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Averaging of dilute random media: a rigorous proof of the

Clausius-Mossotti formula

Y. ALMOG

Abstract

We consider a large number of randomly dispersed spherical, identical, inclusions in a bounded
domain, with conductivity different than that of the host medium. In the dilute limit, with some
mild assumption on the first few marginal probability densities (no periodicity or stationarity are
assumed), we prove convergence in H1 norm of the expectation of the solution of the steady state
heat equation, to the solution of an effective medium problem, where the conductivity is given by
the Clausius-Mossotti formula. Error estimates are provided as well.

1. Introduction

Consider N spherical inclusions of conductivity σ and radius ε immersed in a different medium
of conductivity 1. Prescribing the temperature (or the electric potential) on the boundary, the
temperature field inside can be described as the unique, weak solution of the problem

{
∇ · (a(x, η1, . . . , ηN )∇φ)

= 0 in Ω ,

φ = f on ∂Ω .
(1.1)

In the above, Ω ⊂ R3 is bounded and smooth (say C2,α for some positiveα), {ηi}N
i=1 denote the

spherical inclusion’s centers, and

a(x, η1, . . . , ηN ) =





σ ∀x ∈
N⋃

n=1
B(ηn, ε) ,

1 ∀x ∈ Ω \
N⋃

n=1
B(ηn, ε) ,

(1.2)

and f ∈ C2,α(∂Ω) for some α > 0.
The particles’ centers are assumed to be randomly distributed according to the joint probability

density function fN (η1, . . . , ηN ), which is assumed to be invariant to permutations of the centers as
all particles are identical. Moreover, we assume that the inclusions cannot overlap, i.e.,

∃1 ≤ i < j ≤ N : |ηi − ηj | < 2ε⇒ fN (η1, . . . , ηN ) = 0 , (1.3)
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and that no inclusion can cross the boundary, i.e.,

∃1 ≤ i ≤ N : d(ηi, ∂Ω) < ε⇒ fN (η1, . . . , ηN ) = 0 . (1.4)

Let

fk(η1, . . . , ηk) =
∫

ΩN−k

fN (η1, . . . , ηk, ηk+1, . . . , ηN ) dηk+1 · · · dηN ,

denote the k′th order marginal probability density. We assume here boundedness of the first five
marginal densities

‖fk‖L∞(Ωk) ≤ C ∀1 ≤ k ≤ 5 , (1.5)

where C is independent of N and ε. We denote the expectation of any function F (x, ·) ∈ L1(ΩN ),
where x ∈ Ω, by

〈F (x, ·)〉 =
∫

ΩN

F (x, η1, . . . , ηN ) dη1 · · · dηN . (1.6)

We focus our attention on the small particle limit in a dilute (or dispersive [7] ) medium, i.e.,

β̄ =
4π
3
Nε3

|Ω| ¿ 1 , as ε→ 0 , (1.7)

where β̄ denotes the global volume fraction. Note that N may tend to infinity as ε→ 0. As a matter
of fact, we further assume that there exists C > 0 independent of both ε and β̄ such that

ε

C
< β̄ ≤ C

ln4 ε−1
. (1.8)

The above inequality can alternatively be represented as

C

β̄2
≤ N ≤ β̄eCβ̄−1/4

,

with a different value of C. Note that by (1.8) it follows that N ≥ Cε−2 and hence N →∞ as ε→ 0
.

Define, next, the local volume fraction for all x ∈ Ω

β(x) = N

∫

B(x,ε)∩Ωε

f1(η) dη , (1.9)

where
Ωε = {x ∈ Ω | d(x, ∂Ω) > ε} .

Note that β(x) is the the probability that x ∈
N⋃

n=1
B(ηn, ε). It follows from (1.5) that

‖β(·)‖∞ ≤ Cβ̄ . (1.10)

Where ‖ · ‖p denotes the Lp(Ω) norm (p = ∞ above). When Lp norms are evaluated over domains
different than Ω, we shall include them explicitly in the notation.

Under the above assumptions we prove the following theorem
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Theorem 1. Let φ(·, η1, . . . , ηN ) ∈ H1(Ω) denote the unique weak solution of (1.1). Suppose that
(1.5) is satisfied. Let φe denote the solution of the effective medium problem

{
∇ · (ae∇φe) = 0 in Ω

φe = f on ∂Ω ,
(1.11)

where

ae = 1 +
3(σ − 1)
2 + σ

β(x) . (1.12)

Then, in the regime of (1.8), we have

‖〈φ〉 − φe‖1,2 ≤ C(Ω, σ)β̄3/2 , (1.13)

where ‖ · ‖1,2 denotes the H1(Ω) norm.

Throughout the sequel, we always refer to solutions in a weak sense, including places in the text
where we do not state that explicitly. Note that in Remark 2 we extend the result to a regime of β̄
values which is larger than the one prescribed by (1.8). In return, we need to allow a greater error
term on the right-hand-side of (1.13).

The effective medium formula (1.12) was derived by Mossotti (1850) and Clausius (1879) and
is therefore known as the Clausius-Mossotti formula. For a formal derivation of this formula the
reader is referred to [11], which brings the classical derivation of Maxwell (1873) (cf. [9]). A rigorous
proof has been provided in a two-dimensional periodic setting by Rayleigh [14], for a proof in three
dimensional periodic medium the reader is referred to [7]. More general periodic settings have also
been considered [10,1].

For random media Kozlov [6] and Papanicolaou & Varadhan [13] proved an almost sure con-
vergence, as ε → 0, of a more general version of (1.1), but for the case when a is stationary (or
statistically homogeneous), to an averaged equation with constant coefficients. An extension to the
case where a is only locally stationary is presented in [3]. We note that [6,13,3] present all an effective
qualitative analysis, but do not provide a technique for the quantitative evaluation of the effective
medium, in contrast with the present work.

An interesting proof of (1.12) is presented in [7], where an almost-periodic configuration of the
particles is assumed. A small random deviation of the inclusions’ centers from the lattice points is
allowed. The size of each sphere is also allowed to vary randomly on an interval [0, r], where r is
much smaller than the period, to secure a dilute medium. The present setting is, of course, more
general.

Another approach was adopted by Berlyand and Mityushev [2], where a periodic array of cells
is considered. Each cell contains a finite number of randomly dispersed inclusions, whose volume
fraction is not necessarily small. They evaluate an effective conductivity, which is averaged both
in event space and over the cell. Note that by Theorem 1 the effective medium problem (1.11)
approximates the local expectation in event space in H1(Ω) sense.

The rest of the contribution is dedicated to the proof of Theorem 1. In the next section we derive
some preliminary estimates for media with one or two inclusions. Denoting the solution of (1.1) with
a single inclusion by ψ1 and without any inclusions (a ≡ 1) by φ̄ we set φ1 = ψ1− φ̄ to be the single
inclusion effect. We estimate ∇φ1 far away from the inclusion using classical potential theory. We
obtain similar estimates for the two-inclusion problem.

In § 3, we demonstrate that the leading order correction to the average field, is obtained by
averaging the sum of the contributions of each single inclusion, neglecting its interaction with the
rest of the particles. More precisely, we prove that

‖〈φ〉 − φ̄−N〈φ1〉‖1,2 ≤ C(Ω, σ)β̄3/2 .
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In § 4, we show that 〈φ1〉 can be estimated by the average of the solution of a single inclusion problem
in R3 with a constant temperature gradient at infinity. That temperature gradient is given by ∇φ̄ at
the inclusion’s center. The average of the temperature field can then be approximated by the solution
of (1.11). We note that the classical derivation by Maxwell [9] of the Clausius-Mossotti formula, takes
a somewhat similar approach by heuristically evaluating the average of the R3 solution.

In the last section, we highlight a few points, that were insufficiently emphasized within the
analysis. Appendix A provides an estimate satisfied by the Green’s function of the Laplace operator
with homogeneous Dirichlet boundary conditions in Ω.

2. Preliminaries

In the following we provide some H1 estimates for the solutions of one-particle and two-particle
problems. To achieve this end we first derive, using standard potential theory an integral represen-
tation for the solution of (1.1).

2.1. An integral representation

Let φ denote a solution of (1.1). As φ is harmonic outside the particles we have [5], for all

x ∈ Ω \
N⋃

n=1
Bn,

φ(x, η1, . . . , ηN ) =
∫

NS
n=1

∂Bout
n ∪∂Ω

[ 1
4π|x− ξ|

∂φ

∂ν
(ξ, η1, . . . , ηN )−φ(ξ, η1, . . . , ηN )

∂

∂ν

( 1
4π|x− ξ|

)]
dsξ ,

(2.1)

where dsξ is an area element around ξ ∈
N⋃

n=1
∂Bout

n ∪ ∂Ω , ν(ξ) is the outward normal on ∂Ω and

the inner normal on each particle’s surface, Bn = B(ηn, ε), and
∫

∂Bout
n

= limδ↓ε
∫

∂B(ηn,δ)
. We note

that by ∂/∂ν we always mean ∇ξ · ν. Let G : Ω×Ω → R denote the Green’s function of the Laplace
operator with homogeneous Dirichlet boundary conditions in Ω, i.e.,

G(x, ξ) = g(x, ξ) +
1

4π|x− ξ| , (2.2)

where g(·, ξ) is harmonic in Ω, for all ξ ∈ Ω, and satisfies g = −1/(4π|x − ξ|) on ∂Ω. By Green’s
Theorem ∫

NS
n=1

∂Bout
n ∪∂Ω

[
g(x, ξ)

∂φ

∂ν
(ξ, η1, . . . , ηN )− φ(ξ, η1, . . . , ηN )

∂g

∂ν
(x, ξ)

]
dsξ = 0 .

Adding the above to (2.1), while using the fact that G(x, ·)|∂Ω = 0, yields

φ(x, η1, . . . , ηN ) =
∫

NS
n=1

∂Bout
n

[
G(x, ξ)

∂φ

∂ν
(ξ, η1, . . . , ηN )− φ(ξ, η1, . . . , ηN )

∂G

∂ν
(x, ξ)

]
dsξ

−
∫

∂Ω

φ(ξ, η1, . . . , ηN )
∂G

∂ν
(x, ξ) dsξ . (2.3)

Let φ̄ denote the unique solution of
{
∆φ̄ = 0 in Ω
φ̄ = f on ∂Ω

(2.4)
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Note that by the assumptions on ∂Ω and f we have that φ̄ ∈ H4(Ω) and hence also φ̄ ∈ C2(Ω).
Since

φ̄ = −
∫

∂Ω

f
∂G

∂ν
dsξ = −

∫

∂Ω

φ
∂G

∂ν
dsξ ,

we obtain by (2.3) that for all x ∈ Ω \
N⋃

n=1
Bn

φ(x, η1, . . . , ηN ) = φ̄(x) +
N∑

n=1

∫

∂Bout
n

[
G(x, ξ)

∂φ

∂ν
(ξ, η1, . . . , ηN )− φ(ξ, η1, . . . , ηN )

∂G

∂ν
(x, ξ)

]
dsξ .

(2.5)
Applying Green’s Theorem once again, using the fact that both G(x, ·) and φ are harmonic inside

Bn for all 1 ≤ n ≤ N , when x ∈ Ω \
N⋃

n=1
Bn, we obtain

∫

∂Bin
n

[
G(x, ξ)

∂φ

∂ν
(ξ, η1, . . . , ηN )− φ(ξ, η1, . . . , ηN )

∂G

∂ν
(x, ξ)

]
dsξ = 0 ∀1 ≤ n ≤ N ,

where
∫

∂Bin
n

= limδ↑ε
∫

∂B(ηn,δ)
. Inasmuch as, for all s ∈ ∂B(0, 1), we have

lim
δ↓ε

φ(ηn + δs) = lim
δ↑ε

φ(ηn + δs) ; lim
δ↓ε

∂φ

∂ν
(ηn + δs) = σ lim

δ↑ε
∂φ

∂ν
(ηn + δs) ,

we obtain that
∫

∂Bout
n

[ 1
σ
G(x, ξ)

∂φ

∂ν
(ξ, η1, . . . , ηN )− φ(ξ, η1, . . . , ηN )

∂G

∂ν
(x, ξ)

]
dsξ = 0 ∀1 ≤ n ≤ N .

Combining the above with (2.5), and then using the fact that φ is continuous on ∂Bn for all 1 ≤
n ≤ N , yields

φ(x, η1, . . . , ηN ) = φ̄(x) + (σ − 1)
N∑

n=1

∫

∂Bn

φ(ξ, η1, . . . , ηN )
∂G

∂ν
(x, ξ) dsξ ∀x ∈ Ω \

N⋃
n=1

Bn . (2.6)

2.2. Single inclusion

We next define the one-particle problem. Let

Ωε = {x ∈ Ω | d(x, ∂Ω) > ε} , (2.7)

For every η ∈ Ωε, let ψ1(·, η) : Ω → R denote the unique solution of
{
∇ · (a1(·, η)∇ψ1(·, η)

)
= 0 in Ω

ψ1(·, η) = f on ∂Ω
, (2.8)

where

a1(x, η) =

{
σ x ∈ B(η, ε)
1 x ∈ Ω \B(η, ε)

. (2.9)

Set
φ1(·, η) := ψ1(·, η)− φ̄ . (2.10)
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For all η ∈ Ωε, define φ0(·, η) : Ω → R as

φ0(x, η) = (x− η) · ∇φ̄(η)×
{

1−σ
2+σ

ε3

|x−η|3 x ∈ Ω \B(η, ε)
1−σ
2+σ x ∈ B(η, ε)

. (2.11)

Before we attempt to approximate φ1 by φ0 we bring here Theorem 8.16 in [4] in a simplified
version.

Theorem 2. Let u denote a weak solution of

∇ · (A∇u) = ∇ · F ,
in some bounded domain Ω ⊂ R3, where A ∈ L∞(Ω) is uniformly elliptic and
F ∈ Lq(Ω;R3) for some q > 3. Then,

‖u‖∞ ≤ C(‖u‖L∞(∂Ω) + ‖F‖q) ,

where C = C(|Ω|, q, A).

We can now state the following

Lemma 1. Let φ1 be given by (2.10). Define for each η ∈ Ωε, u1(·, η) : Ω → R by

u1(x, η) = φ1(x, η)− φ0(x, η) . (2.12)

Then,

‖u1(·, η)‖∞ ≤ Cq(Ω, σ)
(
ε1+3/q +

ε3

d(η, ∂Ω)2
)
, (2.13)

for all q > 3, and

‖u1(·, η)‖1,2 ≤ C(Ω, σ)
(
ε5/2 +

ε3

d(η, ∂Ω)3/2

)
. (2.14)

Proof. By (2.8), (2.10), and (2.12) we have that

∇ · (a1∇u1) = −∇ · (a1∇(φ0 + φ̄)
)
. (2.15)

Let
ψ0(x, η) = (x− η) · ∇φ̄(η) + φ0(x, η) .

It is easy to show that ψ0(·, η) is harmonic whenever |x− η| 6= ε. Furthermore, we have that

∂ψ0

∂ν

∣∣∣
∂B(η,ε+0)

= σ
∂ψ0

∂ν

∣∣∣
∂B(η,ε−0)

,

where F |∂B(η,ε±0) = limδ↓0 F |∂B(η,ε±δ) for any appropriately defined function F , and ν points in the
same direction on both surfaces. Consequently,

∇ · (a1[∇φ0(x, η) +∇φ̄(η)]
)

= ∇ · (a1∇ψ0) = 0 , (2.16)

(cf. also [12] § 3.3). Furthermore, as

∇ · (∇φ̄(x)−∇φ̄(η)
)

= 0 ,

we obtain, using (2.15) and (2.16), that
{
∇ · (a1(·, η)∇u1(·, η)

)
= ∇ · ([1− a1(·, η)][∇φ̄(·)−∇φ̄(η)]

)
in Ω

u1(·, η) = −φ0(·, η) on ∂Ω .
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As (recall that φ̄ ∈ C2(Ω̄))

‖[1− a1(·, η)][∇φ̄(·)−∇φ̄(η)]‖q
q = |1− σ|q

∫

B(η,ε)

|∇φ̄(x)−∇φ̄(η)|q dx ≤ Cε3+q

and since

‖φ0(·, η)‖L∞(∂Ω) ≤ C
ε3

d(η, ∂Ω)2
,

we can use Theorem 2 to complete the proof of (2.13).
To prove (2.14) we set

u1 = u1,1 + u1,2 ,

where {
∇ · (a1∇u1,1) = ∇ · ([1− a1(x, η)][∇φ̄(x)−∇φ̄(η)]

)
in Ω

u1,1 = 0 on ∂Ω .

Integration by parts, together with Poincaré’s inequality, readily yield that

‖u1,1‖1,2 ≤ C‖[1− a1(·, η)][∇φ̄(·)−∇φ̄(η)]‖2 ≤ Cε5/2 . (2.17)

It can be easily verified that u1,2 is the minimizer of

I(w, η) =
∫

Ω

a1(η)|∇w(ξ, η)|2 dξ ,

over the set
H1

φ0
(Ω) = {w ∈ H1(Ω) |w|∂Ω = −φ0(·, η)|∂Ω} .

From the uniform ellipticity of a1 we then get

‖∇u1,2‖2 ≤ C min
w∈H1

φ0
(Ω)

‖∇w‖2 .

Next, we use Poincaré inequality to obtain that some positive C and C̃ exist such that

‖u1,2‖2 ≤ ‖u1,2 − w‖2 + ‖w‖2 ≤ C
(‖∇u1,2‖2 + ‖w‖1,2

) ≤ C̃‖w‖1,2 , (2.18)

for all w ∈ H1
φ0

(Ω).
Set then

w(t, s) = ζ(t)φ0(s) ,

in which t = d(x, ∂Ω), and s is the projection of x on ∂Ω, which is well-defined for all t < δ0 (where
δ0 is a property of the smooth boundary). The cutoff function ζ ∈ C1(R+; [0, 1]) is supported on
[0, δ], for some δ < δ0, and satisfies |ζ ′| ≤ C/δ. We then have

‖w‖21,2 ≤ C
(
δ +

1
δ

)
‖φ0(·, η)‖2L2(∂Ω) + Cδ‖∇sφ0(·, η)‖2L2(∂Ω) , (2.19)

where ∇s denotes the tangential derivative on ∂Ω. By (2.11) and the smoothness of ∂Ω we have

‖φ0(·, η)‖2L2(∂Ω) ≤ Cε6
∫

∂Ω

dsξ

|ξ − η|4 ≤ Cε6
∫

R2

dξ

[|ξ|2 + d(η, ∂Ω)2]2
≤ C

ε6

d(η, ∂Ω)2
. (2.20)

In a similar manner we obtain that

‖∇sφ0(·, η)‖2L2(∂Ω) ≤ C
ε6

d(η, ∂Ω)4
,
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which together with (2.20) and (2.19) yields

‖w‖21,2 ≤ C
(
δ +

1
δ

) ε6

d(η, ∂Ω)2
+ Cδ

ε6

d(η, ∂Ω)4
.

Upon choosing
δ = min

(
d(η, ∂Ω), δ0

)
,

we then employ (2.18) to obtain

‖u1,2‖1,2 ≤ C
ε3

d(η, ∂Ω)3/2
,

which together with (2.17) readily yields (2.14).

We next derive an L2 estimate for ∇φ1.

Lemma 2. Let φ1 be given by (2.10). Then, for all (ξ, η) ∈ Ω ×Ω,

‖∇φ1(·, η)‖
L2

(
B(ξ,ε)∩Ω

) ≤ C(Ω, σ)
ε9/2

|ξ − η|3 . (2.21)

Proof. We first use (2.6) with N = 1 to obtain

1
σ − 1

φ1(x, η) =
∫

∂B(η,ε)

ψ1(ξ, η)
∂G

∂ν
(x, ξ) dsξ =

∫

∂B(η,ε)

φ̄(ξ)
∂G

∂ν
(x, ξ) dsξ +

∫

∂B(η,ε)

φ0(ξ, η)
∂G

∂ν
(x, ξ) dsξ +

∫

∂B(η,ε)

u1(ξ, η)
∂G

∂ν
(x, ξ) dsξ , (2.22)

for all x ∈ Ω \B(η, ε). For the third term we have

∣∣∣∇
∫

∂B(η,ε)

u1(ξ, η)
∂G

∂ν
(x, ξ) dsξ

∣∣∣ ≤ ‖u1(·, η)‖∞
∫

∂B(η,ε)

‖D2G‖(x, ξ) dsξ ,

where ‖D2G‖(x, ξ) denotes some appropriate norm of the Hessian matrix ∇x∇ξG. In appendix A
we show that

‖D2G‖(x, ξ) ≤ C(Ω)
|x− ξ|3 . (2.23)

Consequently, as |∂B(η, ε)| ≤ Cε2, we obtain by (2.13) that

∣∣∣∇
∫

∂B(η,ε)

u1(ξ, η)
∂G

∂ν
dsξ

∣∣∣ ≤ C
[
ε1+3/q +

ε3

d(η, ∂Ω)2
] ε2

d(x, ∂B(η, ε))3

= C
ε3

d(x, ∂B(η, ε))3
[
ε3/q +

ε2

d(η, ∂Ω)2
]
, (2.24)

for all q > 3.
For the gradient of the second term on the right-hand-side of (2.22) we have

∣∣∣∇
∫

∂B(η,ε)

φ0(ξ, η)
∂G

∂ν
(x, ξ) dsξ

∣∣∣ ≤ ‖φ0‖∞
∫

∂B(η,ε)

‖D2G‖(x, ξ) dsξ ≤ C
ε3

d(x, ∂B(η, ε))3
. (2.25)
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Since x ∈ Ω \ B(η, ε), it follows that G(x, ·) is harmonic in B(η, ε). Hence, we obtain for the first
term on the right-hand-side of (2.22) that

∣∣∣∇
∫

∂B(η,ε)

φ̄(ξ)
∂G

∂ν
(x, ξ) dsξ

∣∣∣ =
∣∣∣∇

∫

∂B(η,ε)

[φ̄(ξ)− φ̄(η)]
∂G

∂ν
(x, ξ) dsξ

∣∣∣

≤ ε‖∇φ̄‖∞
∫

∂B(η,ε)

‖D2G‖(x, ξ) dsξ ≤ C
ε3

d(x, ∂B(η, ε))3

Combining the above with (2.24) and (2.25) yields

|∇φ1(x, η)| ≤ C
ε3

d(x, ∂B(η, ε))3
. (2.26)

It follows from (2.26) that (2.21) is valid whenever |ξ− η| > 3ε. An additional bound, uniform in
ξ and η, on ‖∇φ1‖L2(B(ξ,ε)) for |ξ − η| ≤ 3ε, would then complete the proof of (2.21). By (2.8) and
(2.4) we have that

{
∇ · (a1∇φ1) = −∇ · (a1∇φ̄) = ∇ · ([1− a1]∇φ̄) in Ω
φ1 = 0 on ∂Ω .

(2.27)

Multiplying (2.27) by φ1 and integrating over Ω we obtain
∫

Ω

a1|∇φ1|2 dξ =
∫

Ω

[1− a1]∇φ1 · ∇φ̄ dξ ≤ C‖∇φ1‖L2(B(η,ε))‖∇φ̄‖L2(B(η,ε)) .

Consequently, since φ̄ ∈ C2(Ω),
‖∇φ1‖2 ≤ Cε3/2 ,

which readily yields (2.21) for |ξ − η| ≤ 3ε.

Remark 1. One can obtain an effective L∞ bound on ∇φ1 by using the estimates of Li and Vogelius
[8]. Consider (2.8) in Dε = Ω ∩B(η, 4ε). Applying the transformation

x→ x− η

ε
, (2.28)

we obtain (2.8) once again in D1, which is the image of Dε under the above map. We consider again
two different cases: if D1 = B(0, 4) (or equivalently if ∂Dε ∩ ∂Ω = ∅) then we can employ Theorem
4.1 in [8] to obtain

‖∇ψ̃1‖L∞(B(0,3)) ≤ C inf
z∈R

‖ψ̃1 − z‖L∞(B(0,4)) ,

where ψ̃1

(
(x− η)/ε

)
= ψ1(x). By (2.26) and the fact that φ̄ ∈ C2(Ω) we have that

‖∇ψ̃1‖L∞(∂B(0,4)) = ε‖∇ψ1‖L∞(∂B(η,4ε)) ≤ Cε . (2.29)

From the above and the maximum principle we thus get

inf
z∈R

‖ψ̃1 − z‖L∞(B(0,4)) ≤ inf
z∈R

‖ψ̃1 − z‖L∞(∂B(0,4)) ≤ Cε .

Consequently, applying the inverse map we obtain that

‖∇ψ1‖L∞(B(η,4ε)) ≤ C .



10 Y. ALMOG

Consider next the case where B(η, 4ε) ∩ ∂Ω 6= ∅. Applying again the transformation (2.28) we
obtain (2.8) in D1 ⊂ B(0, 4). We can then apply Corollary 1.3 in [8] to obtain

‖∇ψ̃1‖L∞(D1) ≤ inf
z∈R

‖ψ̃1 − z‖C1,γ(∂D) . (2.30)

Since by (2.29) and the fact that ‖∇sf‖L∞(∂Ω) ≤ C (recall that ∇s denotes the tangential derivative
on ∂Ω) we have

‖∇sψ̃1‖L∞(∂D1) ≤ Cε

we readily obtain that
inf
z∈R

‖ψ̃1 − z‖C1,γ(∂D) ≤ Cε .

Combining the above with (2.30) yields

‖∇ψ1‖L∞(Dε) ≤ C .

2.3. Two inclusions

We now proceed to consider a two-particle problem. Let ψ2(·, η1, η2) : Ω → R denote, for every
(η1, η2) ∈ Ωε ×Ωε, the unique (weak) solution of

{
∇ · (a2(·, η1, η2)∇ψ2(·, η1, η2)) = 0 x ∈ Ω
ψ2(·, η1, η2) = f x ∈ ∂Ω ,

(2.31)

where
a2(x, η1, η2) = a1(x, η1) + a1(x, η2)− 1 . (2.32)

We assume in the sequel, without loss of generality, in view of (1.3), that |η1 − η2| ≥ 2ε. For every
(η1, η2) ∈ Ωε ×Ωε, we then define φ2(·, η1, η2) : Ω → R and v2(·, η1, η2) : Ω → R by

ψ2(x, η1, η2) = φ2(x, η1, η2) + φ̄(x) ,

and
v2(·, η1, η2) = φ2(x, η1, η2)− φ1(x, η1)− φ1(x, η2) . (2.33)

It is easy to show that
{
∇ · (a2∇v2) = −∇ · ([a1(·, η2)− 1]∇φ1(·, η1) + [a1(·, η1)− 1]∇φ1(·, η2)

)
in Ω

v2(·, η1, η2) = 0 on ∂Ω .
(2.34)

Consequently,

‖∇v2(·, η1, η2)‖2 ≤ C
{‖[a1(·, η2)− 1]∇φ1(·, η1)‖2 + ‖[a1(·, η1)− 1]∇φ1(·, η2)‖2

}
,

and hence by (2.21) we obtain

‖∇v2(·, η1, η2)‖2 ≤ C
ε9/2

|η1 − η2|3 . (2.35)

Next we prove, a two-particle version of (2.21).
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Lemma 3. Let v2 be given by (2.33). Then, for all ξ ∈ Ω and (η1, η2) ∈ Ωε×Ωε such that |η1−η2| ≥
2ε we have

‖∇v2‖L2(B(ξ,ε)∩Ω) ≤ C(Ω, σ)





ε15/2

|η1−η2|3
[

1
|ξ−η1|3 + 1

|ξ−η2|3
]

ξ ∈ Ω \
2⋃

n=1
Bn

ε9/2

|η1−η2|3 ξ ∈
2⋃

n=1
Bn

(2.36)

Proof. We use (2.6) once again, this time with N = 2. By (2.6) with N = 2

φ2(x, η1, η2) = (σ − 1)
∫

∂B1∪∂B2

ψ2(ξ, η1, η2)
∂G

∂ν
(x, ξ) ds ∀x ∈ Ω \

2⋃
n=1

Bn (2.37)

Using the first identity in (2.22) we easily deduce that

v2(x, η1, η2) = (σ − 1)
[ ∫

∂B1

φ1(ξ, η2)
∂G

∂ν
(x, ξ) dsξ

+
∫

∂B2

φ1(ξ, η1)
∂G

∂ν
(x, ξ) dsξ +

∫

∂B1∪∂B2

v2(x, η1, η2)
∂G

∂ν
(x, ξ) dsξ

]
. (2.38)

We first attempt to estimate the gradient of the last term on the right-hand-side of (2.38). Let
U2 = B1 ∪B2 and set

v̄2,i = −
∫

Bi

v2 dξ i = 1, 2 .

Since G(x, ·) is harmonic inside U2 for all x ∈ Ω \ U2 we have that
∫

∂Bi

v̄2,i
∂G

∂ν
ds = 0 i = 1, 2 .

By Poincaré inequality there exists C > 0 such that for any w ∈ H1(B(0, 1)) we have

‖w − w̄‖L2(∂B(0,1)) ≤ ‖w − w̄‖H1/2(∂B(0,1)) ≤ ‖w − w̄‖H1(B(0,1)) ≤ C‖∇w‖L2(B(0,1)) ,

where w̄ denotes the average of w over B(0, 1). Scaling B(0, 1) by a factor of ε then yields

‖v2 − v̄2,i‖L2(∂Bi) ≤ Cε1/2‖∇v2‖L2(Bi) i = 1, 2 ,

where C is independent of ε and i. Hence, with the aid of (2.35) we obtain

∣∣∣∇
∫

∂U2

v2
∂G

∂ν
ds

∣∣∣ ≤ C

2∑

i=1

‖v2 − v̄2,i‖L2(∂Bi)‖D2G(x, ·)‖L2(∂Bi) ≤

Cε1/2‖∇v2‖L2(U2)
ε

d(x,U2)3
≤ C

ε6

|η1 − η2|3d(x,U2)3
. (2.39)

Let

φ̄1(η2, B1) = −
∫

B1

φ1(ξ, η2) dξ .

As above, we have

‖φ1(·, η2)− φ̄1(η2, B1)‖L2(∂B1) ≤ Cε1/2‖∇φ1(·, η2)‖L2(B1) .
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For the first term we thus obtain, with the aid of (2.21), that

∣∣∣∇
∫

∂B1

φ1(ξ, η2)
∂G

∂ν
dsξ

∣∣∣ ≤ C‖φ1(·, η2)− φ̄1(η2, B1)‖L2(∂B1)‖D2G(x, ·)‖L2(∂B1)

≤ Cε1/2‖∇φ1(·, η2)‖L2(B1)
ε

d(x,U2)3
≤ C

ε6

|η1 − η2|3d(x,U2)3
. (2.40)

Let d(x,U2) > ε. We then have

1
d(x, U2)3

≤ C
[ 1
|x− η1|3 +

1
|x− η2|3

]
.

Combining the above with (2.38), (2.39), and (2.40) yields for all x such that
d(x,U2) > ε

|∇v2| ≤ C
ε6

|η1 − η2|3
[ 1
|x− η1|3 +

1
|x− η2|3

]
. (2.41)

This proves (2.36) for ξ such that d(ξ, U2) ≥ 2ε. The case d(ξ, U2) < 2ε readily follows from (2.35).

3. Error estimates

Let φ denote a weak solution of (1.1). We first represent φ in the following manner

φ(x, η1, . . . , ηN ) = φ̄(x) +
N∑

i=1

[
φ1(x, ηi) +

1
2

N∑

j=1
j 6=i

v2(x, ηi, ηj)
]

+ u , (3.1)

in which φ1 is defined by (2.10) and v2 by (2.33). We first derive a boundary value problem for u.
Clearly,

a(x, η1, . . . , ηN ) = 1 +
N∑

n=1

[a1(x, ηn)− 1] .

Hence, by (2.4), (2.8), and (2.10)

−∇ · (a∇φ̄) = −
N∑

n=1

∇ · ([a1(x, ηn)− 1]∇φ̄)

= −
N∑

n=1

∇ · (a1(x, ηn)∇φ̄) =
N∑

n=1

∇ · (a1(x, ηn)∇φ1(x, ηn)
)
.

It follows that

−∇ ·
(
a
[
∇φ̄+

N∑

i=1

∇φ1(x, ηi)
])

=
N∑

n=1

∇ · ([a1(x, ηn)− a
]∇φ1(x, ηn)

)
. (3.2)

Using (1.1), (2.4), (3.2), and (3.1) we obtain that

−∇ · (a∇u) =
N∑

i=1

∇ ·
([
a− a1(x, ηi)

]∇φ1(x, ηi) +
1
2

N∑

j=1
j 6=i

a∇v2(x, ηi, ηj)
)
.
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Using (2.34) we obtain that

∇ · (a∇v2(x, ηi, ηj)
)

= ∇ · ([a− a2(x, ηi, ηj)]∇v2(x, ηi, ηj)
)−

∇ · ([a1(x, ηj)− 1]∇φ1(x, ηi) + [a1(x, ηi)− 1]∇φ1(x, ηj)
)
.

Clearly,

1
2

N∑

i=1

N∑

j=1
j 6=i

(
[a1(x, ηj)− 1]∇φ1(x, ηi) + [a1(x, ηj)− 1]∇φ1(x, ηi)

)

=
N∑

i=1

N∑

j=1
j 6=i

[a1(x, ηj)− 1]∇φ1(x, ηi) ,

and hence

−∇ · (a∇u) =
N∑

i=1

∇ ·
([
a− a1(x, ηi)

]∇φ1(x, ηi)+

N∑

j=1
j 6=i

[a1(x, ηj)− 1]∇φ1(x, ηi) +
1
2
[a− a2(x, ηi, ηj)]∇v2(x, ηi, ηj)

)
.

As

a− a1(x, ηi) =
N∑

j=1
j 6=i

[a1(x, ηj)− 1]

we obtain that



−∇ · (a∇u) = 1

2

∑N
i=1

∑N
j=1
j 6=i

∇ · [a− a2(x, ηi, ηj)]∇v2(x, ηi, ηj) in Ω

u = 0 on ∂Ω .
(3.3)

It immediately follows from (3.3) and Poincaré’s inequality that

‖u‖1,2 ≤ C‖∇u‖2 ≤ C

∥∥∥∥
N∑

i=1

N∑

j=1
j 6=i

[a− a2(·, ηi, ηj)]∇v2(·, ηi, ηj)
∥∥∥∥

2

. (3.4)

We can now begin the estimate of the H1 norm of the expectation of u. By (3.4) we have

‖〈u〉‖1,2 ≤ 〈‖u‖21,2〉1/2 ≤ C

〈∥∥∥∥
N∑

i=1

N∑

j=1
j 6=i

[a− a2(·, ηi, ηj)]∇v2(·, ηi, ηj)
∥∥∥∥

2

2

〉1/2

.

As

a− a2(x, ηi, ηj) =
N∑

k=1
k 6∈{i,j}

[a1(x, ηk)− 1] ,
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we obtain that

‖〈u〉‖1,2 ≤ C

〈∥∥∥∥
N∑

i=1

N∑

j=1
j 6=i

N∑

k=1
k 6∈{i,j}

[a1(·, ηk)− 1]∇v2(·, ηi, ηj)
∥∥∥∥

2

2

〉1/2

= C

〈∥∥∥∥
N∑

k=1

N∑

i=1
i 6=k

N∑

j=1
j 6∈{i,k}

[a1(·, ηk)− 1]∇v2(·, ηi, ηj)
∥∥∥∥

2

2

〉1/2

.

Since by (1.3) we have, with probability 1, that

[a1(x, ηk)− 1][a1(x, ηm)− 1] = (σ − 1)[a1(x, ηk)− 1]δkm ∀x ∈ Ω ,

we obtain that

‖〈u〉‖1,2 ≤ C

[ N∑

k=1

〈 ∫

B(ηk,ε)

∣∣∣∣
N∑

i=1
i 6=k

N∑

j=1
j 6∈{i,k}

∇v2(x, ηi, ηj)
∣∣∣∣
2

dx

〉]1/2

.

By the multi-particle symmetry of the joint probability distribution we thus have

‖〈u〉‖1,2 ≤ CN1/2

[〈 ∫

B(η1,ε)

∣∣∣∣
N∑

i,j=2
j 6=i

∇v2(x, ηi, ηj)
∣∣∣∣
2

dx

〉]1/2

. (3.5)

Next, we evaluate the integrand in (3.5) to obtain, in view of the symmetry of v2(x, η1, η2) with
respect to η1 and η2, that

∫

B(η1,ε)

∣∣∣∣
N∑

i,j=2
j 6=i

∇v2(x, ηi, ηj)
∣∣∣∣
2

dx =
∫

B(η1,ε)

N∑

i,j=2
j 6=i

|∇v2(x, ηi, ηj)|2 dx+

4
∫

B(η1,ε)

N∑

i,j=2
j 6=i

N∑
m=2

m 6∈{i,j}

∇v2(x, ηi, ηj) · ∇v2(x, ηi, ηm) dx+

∫

B(η1,ε)

N∑

i,j=2
j 6=i

N∑

k,m=2
k 6∈{i,j} m 6∈{k,i,j}

∇v2(x, ηi, ηj) · ∇v2(x, ηk, ηm) dx . (3.6)

The expectation of the first term on the right-hand-side of the above identity is given, in view of
the multi-variable symmetry of fN , by

〈 ∫

B(η1,ε)

N∑

i,j=2
j 6=i

|∇v2(x, ηi, ηj)|2 dx
〉

= (N − 1)(N − 2)
〈 ∫

B(η1,ε)

|∇v2(x, η2, η3)|2 dx
〉
. (3.7)

For the second term on the right-hand-side of (3.6) we have

〈 ∫

B(η1,ε)

N∑

i,j=2
j 6=i

N∑
m=2

m 6∈{i,j}

∇v2(x, ηi, ηj) · ∇v2(x, ηi, ηm) dx
〉

=

(N − 1)!
(N − 4)!

〈 ∫

B(η1,ε)

∇v2(x, η2, η3) · ∇v2(x, η2, η4) dx
〉
. (3.8)
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Finally, for the third term we get

〈 ∫

B(η1,ε)

N∑

i,j=2
j 6=i

N∑

k,m=2
k 6∈{i,j} m6∈{k,i,j}

∇v2(x, ηi, ηj) · ∇v2(x, ηk, ηm) dx
〉

=

(N − 1)!
(N − 5)!

〈 ∫

B(η1,ε)

∇v2(x, η2, η3) · ∇v2(x, η4, η5) dx
〉
. (3.9)

We next estimate each of the above terms separately. For (3.7) use is made of (1.7) next to (2.36)
to obtain

(N − 1)(N − 2)
〈 ∫

B(η1,ε)

|∇v2(x, η2, η3)|2 dx
〉
≤

CN2

〈
ε15

|η2 − η3|6
[ 1
|η2 − η1|3 +

1
|η3 − η1|3

]2
〉

≤ Cε9β̄2

∫

Ω3

1
|η1 − η2|6|η2 − η3|6 f3(η1, η2, η3) dη1 dη2 dη3 .

Clearly,
∫

Ω\B(η1,ε)

∫

Ω\B(η2,ε)

1
|η1 − η2|6|η2 − η3|6 dη3dη2 ≤

∫

Ω\B(η1,ε)

1
|η1 − η2|6 dη2

∫ R

ε

1
r6
r2 dr ≤

( ∫ R

ε

dr

r4

)2

≤ C

ε6
,

where R = diamΩ. Using the boundedness (1.5) for k = 3 we then obtain

(N − 1)(N − 2)
〈 ∫

B(η1,ε)

|∇v2(x, η2, η3)|2 dx
〉
≤ Cε3β̄2 . (3.10)

For the right-hand-side of (3.8) we have

(N − 1)!
(N − 4)!

∣∣∣
〈 ∫

B(η1,ε)

∇v2(x, η2, η3) · ∇v2(x, η2, η4) dx
〉∣∣∣ ≤

CN3
〈
‖∇v2(x, η2, η3)‖L2(B(η1,ε))‖∇v2(x, η2, η4)‖L2(B(η1,ε))

〉
, (3.11)

which, with the aid of (2.36) becomes

(N − 1)!
(N − 4)!

∣∣∣
〈 ∫

B(η1,ε)

∇v2(x, η2, η3) · ∇v2(x, η2, η4) dx
〉∣∣∣ ≤

Cε6β̄3

∫

Ω4

[ 1
|η2 − η1|3 +

1
|η3 − η1|3

][ 1
|η2 − η1|3 +

1
|η4 − η1|3

]

1
|η2 − η4|3|η2 − η3|3 f4(η1, η2, η3, η4) dη1 dη2 dη3 dη4 .

Hence, by the symmetry of the roles of η3 and η4,

(N − 1)!
(N − 4)!

∣∣∣
〈 ∫

B(η1,ε)

∇v2(x, η2, η3) · ∇v2(x, η2, η4) dx
〉∣∣∣ ≤

Cε6β̄3

∫

Ω4

[ 1
|η2 − η1|6 +

1
|η3 − η1|6

] 1
|η2 − η4|3|η2 − η3|3 f4(η1, η2, η3, η4) dη1 dη2 dη3 dη4 (3.12)
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As before we have that ∫

Ω\B(η2,,ε)

1
|η2 − η4|3 dη4 ≤ C

∫ R

ε

dr

r
≤ C ln ε−1 . (3.13)

Furthermore, in a similar manner, one can show that
∫

Ω\B(η1,ε)

∫

Ω\B(η2,ε)

1
|η2 − η1|6

1
|η2 − η3|3 dη3dη2 ≤

C ln ε−1

ε3

Substituting the above , together with (3.13) into (3.12) then yields

(N − 1)!
(N − 4)!

∣∣∣
〈 ∫

B(η1,ε)

∇v2(x, η2, η3) · ∇v2(x, η2, η4) dx
〉∣∣∣ ≤ Cε3β̄3 ln2 ε . (3.14)

Finally, we estimate the right-hand-side of (3.9) in a similar fashion to obtain

(N − 1)!
(N − 5)!

〈 ∫

B(η1,ε)

∇v2(x, η2, η3) · ∇v2(x, η4, η5) dx
〉
≤ Cε3β̄4 ln4 ε . (3.15)

We then combine (3.5)-(3.15) to obtain

‖〈u〉‖1,2 ≤ Cβ̄1/2[β̄2 + β̄3 ln2 ε+ β̄4 ln4 ε]1/2 . (3.16)

By (1.8) we thus obtain
‖〈u〉‖1,2 ≤ Cβ̄3/2 .

We next seek an estimate for the H1 norm of the second sum on the right-hand-side of (3.1). Let

V2(x, η1, . . . , ηN ) =
N∑

i=1

N∑

j=1
j 6=i

v2(x, ηi, ηj)

Clearly,
∇

〈
V2(x, η1, . . . , ηN )

〉
= N(N − 1)

〈
∇v2(x, η1, η2)

〉
.

By (2.36) we have for all ξ ∈ Ω

‖∇〈V2〉‖L2(B(ξ,ε)∩Ω) ≤ Cε3/2β̄2
[ ∫

Ω\B(ξ,ε)

∫

Ω

1
|ξ − η1|3|η1 − η2|3 f2(η1, η2) dη2dη1+

1
ε3

∫

B(ξ,ε)∩Ω

∫

Ω

1
|η1 − η2|3 f2(η1, η2)

]
dη2dη1 . (3.17)

Consequently, for all ξ ∈ Ω
‖∇〈V2〉‖L2(B(ξ,ε)∩Ω) ≤ Cε3/2β̄2 ln2 ε ,

from which it easily follows, using Poincaré’s inequality, that

‖〈V2〉‖1,2 ≤ Cβ̄2 ln2 ε . (3.18)

The foregoing discussion can be summarized as follows

Proposition 1. Let φ denote the (weak) solution of (1.1). Then, under the assumptions (1.5) and
(1.8) we have that

‖〈φ〉 − φ̄−N〈φ1〉‖1,2 ≤ Cβ̄3/2 . (3.19)

Proof. The proof follows immediately from (3.1), (3.5), (3.18), and the fact that

〈 N∑

i=1

φ1(x, ηi)
〉

= N〈φ1〉 .
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4. Effective medium

To prove Theorem 1 we need to show that the estimate of 〈φ〉 provided by (3.19) is a good
approximation for the solution of the steady-state heat equation in a continuous medium whose
conductivity is a function of both the inclusion’s conductivity σ and the volume fraction β(x).
Consider then the following problem

{
∇ · (ae(x)∇φe) = 0 in Ω
φ = f on ∂Ω ,

(4.1a)

where
ae(x) = 1 + γ(x) , (4.1b)

in which
‖γ‖∞ ≤ Cβ̄ , (4.1c)

and
ae >

1
2
, (4.1d)

for all x in Ω.
For the solution of (4.1) we can prove the following estimate

Proposition 2. Let φe denote the unique solution of (4.1). Then

‖φe − φ̄+∆−1
(∇ · (γ∇φ̄)

)‖1,2 ≤ Cβ̄2 . (4.2)

In the above ∆−1 denotes the inverse Laplace operator in H1
0 (Ω), i.e., for any F ∈ H−1(Ω), w =

∆−1F is the unique (weak) solution of
{
∆w = F in Ω

w = 0 on ∂Ω
.

Proof. We bring in brief the proof of this standard result. Set

ue = φe − φ̄+∆−1
(∇ · (γ∇φ̄)

)
.

Then, {
∇ · (ae∇ue) = ∇ · {γ∇∆−1

(∇ · (γ∇φ̄)
)}

inΩ
ue = 0 on ∂Ω .

Consequently, as ae > 1/2 we have that

‖∇ue‖2 ≤ C
∥∥γ∇∆−1

(∇ · (γ∇φ̄)
)∥∥

2
≤ C‖γ‖∞‖∇∆−1

(∇ · (γ∇φ̄)
)‖2 ≤

C‖γ‖∞‖γ∇φ̄‖2 ≤ C‖γ‖2∞‖∇φ̄‖2 .
From (4.1c) we then get (4.2).

We next show thatN〈φ1〉 can be expressed as the inverse Laplacian of∇·(γ∇φ̄) for an appropriate
choice of γ.

Lemma 4. Let φ1 be given by (2.10). Then,
∥∥∥N〈φ1〉+

3(σ − 1)
2 + σ

∆−1
(∇ · (β∇φ̄)

)∥∥∥
1,2
≤ Cε1/2β̄ (4.3)
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Proof. By (2.27) we have

−∆φ1 = ∇ · ([a1(x, η)− 1][∇φ1(x, η) +∇φ̄(x)]
)
.

Hence, we can employ (2.12) to obtain

−∆φ1 = ∇ · ([a1(x, η)− 1][∇φ0(x, η) +∇φ̄(x)]
)

+∇ · ([a1(x, η)− 1]∇u1(x, η)
)
, (4.4)

where φ0 is given by (2.11).
Denote by φ1,1 the weak solution of

{
−∆φ1,1 = 3

2+σ∇ · ([a1(x, η)− 1]∇φ̄(x)
)

in Ω ,

φ1,1 = 0 on ∂Ω .
(4.5)

To facilitate averaging, we represent the above problem in its weak form. Let then χ ∈ C∞0 (Ω). The
weak formulation of the last equation, with the aid of (2.11), reads

∫

Ω

∇χ · ∇φ1,1 dx = − 3
2 + σ

∫

Ω

∇χ · [a1(x, η)− 1]∇φ̄(x) dx .

Taking the average of the above equation yields
∫

Ω

∇χ · ∇〈φ1,1〉 dx = − 3
2 + σ

∫

Ω

∇χ · 〈[a1(x, η)− 1]〉∇φ̄(x) dx . (4.6)

(Recall that as φ1,1 ∈ H1
0 (Ω) we have 〈∇φ1,1〉 = ∇〈φ1,1〉.) Clearly,

〈[a1(x, η)− 1]〉 = (σ − 1)
∫

B(x,ε)∩Ωε

f1(η) dη = (σ − 1)
β(x)
N

, (4.7)

where Ωε is defined by (2.7) and β ∈ L2(Ω) is given by (1.9). By (4.6) and (4.7) it follows that 〈φ1,1〉
is a weak solution of

∆〈φ1,1〉 = −3(σ − 1)
2 + σ

∇ ·
(β(x)
N

∇φ̄
)
.

Hence,

N〈φ1,1〉 = −3(σ − 1)
2 + σ

∆−1
(∇ · (β∇φ̄)

)
. (4.8)

Set
φ1 = φ1,1 + φ1,2 . (4.9)

By (4.4) and (4.5) we have that
{
−∆φ1,2 = ∇ ·

(
[a1(x, η)− 1]

[
σ−1
2+σ∇φ̄(x) +∇φ0(x− η) +∇u1(x, η)

])
in Ω ,

φ1,2 = 0 on ∂Ω .
(4.10)

By (2.11), since a1(x, η) = 1 whenever x 6∈ B(η, ε), we have that

[a1(x, η)− 1]∇φ0(x, η) = −[a1(x, η)− 1]
σ − 1
2 + σ

∇φ̄(η) .

Substituting into (4.10) then yields
{
−∆φ1,2 = σ−1

2+σ∇ · ([a1(x, η)− 1][∇φ̄(x)−∇φ̄(η)]
)

+∇ · ([a1(x, η)− 1]∇u1(x, η)
)

in Ω ,

φ1,2 = 0 on ∂Ω .
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As in (4.6) we readily show that
∫

Ω

∇χ · ∇〈φ1,2〉 dx = −
∫

Ω

∇χ · 〈[a1(x, η)− 1]
[σ − 1
2 + σ

[∇φ̄(x)−∇φ̄(η)] +∇u1(x, η)
]
〉 dx .

Hence,

‖∇〈φ1,2〉‖2 ≤ σ − 1
2 + σ

‖〈[a1(·, η)− 1][∇φ̄(·)−∇φ̄(η)]〉‖2 + ‖〈[a1(·, η)− 1]∇u1(·, η)〉‖2 . (4.11)

Since by (1.5) we have that

|〈[a1(x, η)− 1][∇φ̄(x)−∇φ̄(η)]〉| ≤ C

∫

B(x,ε)∩Ωε

|∇φ̄(x)−∇φ̄(η)| dη ≤ Cε4

uniformly in x, it readily follows that the first term on the right-hand-side of (4.11) obeys a similar
estimate

‖〈[a1(·, η)− 1][∇φ̄(·)−∇φ̄(η)]〉‖2 ≤ Cε4 .

For the second term we have by(1.5) that

‖〈[a1(·, η)− 1]∇u1(·, η)〉‖22 ≤ C

∫

Ω

[ ∫

B(x,ε)∩Ωε

|∇u1(x, η)| dη
]2

dx ≤

Cε3
∫

Ω

∫

B(x,ε)∩Ωε

|∇u1(x, η)|2 dη dx ≤ Cε3
∫

Ω

∫

Ωε

|∇u1(x, η)|2 dη dx .

With the aid of (2.14) we then obtain that

‖〈[a1(·, η)− 1]∇u1(·, η)〉‖22 ≤ Cε3
∫

Ωε

‖∇u1(·, η)‖22 dη ≤

Cε3
∫

Ωε

[
ε5/2 +

ε3

d(η, ∂Ω)3/2

]2

dη ≤ Cε7 .

Hence, from (4.11) we get
‖N∇〈φ1,2〉‖2 ≤ Cβ̄ε1/2 .

Combining the above together with (4.8), (4.9), and Poincaré’s inequality yields (4.3).

Proof (Proof of Theorem 1). Combining (4.3), (3.19), and (1.8) yields
∥∥∥〈φ〉 − φ̄+

3(σ − 1)
2 + σ

∆−1
(∇ · (β∇φ̄)

)∥∥∥
1,2
≤ Cβ̄3/2 .

To complete the proof we need only show that if we choose

γ =
3(σ − 1)
2 + σ

β ,

then both (4.1c) and (4.1d) hold, but this follows immediately from (1.10) and (1.7). The Theorem
then follows from (4.2).

Remark 2. One can relax the limitation imposed on β̄ by the upper bound of (1.8), by allowing a
larger error in (1.13). Thus, if we require that β̄ ≤ ln−2(2+δ)(ε−1) for some 0 < δ < 2 we can replace
the right-hand-side of (1.13) by Cβ̄1+δ/(2+δ). This can be readily verified using (3.16) and (3.18).
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5. Concluding remarks

In the following we illuminate a few key points that were only briefly considered, if at all,
throughout the previous sections.

Higher order terms: In principle one can continue the expansion (3.1) to include O(β̄k) terms. Let
u be defined by (3.1). The next order term can be obtained by setting N = 3 in (3.1). We then
obtain

u =
∑

n1,n2,n3

v3(x, ηn1 , ηn2 , ηn3) + . . .

where the summation is over all the C3
N 3-combinations of {1, . . . , N},

v3(x, η1, η2, η3) = φ3(x, η1, η2, η3)− [v2(x, η1, η2)+
v2(x, η1, η3) + v2(x, η2, η3) + φ1(x, η1) + φ1(x, η2) + φ1(x, η3)] ,

and φ3 = ψ3 − φ̄ where {
∇ · (a3∇ψ3) = 0 in Ω
ψ3 = f on ∂Ω .

In the above
a3(x, η1, η2, η3) = a1(x, η1) + a1(x, η2) + a1(x, η3)− 2 .

One may recursively construct the series up to an O(β̄k) error for any k ∈ N. These, of course,
would be asymptotic series in the limit β̄ → 0: it is very difficult to determine whether they also
converge as k →∞ using the techniques employed in this work.

Cα convergence: Once higher order terms are obtained (at least up to k = 4) it seems possible to
obtain, with the aid of Li & Vogelius’ estimates [8] a Cα convergence, for some positive α, of 〈φ〉
to φe, using estimates that are similar to (2.13). Note that to obtain (3.19), it was necessary to
introduce into (3.1) not only the first order correction

∑N
n=1 φ1(x, ηn) but also the O(β2) term∑

i,j v2(x, ηi, ηj). The reason for that becomes clear once we notice that in (3.5) we need to raise
to the power 1/2 integrals that are supported on a small set. Consequently, instead of getting
an O(β̄3) error we obtain an O(β̄3/2) one. If we seek Cα convergence, then, the DeGiorgi-Nash-
Moser theory [4] would require us to raise the integrals in (3.5) to the power 1/q, for q > 3.
Hence, to obtain an error which is much smaller than O(β̄) we need to include at least three
terms in the expansion (3.1) (and then the error would be at least O(β̄4/q) for any q > 3)

Logarithmic errors: The lower bound in (1.8) appears to be in line with the expectation that N
is large, though the analysis can perhaps be performed under a weaker constraint. In contrast,
the upper bound appears to result from the crudeness of our estimates. There are two different
steps that produce error terms of O(β̄2 ln2 ε): the first is the derivation of (3.12) and (3.15), and
the second is the estimate (3.17). In both cases one can hope that better results are obtained
through the derivation of a leading order approximation of φ2 similar to the one obtained for
φ1 in (2.14). The approximation can, perhaps, be obtained from the solution of (2.31) in R3

assuming linear asymptotic behaviour of ψ2 as |x| → ∞. It seems worthwhile to note here that
eliminating the upper bound in (1.8) may facilitate a comparison between the results of stochastic
homogenization [6,13] with those obtained in the present work.

Stationarity: An interesting point to note is that the gradients of the various marginal probability
densities, or ‖∇fi‖∞ for any 1 ≤ i, need not be bounded as ε → 0 in order to obtain (1.13).
However, if we attempt to replace the average in event space in (1.13) by a local spatial average,
i.e., by

−
∫

B(x,r)

φdx ,
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for some β̄−1/3 ¿ r ¿ 1, boundedness of ‖∇fi‖∞ should most probably be assumed for the first
few probability densities. Such an assumption can be interpreted as “quasi-stationarity”. Note
that in [6] stationarity of the probability law had to be assumed in order to apply Birkhoff’s
Theorem so that equivalence of the different averages is established.

Generalizations: The present technique can certainly be generalized in several different directions:
the inclusions’ shape may vary, and can be assumed to have a random character. One would
still need to solve one-particle and two-particle problems - just with a different shape. One can
also consider a(x) which is non-constant both inside and outside the inclusions. The estimates
obtained using potential theory would have to be generalized in this case. Problems of linear
elasticity seem tractable as well.
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to the anonymous referees for numerous comments and suggestions that had greatly enhanced the quality of
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Appendix A. Proof of (2.23)

Let Ω ⊂ R3 be bounded with smooth boundary ∂Ω ∈ C2,α for some α > 0. For some ε > 0, we
define Ωε as

Ωε = {x ∈ Ω | d(x, ∂Ω) < ε} .
Let δ0 > 0 be sufficiently small so that for every y ∈ Ωδ0 there exists a unique point ȳ ∈ ∂Ω so that
d(y, ∂Ω) = |y − ȳ|. Denote the reflection of y with respect to ȳ by y∗. We begin by the following
elementary lemma

Lemma 5. There exists C > 0 depending only on Ω such that

sup
(x,y)∈∂Ω×Ωδ0/2

∣∣∣ 1
|x− y| −

1
|x− y∗|

∣∣∣ ≤ C . (A.1)

Proof. Let y ∈ Ωδ0/2. We set the origin of a coordinate system at its projection on ∂Ω, i.e.,
ȳ = (0, 0, 0). We further set y = (0, 0, d) and hence for the reflection point we have y∗ = (0, 0,−d).
Let x = (x1, x2, x3) ∈ ∂Ω, and let r = |x − y| and r∗ = |x − y∗|. By the smoothness of ∂Ω there
exists C0(Ω) and ε1(Ω) such that

|x3| ≤ C0(x2
1 + x2

2) x ∈ B(0, ε1) .

Without loss of generality we can assume d < ε1/2, otherwise min(r, r∗) > ε1/2 and hence
∣∣∣1
r
− 1
r∗

∣∣∣ ≤ 2
ε1
.

When (x2
1+x

2
2+x

2
3)

1/2 > ε1 the above inequality remains valid since it easily follows that min(r, r∗) >
ε1/2.

Let x ∈ B(0, ε1). Clearly,
1
r
− 1
r∗

=
4dx3

r∗r(r + r∗)
.

Consider first the case d2 ≤ C0δ0(x2
1 + x2

2). Here we have fact that
∣∣∣1
r
− 1
r∗

∣∣∣ ≤ 4C3/2
0 δ

1/2
0

(x2
1 + x2

2)
3/2

r∗r(r + r∗)
≤ 2C3/2

0 δ
1/2
0 .
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For the case d2 > C0δ0(x2
1 + x2

2) we have

|x3| ≤ d2

δ0
,

which would mean in particular that |x3| ≤ d/2 and hence that min(r, r∗) ≥ d/2. Consequently,

∣∣∣1
r
− 1
r∗

∣∣∣ ≤ 4
δ0

d3

r∗r(r + r∗)
≤ 1
δ0
.

Proof (Proof of (2.23)). step 1: We first prove that

|G(x, ξ)| ≤ C(Ω)
|x− ξ| . (A.2)

Let g be given by (2.2). Since g(·, ξ) is harmonic for all ξ ∈ Ω we have by the maximum principle

‖g(·, ξ)‖∞ ≤ ‖g(·, ξ)‖L∞(∂Ω) ≤
1

4πd(ξ, ∂Ω)
.

Consequently,

sup
(x,ξ)∈Ω×Ω\Ωδ0/2

|x− ξ|G(x, ξ) ≤ 1
4π

+
diamΩ
2πδ0

≤ C . (A.3)

Suppose that ξ ∈ Ωδ0/2. Set then

g(x, ξ) = h(x, ξ)− 1
4π|x− ξ∗| .

Since h is harmonic in Ω we have by the previous lemma that

sup
ξ∈Ω\Ωδ0/2

‖h(·, ξ)‖∞ ≤ C . (A.4)

Furthermore, since

u =
1

|x− ξ∗| −
1

|x− ξ|
is harmonic in Ω \ {ξ} and since ux→ξ = −∞, we obtain that

1
|x− ξ∗| ≤

1
|x− ξ| + ‖u(·, ξ)‖L∞(∂Ω) ≤

1
|x− ξ| + C . (A.5)

Consequently,

sup
(x,ξ)∈Ω×Ω\Ωδ0/2

|x− ξ|G(x, ξ) ≤ 1
4π

+ sup
(x,ξ)∈Ω×Ω\Ωδ0/2

∣∣∣ |x− ξ|
4π|x− ξ∗|

∣∣∣ + sup
(x,ξ)∈Ω×Ω\Ωδ0/2

|x− ξ| |h(x, ξ)| ,

which by (A.4) and (A.5) yields

sup
(x,ξ)∈Ω×Ω\Ωδ0/2

|x− ξ|G(x, ξ) ≤ C .

One can now readily verify (A.2) from the above and (A.3).
Step 2: We next show that

|∇ξG(x, ξ)| ≤ C

|x− ξ|2 . (A.6)
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Let δ(Ω) > 0 be the same as in Lemma 6.5 in [4]. We set δ2 = min(δ, δ0). Suppose first that
x ∈ Ω \ Ωδ2/2. Let δ1 = min(δ2/2, |x − ξ|/2). Since G is harmonic in B(x, δ1) we can apply to it
Theorem 4.8 in [4] to obtain, with the aid of (A.2), that there exists C > 0, which is independent of
x and ξ such that

|∇xG(x, ξ)| ≤ C

δ1
‖G(·, ξ)‖L∞(B(x,δ1) ≤

C

|x− ξ|δ1 .

Hence,

sup
(x,ξ)∈Ω\Ωδ2/2×Ω

∣∣ |x− ξ|2∇xG(x, ξ)
∣∣ ≤ C . (A.7)

Next, let x ∈ Ωδ2/2. In this case we distinguish again between two different cases

1. |x− ξ| < 3d(x, ∂Ω) ,
2. |x− ξ| ≥ 3d(x, ∂Ω) .

In case 1 we us the fact that G is harmonic in B(x, |x− ξ|/4) to obtain, as before, that

|∇xG(x, ξ)| ≤ C

|x− ξ| ‖G(·, ξ)‖L∞(B(x,|x−ξ|/4) ≤
C

|x− ξ|2 . (A.8)

In case 2 we denote by x̄ the projection of x on ∂Ω. Set further δ3 = 3d(x, ∂Ω)/2 < δ. Let D =
B(x̄, δ3)∩Ω. Then, since G is harmonic in D we obtain by Lemma 6.5 in [4] that there exists C > 0,
independent of ξ, such that

|∇xG(x, ξ)| ≤ C

d(x, ∂D \ ∂Ω)
‖G(·, ξ)‖L∞(D) ≤

C

|x− ξ|2 . (A.9)

Combining the above, (A.7), and (A.8) yields

sup
(x,ξ)∈Ω×Ω

∣∣ |x− ξ|2∇xG(x, ξ)
∣∣ ≤ C .

The symmetry of G then yields (A.6).
Step 3: We now complete the proof of (2.23). To this end we apply the procedure of step 2 to

∂G(x, ξ)/∂ξi for each i ∈ {1, 2, 3} to obtain that

sup
(x,ξ)∈Ω×Ω

∣∣ |x− ξ|3∇x∂G(x, ξ)/∂ξi
∣∣ ∀i ∈ {1, 2, 3} ,

(note that ∂G(x, ξ)/∂ξi|x∈∂Ω = 0). This completes the proof of (2.23).

Remark 3. While Lemma 6.5 in [4] is stated for B(x̄, ρ) ∩Ω for ρ = δ it is also valid for any ρ < δ
as is evident from the proof. Furthermore, there is no need that G would be harmonic in Ω: it is
enough that it is harmonic in D. Finally, while the statement of Lemma 6.5 would require a bound
on ‖G(·, ξ)‖L∞(Ω), it is again evident from the proof that (A.9) is correct also with ‖G(·, ξ)‖L∞(D).
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