms of O(e−γL),

PV

∫ ∞

−∞

[
(x− ω)

∫ l

−l
hS

3G(x, s, ω)(s− ω)f (1)(s)ds− hSf
(1)(x)

]
dω =

= i
{
AeiαL [(hSx− ω+)C+g(x) + (hSx+ ω+)C−g(−x)]−

−Āe−iαL
[
(hSx− ω−)C̄−ḡ(−x) + (hSx+ ω−)C̄+ḡ(x)

]}
− h(1)PV

∫ ∞

−∞

{
(x− ω)

∫ l

−l

∂

∂h

[
h3G(x, s, ω)

]
h=hS

(s− ω)fS(s)ds− fS(x)

}
dω. (4.18)

Multiplying by fS(−x) and integrating over [−l, l] yields, after a few manipulations, the

solvability condition

h(1)PV

∫ ∞

−∞

∫ l

−l

{
(x− ω)

∫ l

−l

∂

∂h

[
h3G(x, s, ω)

]
h=hS

(s− ω)fS(s)ds− fS(x)

}
fS(−x)dxdω = 0

(4.19)

It seems plausible to assume here that h(1) = 0 as there is no particular reason to believe that

the integral it multiplies vanishes. Furthermore, multiplying (4.8) by fS(x) and integrating
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we obtain

h(1)PV

∫ ∞

−∞

∫ l

−l

{
(x− ω)

∫ l

−l

∂

∂h

[
h3G(x, s, ω)

]
h=hS

(s− ω)fS(s)ds− fS(x)

}
fS(x)dxdω =

i
[
AeiαL

(
C2

+ − C2
−
)
− Āe−iαL

(
C̄2

+ − C̄2
−
)]
, (4.20)

and hence, if the left-hand side of (4.20) does not vanish, there exists L such that hL < hS

which contradicts a result which was rigorously proved in [2]. The above identity, thus, leads

us to another important conclusion: C+ = C−. Recall that the asymptotic behaviour of ψ

in S as y → ∞ is

ψ ∼ Ce−γy
[
C+g(x)e

iαy + C−g(−x)eiαy
]
, (4.21)

and hence ψ(x, y) ∼ ψ̄(−x, y). In other words we can say that ψ is asymptotically symmetric.

If indeed, as we expect, h(1) = 0, then repeating the above procedure for higher order

terms yields

hL − hS ∼ o(e−λL) (4.22)

for any λ > 0. Thus, obtaining the leading asymptotic behaviour is a difficult task which is

left to future research.

5 Numerical solution

We conclude this section by presenting a numerical solution of (2.31). To achieve this end

we first need the estimates

1

L

∞∑
n=N+1

[
ϕ̂(x, nχ) + ϕ̂(x,−nχ)

]
∼= −ihx

πχ
S1(N)f +O

(
1

N3χ3

)
as N → ∞ (5.1a)
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and

1

L

∞∑
n=N+1

[
ϕ̂(x, (n+ 1/2)χ) + ϕ̂(x,−(n+ 1/2)χ)

]
∼= −ihx

πχ
S2(N)g +O

(
1

N3χ3

)
as N → ∞

(5.1b)

where

S1(N) =
∑

n=N+1

1

n2
=
π2

6
−

N∑
n=1

1

n2
(5.1c)

S2(N) =
∑

n=N+1

1

(n+ 1/2)2
=
π2

2
− 4−

N∑
n=1

1

(n+ 1/2)2
. (5.1d)

For Nχ sufficiently large we may, thus, rewrite (2.31) in the approximate form

1

2
g =

i

L

N∑
n=−N

∫ l

−l
(hs− nχ)G(x, s, nχ)f(s)ds− ihx

πχ
S1(N)f (5.2a)

1

2
f =

i

L

N∑
n=−N−1

∫ l

−l
(hs− (n+ 1/2)χ)G(x, s, (n+ 1/2)χ)g(s)ds− ihx

πχ
S2(N)g (5.2b)

The solution of the above system was obtained by applying a quadrature method. For

each n the integrals in (5.2) were evaluated utilizing the trapezium rule except for a close

neighbourhood of x = s. While it is still reasonable to assume f(s) ≈ f(x) for s ∈ [x −

∆, x+∆] it would be inaccurate to claim that G(x, s, nχ) ≈ G(x, x, nχ) in the same interval

unless nχ≪ 1/∆ in view of (2.11). It is still possible, however, to use the approximation∫ x+∆

x−∆

(hs− nχ)G(x, s, nχ)f(s)ds ≈ f(x)

∫ x+∆

x−∆

(hs− nχ)G(x, s, nχ)ds, (5.3)

and to evaluate the integral on the right-hand-side using the trapesian rule with a finer grid

(which should depend on n). We note that while the above approximation is O(∆) accurate,

it is not difficult to obtain O(∆2) security by appropriately modifying it.
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Once the matrices representing the integrals in (5.2) are calculated, we can represent the

system in the form

J∑
k=−J

J∑
j=−J

{[
K

(1)
mj(h)−− ihx

πχm
S1(N)δmj

] [
K

(2)
jk (h)−− ihx

πχj
S2(N)δjk

]
− δmk

}
gk = 0

∀ − J ≤ m ≤ J, (5.4)

wherein gk = g(−l + k∆), ∆ = l/J and K(1) and K(2) respectively represent the integrals

on (5.2a) and (5.2b).

Non-trivial solutions of (5.4) exist if and only if the determinant of the matrix multiplying

the vector [g−J , . . . , gJ ]
T vanishes. We, therefore, look for the values of h where this deter-

minant vanishes, to which end we apply the Van Wijngaarden-Dekker-Brent Method [16].

The largest root is the onset field hL. For sufficiently large L this root is also an extremal

point of the determinant and then Brent’s method of minimization [16] was applied.

After the onset field has been found, (4.11) can be solved. The root, closest to the

real axis, of this equation, provides us with the asymptotic behaviour of ψ in S as y → ∞

according to (4.21). A globally convergent algorithm, base on the quasi-Newton method of

minimization was applied [16].

Figure 1 displays the dependence of the various parameters on l for the semi-infinite strip

case. The solid line, the dashed line, and the dotted line respectively denote hS(l), α(l), and

γ(l). The solution for this case was obtained by letting L → ∞. Practically, L = 20 was

substituted for l ≤ 0.5, L = 20l was substituted for 0.5 < l ≤ 1, and L = 10l for l > 1. In

view of the fast exponential decay of hL− hS the error is expected to be diminishingly small
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as the numerical error is expected to be around 2− 3 percents.

Figure 1 provides us with a few interesting observations:

1. The asymptotic value of hS in the limit l → ∞, which is expected to be the onset

field for the quarter plane {(x, y)| 0 < x, y}, is approximately 1.96, in accordance with

the calculations of Schweigert & Peters [18], and in small disagreement with those of

Jadallah et al [11].

2. There is a critical value of l (denote it by lc) such that for l ≤ lc α vanishes, but

for l > lc α is positive. Similar behaviour is observed in the infinite-strip (which is

essentially one-dimensional) case, where for sufficiently small l asymmetric modes cease

to exist [5].

3. The rate of decay of ψ in y, or γ, reaches a maximum exactly at l = lc. Apparently,

the roots of (4.11) at ω+ and ω−, which are simple for l > lc combine into a double

root at l = lc. Then, one of the roots travels downward along the imaginary axis.

4. As l → ∞ α tends to be a linear function of l. It is not difficult to show that U ′(−ξ(l, ω))

becomes exponentially small in this limit. Hence, −ξ(l, ω) must correspond to the root,

which is the closest to the real line in the upper half plane, of U ′.

5. As l → ∞ hS tends to infinity, in accordance with results for thin films.

Figure 2 displays the dependence of hL on L for two different values of l: the thick

corresponds to l = 0.5 whereas the thin curve correspons to l = 1. Note that as L → 0

hL tends to infinity, which is again in accordance with results for the thin infinite strip and
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Figure 1: Dependence of hS (denoted by the solid curve), γ (denoted by the dotted curve),

and α (denoted by the dashed curve) on l for the semi-infinite strip case.
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semi-infinite strip limits. In addition, one can observe that for l = 1 hL is not monotonic,

but attains a local maximum at L ∼ 3.2 and a local minimum at L ∼ 2.6.

2
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10

12

14

0 2 4 6 8 10 12 14

hL

L

Figure 2: Dependence of hL on l for the cases l = 1, denoted by the thin curve, and the case

l = 0.5 denoted by the thick curve.

6 Conclusion

We have transformed, using Fourier analysis, in § 2, the linearized Ginzburg-Landau equa-

tions in both semi-infinite strips and rectangles into an equivalent set of integral equations:

we proved that the upper critical field of the integral equations coincides with the onset

field for the relevant domain. These integral equations are by no means the most natu-

ral way to present the linearized Ginzburg-Landau equations in Fourier space, as they are

non-self-adjoint. Nevertheless, we showed in § 3 that the integral operators are of Fredholm
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type with kernels holomorphic in h. It was then possible to use these properties to show

that the onset field in semi-infinite strips hS is isolated, i.e., ∃δ > 0 : h ∈ (hS − δ, hS) ⇒

no non-trivial solution exists.

The integral equations are also suitable for numerical solution. In § 5 the onset field

was calculated numerically by solving the integral equations for rectangles. The numerical

scheme’s main advantage is that it can be applied to arbitrarily long rectangles. When

both the width and the length of the rectangle become large the method is still at least

copmperable with othe techniques [18, 11].

In addition to the integral equations developed in § 2, another set of integral equations

were obtained in § 4 for both rectangles and semi-infinite strips. These equations seem to

be inapplicable for numerical purposes, nevertheless they are both real and self-adjoint, and

hence, it was natural to apply them in the asymptotic expansion of the onset field in the

long rectangle limit (where the length of one side is kept constant) . It was found, by means

of this formal expansion, that the onset field converges faster than any exponential rate to

the onset field in the corresponding semi-infinite strip. Furthermore, it was demonstrated

that the onset mode in a semi-infinite strip is aymptotically symmetric.
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