
The Clausius-Mossotti formula in a dilute random
medium with fixed volume fraction.

Y. ALMOG ∗

Abstract

We consider a medium composed of randomly dispersed spherical, identical,
inclusions in a bounded domain, with conductivity different than that of the
host medium. We study the limit where the number of the inclusions tends to
infinity but their volume fraction remains fixed. For small volume fractions,
we prove convergence, in W 1,p norm (1 < p < 2), of the expectation of the
solution of the steady state heat equation, to the solution of an effective medium
problem, where the conductivity is given by the Clausius-Mossotti formula.
This improves a previous result which required that the volume fraction tends
to zero as the inclusions’ number goes to infinity.

1 Introduction

Consider N spherical inclusions of conductivity σ and radius ε immersed in a different
medium of conductivity 1. Prescribing the temperature (or the electric potential) on
the boundary, the temperature field inside can be described as the unique, weak
solution of the problem

{
∇ · (a(x, η1, . . . , ηN)∇φ)

= 0 in Ω ,

φ = f on ∂Ω .
(1.1)

In the above, Ω ⊂ R3 is bounded and smooth (say C2,γ for some positive γ), {ηi}N
i=1

denote the spherical inclusion’s centers, and

a(x, η1, . . . , ηN) =





σ ∀x ∈
N⋃

n=1

B(ηn, ε) ,

1 ∀x ∈ Ω \
N⋃

n=1

B(ηn, ε) ,

(1.2)
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and f ∈ C2,γ(∂Ω) for some γ > 0.
The particles’ centers are assumed to be randomly distributed according to the

joint probability density function fN(η1, . . . , ηN), which is assumed to be invariant to
permutations of the centers as all particles are identical. Moreover, we assume that
the inclusions cannot overlap, i.e.,

∃1 ≤ i < j ≤ N : |ηi − ηj| < 2ε⇒ fN(η1, . . . , ηN) = 0 , (1.3)

and that no inclusion can cross the boundary, i.e.,

∃1 ≤ i ≤ N : d(ηi, ∂Ω) < ε⇒ fN(η1, . . . , ηN) = 0 . (1.4)

Let

fk(η1, . . . , ηk) =

∫

ΩN−k

fN(η1, . . . , ηk, ηk+1, . . . , ηN) dηk+1 · · · dηN ,

denote the k′th order marginal probability density. We assume here boundedness of
the first three marginal densities

‖fk‖L∞(Ωk) ≤ C ∀1 ≤ k ≤ 3 , (1.5)

where C is independent of N and ε. Note that in [1] the same assumption was made
for 1 ≤ k ≤ 5. We denote the expectation of any function F (x, ·) ∈ L1(ΩN), where
x ∈ Ω, by

Ef

(
F (x, ·)) =

∫

ΩN

F (x, η1, . . . , ηN)fN(η1, . . . , ηN) dη1 · · · dηN . (1.6)

To the above assumptions on fN we add the following set of assumptions

f3(η2, η3/η1) = f̃2(η2/η1)f̃2(η3/η1) + g(η1, η2, η3) , (1.7a)

in which g satisfies

g(η1, η2, η3) =





−f̃2(η2/η1)f̃2(η3/η1) |η2 − η3| ≤ 2ε

0 |η2 − η1| ≤ 2ε

0 |η3 − η1| ≤ 2ε .

(1.7b)

Furthermore

|g| ≤ Cα
εα

|η2 − η3|α , (1.7c)

for some α > 0. In addition, we have that

f̃2(η2/η1) = C̃f2(η2/η1) , (1.7d)
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We further assume that

f̃2(η2/η1) = h1(|η2 − η1|)h2(η2) . (1.7e)

where h1 : R+ → R+ is bounded, measurable and satisfies h1(x) = 0 for all x ≤ 2ε,
and h2 ∈ Lip(Ω,R+) has a global Lipschitz norm L which is independent of N and
ε, and satisfies h2(x) = 0 whenever d(x, ∂Ω) ≤ ε.

The above assumptions, except for (1.7e), represent a requirement for some mild
asymptotic independence of the inclusions’ centers η2 and η3, when the location of η1

is given. Note that (1.3) does not allow for independence, and hence, it is necessary
to assume (1.7b). Property (1.7c) assumes decay of the interaction between η2 and η3

as the distance between them grows. The condition (1.7d) reconciles the asymptotic
decay of the interaction (1.7c) with the expectation that

∫

Ω

f3(η2, η3/η1) dη3 = f2(η2/η1) .

(Note that C̃ must be close to 1 in view of (1.7c). ) Finally, (1.7e) assumes short
range radially symmetric behaviour of the conditional density f2(η2/η1). One case in
which all the above assumptions are satisfied is the uniform distribution case, i.e,

fN(η1, . . . , ηN) =





0 ∃1 ≤ i < j ≤ N : |ηi − ηj| < 2ε

0 ∃1 ≤ i ≤ N : d(ηi, ∂Ω) < ε

CN otherwise ,

where the value of CN is obtained through the requirement that Pr(ΩN) = 1. Natu-
rally, (1.7) represents a much wider class of probability measures.

We focus our attention on the small particle limit in a dilute (or dispersive [8] )
medium, i.e., we first let ε→ 0 but keep the volume fraction β̄ fixed, where

β̄ =
4π

3

Nε3

|Ω| , (1.8)

and then let β̄ → 0. Note that N must tend to infinity as ε→ 0 when β̄ is fixed. We
may allow β̄ and ε to simultaneous tend to 0 as long as for some 1 < p < 2, there
exists C > 0, independent of both ε and β̄, such that

ε
2p−1

p

C
< β̄ . (1.9)

The above inequality can alternatively be represented as

C

β̄
p+1
2p−1

≤ N ,
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with a different value of C. Note that by (1.9) it follows that N ≥ Cε−(p+1)/p and
hence N → ∞ as ε → 0 . In [1] we have assumed (1.9) with a greater lower bound,
and together with an additional upper bound, i.e.,

ε

C
< β̄ ≤ C

ln4 ε−1
,

(but (1.7) is not needed there).
Define, next, the local volume fraction for all x ∈ Ω

β(x) = N

∫

B(x,ε)∩Ωε

f1(η) dη , (1.10)

where
Ωε = {x ∈ Ω | d(x, ∂Ω) > ε} . (1.11)

Note that β(x) is the the probability that x ∈
N⋃

n=1

B(ηn, ε). It follows from (2.8) that

‖β(·)‖∞ ≤ Cβ̄ . (1.12)

Where ‖ · ‖p denotes the Lp(Ω) norm (p = ∞ above). When Lp norms are evaluated
over domains different than Ω, we shall include them explicitly in the notation.

Under the above assumptions we prove the following theorem

Theorem 1. Let φ(·, η1, . . . , ηN) ∈ H1(Ω) denote the unique weak solution of (1.1).
Suppose that (1.5) and (1.7) are satisfied. Let φe denote the solution of the effective
medium problem {

∇ · (ae∇φe) = 0 in Ω

φe = f on ∂Ω ,
(1.13)

where

ae = 1 +
3(σ − 1)

2 + σ
β(x) . (1.14)

Then, in the regime of (1.9), for the same 1 < p < 2, we have

‖Ef (φ)− φe‖1,p ≤ C(Ω, σ)β̄
p+1

p
− 1

2 , (1.15)

where ‖ · ‖1,p denotes the W 1,p(Ω) norm.

Throughout the sequel, we always refer to solutions in a weak sense, including
places in the text where we do not state that explicitly.

The effective medium formula (1.14) was derived by Mossotti (1850) and Clausius
(1879) and is therefore known as the Clausius-Mossotti formula. For a formal deriva-
tion of this formula the reader is referred to [12], which brings the classical derivation
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of Maxwell (1873) (cf. [9]). A rigorous proof has been provided in a two-dimensional
periodic setting by Rayleigh [14], for a proof in three dimensional periodic medium
the reader is referred to [8]. More general periodic settings have also been considered
[10, 2].

An interesting proof of (1.14) is presented in [8], where an almost-periodic configu-
ration of the particles is assumed. A small random deviation of the inclusions’ centers
from the lattice points is allowed. Berlyand and Mityushev [3], consider a periodic
array of cells containing a finite number of randomly dispersed inclusions, whose vol-
ume fraction is not necessarily small. They evaluate an effective conductivity, which
is averaged both in event space and over the cell.

In [1] a similar result is established with the following differences:

1. The bound is on the H1 norm, with an error of β̄3/2, i.e., it is established that

‖Ef (φ)− φe‖1,2 ≤ C(Ω, σ)β̄3/2 .

Compare the above with (1.15) where the estimates are on weaker norms with
larger errors.

2. Boundedness of five marginal densities is assumed, whereas here we need only
three.

3. (1.7) is not assumed. Instead we assume that

β̄ ≤ C

ln4 ε−1
. (1.16)

Had we assumed here here boundedness of five marginal densities, then, it would have
been possible (most probably), using the techniques employed in this work, to obtain
the following bound

‖Ef (φ)− φe‖1,p ≤ Cβ̄
p+1

p .

Thus, compromising on weaker norms should allow for a smaller error (and so would a
higher number of bounded marginal densities). We note that the trade between (1.16)
and (1.7) allows for an easier comparison with results from random homogenization
theory [7, 13]. Some significant progress in this direction has recently been reported
in [11], though for a very different setting.

The rest of the contribution is dedicated to the proof of Theorem 1. In the
next section we cite and obtain some regularity results, and derive some preliminary
estimates for media with one inclusion. In § 3, we use (1.7) to obtain a bound on the
average of the single inclusion solution obtained in § 2. Finally, in § 4, we complete
the proof of Theorem 1.
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2 Preliminaries

2.1 Some regularity results

The following Proposition is a straightforward result of Section 4.3 in [5].

Proposition 2.1. Let 1 < p < 2. There exists a weak solution, u ∈ W 1,p(Ω), of

{
∆u = div f in Ω

u = 0 on ∂Ω .
(2.1)

where f ∈ Lp(Ω,R3). Furthermore,

‖∇u‖p ≤ C‖f‖p . (2.2)

Proof. Clearly,

‖∇u‖p = sup
‖F‖q=1

∫

Ω

∇u · F dx ,

where q = p/(p − 1) denotes the Hölder conjugate of p. Let then ‖F‖q = 1. Since
q > 2, we have by § 4.3 in [5] (cf. also Proposition II.6.2 in [4]) that a weak solution
v ∈W 1,q(Ω) exists for {

−∆v = ∇ · F in Ω

v = 0 on ∂Ω .
(2.3)

By Theorem 4.6 in [5] (cf. also Corollary II.6.1 in [4]) we have that there exists
C(Ω, p) > 0 such that

‖∇v‖q ≤ C‖F‖q ≤ C . (2.4)

Suppose first f ∈ C∞(Ω,R3). Then, there exists a unique solution u ∈ W 1,p(Ω)
for (2.1). Multiplying (2.3) by u yields, after integration by parts, with the aid of

∣∣∣
∫

Ω

∇u · F dx
∣∣∣ =

∣∣∣
∫

Ω

f · ∇v dx
∣∣∣ ≤ ‖f‖p‖∇v‖q ≤ C‖f‖p

Taking the infimum with respect to all F ∈ Lq(Ω,R3), with unity norm, yields (2.2)
for all f ∈ C∞(Ω,R3). The proof of the Proposition for all f ∈ Lp(Ω,R3) follows by
density.

Consider next the problem,
{

divA∇u = div f in Ω

u = 0 on ∂Ω .
(2.5)

where A ∈ L∞(Ω,M3×3) is uniformly elliptic, and f ∈ Lp(Ω,R3). Here we prove
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Lemma 2.1. Let u ∈ H1(Ω) denote the weak solution of (2.5), with f ∈ L2(Ω,R3)
and A ∈ L∞(Ω,M3×3) which is uniformly elliptic, i.e, there exists α > 0 such that

ξ · A(x)ξ ≥ α|ξ|2 ∀ξ ∈ R3 .

Let 1 < p < 2. There exists C(α, p,Ω) such that

‖∇u‖p ≤ C
(‖A− I‖ 2

2−p
‖f‖2 + ‖f‖p

)
. (2.6)

Proof. We write {
−∆u = div(A− I)∇u+ div f in Ω

u = 0 on ∂Ω .

By (2.2) we have

‖∇u‖p ≤ C(‖(A− I)∇u‖p + ‖f‖p) ≤ C(‖(A− I)‖2/(2−p)‖∇u‖2 + ‖f‖p) . (2.7)

Multiplying (2.5) by u and integrating by parts leads, however, to

α‖∇u‖2 ≤ ‖f‖2 ,

which, when substituted into (2.7) immediately yields (2.6).

2.2 Single inclusion

As in [1] we define now the one-particle problem. Let Ωε be defined by (1.11). For
every η ∈ Ωε, let ψ1(·, η) ∈ H1(Ω) denote the unique solution of

{
∇ · (a1(·, η)∇ψ1(·, η)

)
= 0 in Ω

ψ1(·, η) = f on ∂Ω
, (2.8)

where

a1(x, η) =

{
σ x ∈ B(η, ε)

1 x ∈ Ω \B(η, ε)
.

Let φ̄ denote the unique solution of

{
∆φ̄ = 0 in Ω

φ̄ = f on ∂Ω
(2.9)

Note that by the assumptions on ∂Ω and f we have that φ̄ ∈ C2(Ω̄). Set then

φ1(·, η) := ψ1(·, η)− φ̄ . (2.10)
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For all η ∈ Ωε, define φ0(·, η) : Ω → R as

φ0(x, η) = (x− η) · ∇φ̄(η)×
{

1−σ
2+σ

ε3

|x−η|3 x ∈ Ω \B(η, ε)
1−σ
2+σ

x ∈ B(η, ε)
, (2.11)

and then set
u1(x, η) = φ1(x, η)− φ0(x, η) . (2.12)

We now cite a few results from [1].

Lemma 2.2. Let φ1 be given by (2.10), and u1(·, η) : Ω → R by (2.12). Then, for all
(ξ, η) ∈ Ω× Ω we have

‖∇φ1(·, η)‖
L2

(
B(ξ,ε)∩Ω

) ≤ C(Ω, σ)
ε9/2

|ξ − η|3 , (2.13)

and

‖u1(·, η)‖1,2 ≤ C(Ω, σ)
(
ε5/2 +

ε3

d(η, ∂Ω)3/2

)
. (2.14)

In the sequel we need estimates of u1 that are more refined then (2.14). To this
end we need first the following auxiliary result

Lemma 2.3. Let (ξ, η) ∈ Ωε × Ωε and suppose that |ξ − η| ≥ 3ε. Then, there exists
C > 0, independent of ε, η, and ξ, such that

[|ξ − η|2 + 4d(ξ, ∂Ω)d(η, ∂Ω)] ≤ C inf
(x,ζ)∈B(ξ,ε)×∂B(η,ε)

[|x− ζ|2 + 4d(x, ∂Ω)d(ζ, ∂Ω)] .

(2.15)

Proof. Step 1: Prove that there exists C > 0 such that for all x ∈ B(ξ, ε) we have

[|x− η|2 + 4d(x, ∂Ω)d(η, ∂Ω)] ≤ C inf
ζ∈∂B(η,ε)

[|x− ζ|2 + 4d(x, ∂Ω)d(ζ, ∂Ω)] . (2.16)

Let x ∈ B(ξ, ε). Clearly, for every ζ ∈ ∂B(η, ε) we have

d(η, ∂Ω) ≤ d(ζ, ∂Ω) + ε ; |x− η| ≤ |x− ζ|+ ε ≤ 2|x− ζ| . (2.17a,b)

Consider first the case where η ∈ Ω2ε. Here we have

d(η, ∂Ω) ≤ 2d(ζ, ∂Ω) ,

which with the aid of (2.17b) readily yields (2.16).
Suppose next that d(η, ∂Ω) ≤ 2ε. Here we have for all ζ ∈ ∂B(η, ε)

d(η, ∂Ω) ≤ 2ε ≤ 2|x− ζ| .

8



Furthermore,

d(x, ∂Ω) ≤ d(ζ, ∂Ω) + |x− ζ| ≤ 3ε+ |x− ζ| ≤ 4|x− ζ| .

Hence,
d(x, ∂Ω)d(η, ∂Ω) ≤ 8|x− ζ|2 ,

which together with (2.17b) completes the proof of (2.16).
Step 2: Prove that there exists C > 0 such that

[|ξ − η|2 + 4d(ξ, ∂Ω)d(η, ∂Ω)] ≤ C inf
x∈B(ξ,ε)

[|x− η|2 + 4d(x, ∂Ω)d(η, ∂Ω)] . (2.18)

The proof can be established in a similar manner to the proof of (2.16).
Combining (2.16) and (2.18) yields (2.15).

We can now prove

Lemma 2.4. Let φ1 be given by (2.10). Then, for all (ξ, η) ∈ Ωε × Ωε

‖∇u1(·, η)‖
L2

(
B(ξ,ε)

) ≤ Cε9/2
{ 1

|ξ − η|3
[
ε+

ε3/2

d(η, ∂Ω)3/2

]

+
1

[|ξ − η|2 + 4d(ξ, ∂Ω)d(η, ∂Ω)]3/2

}
. (2.19)

Proof. Let G : Ω× Ω → R denote the Green’s function of the Laplace operator with
homogeneous Dirichlet boundary conditions in Ω, i.e.,

G(x, ξ) = τ(x, ξ) +
1

4π|x− ξ| , (2.20)

where τ(·, ξ) is harmonic in Ω, for all ξ ∈ Ω, and satisfies τ = −1/(4π|x− ξ|) on ∂Ω.
Since (cf. [1])

1

σ − 1
φ1(x, η) =

∫

∂B(η,ε)

φ̄(ζ)
∂G

∂ν
(x, ζ) dsζ+

∫

∂B(η,ε)

φ0(ζ, η)
∂G

∂ν
(x, ζ) dsζ +

∫

∂B(η,ε)

u1(ζ, η)
∂G

∂ν
(x, ζ) dsζ ,

we may use the fact that

1

σ − 1
φ0(x, η) =

∫

∂B(η,ε)

[φ̄(η) + ζ · ∇φ̄(η) + φ0(ζ, η)]
∂

∂ν

1

4π|x− ζ| dsζ
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for all x ∈ Ω \B(η, ε), to obtain that

1

σ − 1
u1(x, η) =

∫

∂B(η,ε)

[φ̄(ζ) + φ0(ζ, η)]
∂τ

∂ν
(x, ζ) dsζ+

∫

∂B(η,ε)

[φ̄(ζ)− φ̄(η)− ζ · ∇φ̄(η)]
∂

∂ν

1

4π|x− ζ| dsζ +

∫

∂B(η,ε)

u1(ζ, η)
∂G

∂ν
(x, ζ) dsζ .

(2.21)

We now estimate the various terms on the right-hand-side of (2.21). For the first
term we have

∫

∂B(η,ε)

[φ̄(ζ) + φ0(ζ, η)]
∂τ

∂ν
(x, ζ) dsζ =

∫

∂B(η,ε)

[φ̄(ζ)− φ̄(η) + φ0(ζ, η)]
∂τ

∂ν
(x, ζ) dsζ .

Since
‖φ̄(ζ)− φ̄(η) + φ0(ζ, η)‖L∞(∂B(η,ε)) ≤ Cε ,

we obtain that

∣∣∣∇
∫

∂B(η,ε)

[φ̄(ζ) + φ0(ζ, η)]
∂τ

∂ν
(x, ζ) dsζ

∣∣∣ ≤ Cε3‖D2τ(x, ·)‖L∞(∂B(η,ε)) , (2.22)

where ‖D2τ‖(x, ξ) denotes some appropriate norm of the Hessian matrix ∇x∇ξτ . In
appendix A, we show that there exists C(Ω) such that

‖D2τ(x, ζ)‖ ≤ C

[|x− ζ|2 + 4d(x, ∂Ω)d(ζ, ∂Ω)]3/2
, (2.23)

and hence, by (2.22),

∣∣∣∇
∫

∂B(η,ε)

[φ̄(ζ) + φ0(ζ, η)]
∂τ

∂ν
(x, ζ) dsζ

∣∣∣

≤ Cε3 sup
ζ∈∂B(η,ε)

1

[|x− ζ|2 + 4d(x, ∂Ω)d(ζ, ∂Ω)]3/2
. (2.24)

For the second term on the right-hand-side of (2.21), it can be easily verified that

∣∣∣∇
∫

∂B(η,ε)

[φ̄(ζ)− φ̄(η)− ζ · ∇φ̄(η)]
∂

∂ν

1

4π|x− ζ| dsζ

∣∣∣ ≤ C
ε4

|x− ζ|3 (2.25)

Finally, we turn to estimate the third term on the right-hand-side of (2.21). Let

ū1(η) = −
∫

B(η,ε)

u1(x, η) dx
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Clearly,

∣∣∣∇
∫

∂B(η,ε)

u1(ζ, η)
∂G

∂ν
(x, ζ) dsζ

∣∣∣ =
∣∣∣∇

∫

∂B(η,ε)

(
u1(ζ, η)− ū1(η)

)∂G
∂ν

(x, ζ) dsζ

∣∣∣

≤ ‖u1 − ū1‖L2(∂B(η,ε))‖D2G‖L2(∂B(η,ε)) . (2.26)

We now argue as in [1] that

‖u1 − ū1‖L2(∂B(η,ε)) ≤ Cε1/2‖∇u1‖L2(B(η,ε))

and substitute the above into (2.26) to obtain

∣∣∣∇
∫

∂B(η,ε)

u1(ζ, η)
∂G

∂ν
(x, ζ) dsζ

∣∣∣ ≤ Cε1/2‖∇u1‖L2(B(η,ε))‖D2G‖L2(∂B(η,ε)) . (2.27)

Next, we recall from [1] that

‖D2G‖(x, ξ) ≤ C(Ω)

|x− ξ|3 .

Substituting the above together with (2.14) yields

∣∣∣∇
∫

∂B(η,ε)

u1(ζ, η)
∂G

∂ν
(x, ζ) dsζ

∣∣∣ ≤ C
ε3/2

d(x, ∂B(η, ε))3

(
ε5/2 +

ε3

d(η, ∂Ω)3/2

)
. (2.28)

Consider first the case where |ξ−η| ≥ 3ε. Substituting (2.28) together with (2.15),
(2.24), (2.25), and (2.21) yields

|∇u1(x, η)| ≤ Cε3
{ 1

|ξ − η|3
[
ε+

ε3/2

d(η, ∂Ω)3/2

]
+

1

[|ξ − η|2 + 4d(ξ, ∂Ω)d(η, ∂Ω)]3/2

}
,

from which (2.19) easily follows for |ξ − η| ≥ 3ε. For |ξ − η| < 3ε (2.19) follows
immediately from (2.14) since

1

[|ξ − η|2 + 4d(ξ, ∂Ω)d(η, ∂Ω)]3/2
≤ 1

8ε3/2d(η, ∂Ω)3/2
.

We next prove the following auxiliary estimate

Lemma 2.5. Let h : R+ → R+ denote a bounded, measurable function satisfying
h(r) = 0 for all r < 2ε. Then, for every η1 ∈ Ωε we have

∥∥∥
∫

Ωε

∇φ1(x, η2)h(|η2 − η1|) dη2

∥∥∥
L2(B(η1,ε)

≤ Cε9/2(1 + | ln d(η1, ∂Ωε)|) . (2.29)
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Proof. Step 1: Prove that
∥∥∥

∫

Ωε

∇φ0(x, η2)h(|η2 − η1|) dη2

∥∥∥
L2(B(η1,ε)

≤ Cε9/2(1 + | ln d(η1, ∂Ωε)|) . (2.30)

Clearly, by (2.11), when |x− η2| > ε we have that

∇φ0(x, η2) =
ε3

|x− η2|3∇φ̄(η2) ·
(
I − 3

(x− η2)(x− η2)

|x− η2|2
)
,

where I is the 3×3 identity matrix. We next use the fact that φ̄ is bounded in C2(Ω̄)
to obtain that for all |η2 − η1| ≥ 2ε,

∣∣∣∇φ0(x, η2)− E
∣∣∣ ≤ C

ε3

|η1 − η2|3
[
|η2 − η1|+ ε

|η2 − η1|
]
,

where

E(η2, η1) =
ε3

|η1 − η2|3∇φ̄(η1) · (I − 3e2e2) ,

and

e2 =
(η1 − η2)

|η1 − η2| .

Hence, for D = Diam Ω,
∫

Ωε

|∇φ0(x, η2)− E|h(|η2 − η1|) dη2 ≤ Cε3
∫ D

2ε

[
1 +

ε

r2

]
dr ≤ Cε3 . (2.31)

To complete the proof of (2.30) we thus compute

∫

Ωε

E h(|η2 − η1|) dη2 =

∫

B(η1,d(η1,∂Ωε)

E h(|η2 − η1|) dη2 +

∫

Ωε\B(η1,d(η1,∂Ωε))

E h(|η2 − η1|) dη2 . (2.32)

As ∫

∂B(η1,r)

(I − 3e2e2) ds = 0 ,

for all r > 0, we have for the first term on the right-hand-side of (2.32)
∫

B(η1,d(η1,∂Ωε)

E h(|η2 − η1|) dη2 = 0 . (2.33)

For the second term we have
∣∣∣
∫

Ωε\B(η1,d(η1,∂Ωε))

E h(|η2 − η1|) dη2

∣∣∣ ≤ Cε3
∫ D

d(η1,∂Ωε)

1

r
dr ≤ Cε3 ln

1

d(η1, ∂Ωε)
.
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Combining the above with (2.33), (2.32), and (2.31) yields

∣∣∣
∫

Ωε

∇φ0(x, η2)h(|η2 − η1|) dη2

∣∣∣ ≤ Cε3 ln
1

d(η1, ∂Ωε)
,

from which (2.30) readily follows.
Step 2: Prove that

∥∥∥
∫

Ωε

∇u1(x, η2)h(|η2 − η1|) dη2‖L2(B(η1,ε) ≤ Cε9/2(1 + | ln d(η1, ∂Ω)|) (2.34)

By Minkowsky inequality we have

∥∥∥
∫

Ωε

∇u1(·, η2)h(|η2 − η1|) dη2‖L2(B(η1,ε) ≤
∫

Ωε

‖∇u1(·, η2)‖L2(B(η1,ε)h(|η2 − η1|) dη2 .

Using (2.19) we then obtain

∥∥∥
∫

Ωε

∇u1(·, η2)h(|η2 − η1|) dη2

∥∥∥
L2(B(η1,ε)

≤ Cε9/2×
∫

Ωε

{ 1

|η1 − η2|3
[
ε+

ε3/2

d(η2, ∂Ω)3/2

]
+

1

[|η1 − η2|2 + 4d(η1, ∂Ω)d(η2, ∂Ω)]3/2

}
h(|η2−η1|)dη2 .

(2.35)

We next estimate the contribution of each term in the integrand on the right-hand-
side of (2.35). For the first term we have

∫

Ωε

ε

|η1 − η2|3h(|η2 − η1|) dη2 ≤ Cε ln ε−1 . (2.36)

Let δ > 0 be independent of ε. Clearly,

∫

Ωδ

1

|η1 − η2|3
ε3/2

d(η2, ∂Ω)3/2
h(|η2 − η1|) dη2 ≤ C(δ)ε3/2 ln ε−1 (2.37)

Let
D = {(x, y, z) ∈ R3 | ε ≤ z ≤ d ∩ x2 + y2 + [z − d(η1, ∂Ω)]2 ≥ 4ε2}

By choosing a curvilinear coordinates (which can be set for sufficiently small δ), one
can show that

∫

Ωε\Ωδ

1

|η1 − η2|3
ε3/2

d(η2, ∂Ω)3/2
h(|η2 − η1|) dη2 ≤

Cε3/2

∫

D

z−3/2 dx dy dz

[x2 + y2 + (z − d(η1, ∂Ω))2]3/2
.

13



Moving to the cylindrical coordinate r = (x2 + y2)1/2, and then substituting s =
r2 + (z − d(η1, ∂Ω))2 yields

∫

Ωε\Ωδ

1

|η1 − η2|3
ε3/2

d(η2, ∂Ω)3/2
h(|η2 − η1|)dη2 dη2 ≤

C

∫ ∞

ε

ε3/2dz

z3/2

∫ ∞

max(4ε2,(z−d(η1,∂Ω))2)

ds

s3/2
≤ C .

Combining the above with (2.37) gives
∫

Ωε

1

|η1 − η2|3
ε3/2

d(η2, ∂Ω)3/2
h(|η2 − η1|) dη2 ≤ C (2.38)

Finally, for the third term we have
∫

Ωδ

1

[|η1 − η2|2 + 4d(η1, ∂Ω)d(η2, ∂Ω)]3/2

}
h(|η2−η1|)dη2 ≤

∫

Ωδ

1

[|η1 − η2|2 + 4d(η1, ∂Ω)δ]3/2

}
h(|η2−η1|)dη2 ,

and since for all η2 ∈ Ωδ we have

|η1 − η2|2 + 4d(η1, ∂Ω)δ ≥ [δ − d(η1, ∂Ω)]2 + 4d(η1, ∂Ω)δ = [δ + d(η1, ∂Ω)]2 ,

we readily obtain that
∫

Ωδ

1

[|η1 − η2|2 + 4d(η1, ∂Ω)d(η2, ∂Ω)]3/2

}
h(|η2 − η1|)dη2 ≤ C(δ) . (2.39)

As above we obtain once again that
∫

Ωε\Ωδ

1

[|η1 − η2|2 + 4d(η1, ∂Ω)d(η2, ∂Ω)]3/2

}
h(|η2 − η1|)dη2 ≤

C

∫

D

dx dy dz

[x2 + y2 + (z − d(η1, ∂Ω))2 + 4zd(η1, ∂Ω)]3/2
≤

C

∫ D

ε

dz

∫ ∞

(z+d(η1,∂Ω))2

ds

s3/2
≤ C(1 + | ln d(η1, ∂Ω)|) .

Combining the above with (2.38) and (2.36), yields (2.34), and by (2.12) also (2.29).

3 Asymptotic independence

Let u, v ∈ L2(Ω,R3) and let S ⊂ Ω. Set

〈u, v〉S =

∫

S

u · v dx . (3.1)
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In this section we employ (1.7) to derive an improved bound on Ef

(〈∇φ1(·, η2),∇φ1(·, η3)〉B(η1,ε)

)
.

In [1] we have obtained

|Ef

(〈∇φ1(·, η2),∇φ1(·, η3)〉B(η1,ε)

)| ≤ Cε9 ln2 1

ε
.

Using (1.7) we shall be able to drop the logarithmic term from the right-hand-side.
We begin by repeating (1.7) once again,

f3(η2, η3/η1) = f̃2(η2/η1)f̃2(η3/η1) + g(η1, η2, η3) , (3.2a)

in which g satisfies

g(η1, η2, η3) =





−f̃2(η2/η1)f̃2(η3/η1) |η2 − η3| ≤ 2ε

0 |η2 − η1| ≤ 2ε

0 |η3 − η1| ≤ 2ε .

(3.2b)

Furthermore

|g| ≤ Cα
εα

|η2 − η3|α , (3.2c)

for some α > 0. Finally, we have that

f̃2(η2/η1) = C̃f2(η2/η1) , (3.2d)

where by (3.2c) the normalization constant C̃ must satisfy (assuming α 6= 3)

|C̃ − 1| ≤ Cεmin(α,3) . (3.2e)

We assume further that

f̃2(η2/η1) = h1(|η2 − η1|)h2(η2) , (3.2f)

where h1 : R+ → R+ is bounded, measurable and satisfies h1(x) = 0 for all x ≤ 2ε,
and h2 ∈ Lip(Ωε,R+) has a global Lipschitz norm L which is independent of N and
ε, and satisfies h2(x) = 0 for all x ∈ Ω \ Ωε.

We continue by proving the following auxiliary lemma

Lemma 3.1. Let (η1, η2) ∈ Ω2, ε > 0, and α > 0. Then, there exists C > 0,
independent of η1, η2, and ε, such that

∫

Ω\[B(η1,2ε)∪B(η2,2ε)

εα

|η3 − η1|3|η2 − η3|α dη3 ≤ C
εα

|η2 − η1|α
[
1 + ln

|η2 − η1|
ε

]
. (3.3)
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Proof. Let

Ω1(η1, η2) = { η3 ∈ Ω | (η3 − η1) · (η1 − η2) ≥ −|η1 − η2|2/4 } .
It can be easily verified that for every η3 ∈ Ω1 we have

|η3 − η2|2 ≥ |η3 − η1|2 +
1

2
|η1 − η2|2 .

Hence (recall that D = Diam Ω)

∫

Ω1\B(η1,2ε)

εα

|η3 − η1|3|η2 − η3|α dη3 ≤
∫

Ω\B(η1,2ε)

εα

|η3 − η1|3
[
|η1 − η3|2 + 1

2
|η2 − η1|2

]α/2
dη3 ≤

C

∫ D

ε

εα dr

r1+α + r|η2 − η1|α ≤
∫ |η1−η2|

ε

εα dr

r|η2 − η1|α +

∫ D

|η1−η2|

εα dr

r1+α
,

from which we obtain that
∫

Ω1\B(η1,2ε)

εα

|η3 − η1|3|η2 − η3|α dη3 ≤ C
εα

|η2 − η1|α
[
1 + ln

|η2 − η1|
ε

]
. (3.4)

Next, define

Ω2(η1, η2) = { η3 ∈ Ω | (η3 − η2) · (η2 − η1) ≥ −|η1 − η2|2/4 } .
In a similar manner to (3.4) we then show

∫

Ω2\B(η2,2ε)

εα

|η3 − η1|3|η2 − η3|α dη3 ≤
∫

Ω\B(η2,2ε)

εα

|η3 − η2|α
[
|η3 − η2|2 + 1

2
|η2 − η1|2

]3/2
dη3 ≤

C

∫ D

ε

εαr2 dr

r3+α + rα|η2 − η1|3 ≤ C
εα

|η2 − η1|α
[
1 + ln

|η2 − η1|
ε

]
. (3.5)

Finally, let Ω3 = Ω \ (Ω1 ∪ Ω2). As can be easily verified we have for all η3 ∈ Ω3

1

4
|η2 − η1| ≤ min(|η3 − η1|, |η3 − η2|) , .

Hence, ∫

Ω3

εα

|η3 − η1|3|η2 − η3|α dη3 ≤ C
εα

|η2 − η1|α
∫

Ω3

1

|η3 − η1|3 dη3 (3.6)
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Let

η
‖
3 = (η3 − η1) · η2 − η1

|η2 − η1| ; η⊥3 = (η3 − η1)− η
‖
3

Since for all η3 ∈ Ω3 we have

1

4
|η2 − η1| ≤ η

‖
3 ≤

3

4
|η2 − η1| ,

we obtain that
∫

Ω3

1

|η3 − η1|3 dη3 ≤
∫

Ω3

1

[|η‖3|2 + |η⊥3 |2]3/2
dη3 ≤

∫ 3|η1−η2|/4

|η1−η2|/4

dη
‖
3

∫

R2

1

[|η2 − η1|2 + |η⊥3 |2]3/2
dη⊥3 ≤

C|η2 − η1|
∫

R2

1

[|η2 − η1|2 + |η⊥3 |2]3/2
dη⊥3 ≤ C .

Combining the above with (3.6) yields
∫

Ω3

εα

|η3 − η1|3|η2 − η3|α dη3 ≤ C
εα

|η2 − η1|α ,

which together with (3.5) and (3.4) yields (3.3).

We now prove

Lemma 3.2. There exists C > 0, independent of N and ε, such that
∣∣Ef

(〈∇φ1(·, η2),∇φ1(·, η3)〉B(η1,ε)

)∣∣ ≤ Cε9 . (3.7)

Proof. It can be easily verified that

J = Ef

(〈∇φ1(·, η2),∇φ1(·, η3)〉B(η1,ε)

)
=∫

Ω3

∫

B(η1,ε)

∇φ1(x, η2) · ∇φ1(x, η3) dx f3(η1, η2, η3) dη1dη2dη3

Equivalently we can write

J =

∫

Ω

f1(η1)

∫

B(η1,ε)

∫

Ω2

∇φ1(x, η2) · ∇φ1(x, η3) f3(η2, η3/η1)dη2dη3 dx dη1 .

We then use (3.2a) to obtain that

J =

∫

Ω

f1(η1)‖∇Φ‖2
L2(B(η1,ε) dη1+

∫

Ω

f1(η1)

∫

Ω2

〈∇φ1(·, η2),∇φ1(·, η3)〉B(η1,ε) g(η1, η2, η3) dη2dη3 dη1 . (3.8)
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where

Φ(x, η1) =

∫

Ω

φ1(x, η2)f̃2(η2/η1) dη2 .

Next, we use (3.2f) to obtain that

∇Φ =

∫

Ω

∇φ1(x, η2)h1(|η2 − η1|)h2(η2) dη2 .

Hence,

|∇Φ(x, η2)| ≤ h2(η1)

∫

Ωε

∇φ1(x, η2)h1(|η2−η1|) dη2+L

∫

Ωε

|∇φ1(x, η2)|h1(|η2−η1|)|η2−η1| dη2 .

(3.9)
For the first term on the right-hand-side we have by (2.29) that

∥∥∥h2(η1)

∫

Ωε

∇φ1(x, η2)h1(|η2 − η1|) dη2

∥∥∥
L2(B(η1,ε)

≤ Cε9/2(1 + | ln d(η1, ∂Ωε)|) . (3.10)

For the second term on the right-hand-side of (3.9) we have by (2.13) and Minkowsky
inequality

∥∥∥L
∫

Ωε

|∇φ1(x, η2)|h1(|η2−η1|)|η2−η1| dη2

∥∥∥
L2(B(η1,ε)

≤ C

∫

Ωε\B(η1,2ε)

ε9/2

|η2 − η1|2 dη2 ≤ Cε9/2 .

Combining the above with (3.10) then yields

∫

Ω

f1(η1)‖∇Φ‖2
L2(B(η1,ε) dη1 ≤ Cε9

∫

Ωε

(1 + | ln d(η1, ∂Ωε)|)2 dη1 ≤ Cε9 . (3.11)

We next estimate the second term on the right-hand-side of (3.8). With the aid
of (3.2b,c), and the fact that g = 0 whenever η3 ∈ B(η1, ε), we conclude that

∫

Ω

f1(η1)

∫

Ω2

〈∇φ1(·, η2),∇φ1(·, η3)〉B(η1,ε) g(η1, η2, η3) dη2dη3 dη1

≤ C

∫

Ω

f1(η1)

∫

Ω\B(η1,2ε)

‖∇φ1(·, η2)‖L2(B(η1,ε))

·
[ ∫

Ω\[B(η1,2ε)∪B(η2,2ε)]

‖∇φ1(·, η3)‖L2(B(η1,ε))

εα

|η2 − η3|α dη3+

C

∫

B(η2,2ε)\B(η1,2ε)

‖∇φ1(·, η3)‖L2(B(η1,ε)) dη3

]
dη2 dη1 .
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Next, we use (2.13) and (3.2b) to obtain

∫

Ω

f1(η1)

∫

Ω2

〈∇φ1(·, η2),∇φ1(·, η3)〉B(η1,ε) g(η1, η2, η3) dη2dη3 dη1 ≤

C

∫

Ω

∫

Ω\B(η1,2ε)

[ ∫

Ω\[B(η1,2ε)∪B(η2,2ε)]

ε9+α

|η2 − η1|3|η3 − η1|3|η2 − η3|α dη3+

∫

B(η2,2ε)\B(η1,2ε)

ε9

|η2 − η1|3|η3 − η1|3 dη3

]
dη2 dη1 . (3.12)

Clearly, as |η3 − η1| ≥ |η2 − η1|/2 for all η3 ∈ B(η2, 2ε) \B(η1, 2ε),
∫

B(η2,2ε)\B(η1,2ε)

1

|η2 − η1|3|η3 − η1|3 dη3 ≤ C
ε3

|η2 − η1|6 .

Substituting the above, together with (3.3) into (3.12) yields

∫

Ω

f1(η1)

∫

Ω2

〈∇φ1(·, η2),∇φ1(·, η3)〉B(η1,ε) g(η1, η2, η3) dη2dη3 dη1 ≤

C

∫

Ω

∫

Ω\B(η1,2ε)

[ ε9+α

|η2 − η1|3+α

(
1 + ln

|η2 − η1|
ε

)
+

ε12

|η2 − η1|6
]
dη2 dη1 ≤ Cε9 .

The above, together with (3.11) yields (3.7).

4 W 1,p estimates

Let φ denote a weak solution of (3.2). We first represent φ in the following manner

φ(x, η1, . . . , ηN) = φ̄(x) +
N∑

i=1

φ1(x, ηi) + u , (4.1)

in which φ1 is defined by (2.10). We first derive a boundary value problem for u.
Clearly,

a(x, η1, . . . , ηN) = 1 +
N∑

n=1

[a1(x, ηn)− 1] .

Hence, by (2.9), (2.8), and (2.10)

−∇ · (a∇φ̄) = −
N∑

n=1

∇ · ([a1(x, ηn)− 1]∇φ̄)

= −
N∑

n=1

∇ · (a1(x, ηn)∇φ̄) =
N∑

n=1

∇ · (a1(x, ηn)∇φ1(x, ηn)
)
.
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It follows that

−∇ ·
(
a
[
∇φ̄+

N∑
i=1

∇φ1(x, ηi)
])

=
N∑

n=1

∇ · ([a− a1(x, ηn)
]∇φ1(x, ηn)

)
, (4.2)

and as

a− a1(x, ηi) =
N∑

j=1
j 6=i

[a1(x, ηj)− 1] ,

we obtain that

−∇ · (a∇u) =
N∑

i,j=1
j 6=i

∇ · ([a1(x, ηi)− 1]∇φ1(x, ηj)
)

(4.3)

We now prove

Proposition 4.1. Under the assumptions of Theorem 1 there exists C(p, σ,Ω) > 0
such that for all 1 < p < 2 we have

Ef

(
‖∇u‖p

)
≤ Cβ̄

p+1
p
− 1

2 . (4.4)

Proof. Let

f =
N∑

i,j=1
j 6=i

[a1(x, ηi)− 1]∇φ1(x, ηj) .

By (2.7) we have, for all 1 < p < 2,

‖∇u‖p ≤ Cp

[
‖a− 1‖ 2p

2−p
‖f‖2 + ‖f‖p

]
, .

Thus,

Ef (‖∇u‖p) ≤ CpEf

(
|σ − 1|β̄ 1

p
− 1

2‖f‖2 + ‖f‖p

)
(4.5)

By Jensen’s inequality we have that

Ef

(
‖f‖p

)
≤ [
Ef (‖f‖p

p)
]1/p

. (4.6)

Since, with probability 1,

∥∥∥
N∑

i,j=1
j 6=i

[a1(x, ηi)− 1]∇φ1(x, ηj)
∥∥∥

p

p
=

N∑
i=1

∥∥∥
N∑

j=1
j 6=i

[a1(x, ηi)− 1]∇φ1(x, ηj)
∥∥∥

p

p
,
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it follows that

Ef

(
‖f‖p

p

)
≤ N |σ − 1|Ef

(∥∥∥
N∑

i=2

∇φ1(x, ηi)
∥∥∥

p

Lp(B(η1,ε))

)
. (4.7)

We now observe that

∥∥∥
N∑

i=2

∇φ1(x, ηi)
∥∥∥

Lp(B(η1,ε))
≤ Cε

3
p
(1−p/2)

∥∥∥
N∑

i=2

∇φ1(x, ηi)
∥∥∥

L2(B(η1,ε)
,

and hence, by (4.7),

Ef

(
‖f‖p

p

)
≤ CNε3(1−p/2)Ef

(∥∥∥
N∑

i=2

∇φ1(x, ηi)
∥∥∥

p/2

L2(B(η1,ε)

)
.

In view of (4.6) we then have

Ef

(
‖f‖p

)
≤ CN

1
p ε3

(
1
p
− 1

2

)
Ef

(∥∥∥
N∑

i=2

∇φ1(x, ηi)
∥∥∥

p/2

L2(B(η1,ε)

) 1
p
.

Applying Jensen’s inequality once again yields

Ef

(∥∥∥
N∑

i=2

∇φ1(x, ηi)
∥∥∥

p/2

L2(B(η1,ε)

) 1
p ≤ Ef

(∥∥∥
N∑

i=2

∇φ1(x, ηi)
∥∥∥

2

L2(B(η1,ε)

) 1
2
,

and hence

Ef

(
‖f‖p

)
≤ CN

1
p ε3

(
1
p
− 1

2

)
Ef

(∥∥∥
N∑

i=2

∇φ1(x, ηi)
∥∥∥

2

L2(B(η1,ε)

) 1
2
. (4.8)

Next we write

∥∥∥
N∑

i=2

∇φ1(·, ηi)‖2
L2(B(η1,ε) =

N∑
i=2

∥∥∥∇φ1(·, ηi)‖2
L2(B(η1,ε)+

N∑
i,j=2
i6=j

〈∇φ1(·, ηi),∇φ1(·, ηj)〉B(η1,ε) ,

where the definition of 〈·, ·〉B(η1,ε) is given in (3.1). Consequently, we have

Ef

(∥∥∥
N∑

i=2

∇φ1(·, ηi)‖2
L2(B(η1,ε)

)
= (N − 1)Ef

(‖∇φ1(·, η2)‖2
L2(B(η1,ε))

)

+ (N − 1)(N − 2)Ef

(〈∇φ1(·, η2),∇φ1(·, η3)〉B(η1,ε)

)
. (4.9)
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We now estimate each term on the right-hand-side of (4.9). For the first term we use
(2.13) to establish that

(N − 1)Ef

(‖∇φ1(·, η2)‖2
L2(B(η1,ε))

) ≤

CN

∫

Ω×Ω\B(η1,ε)

ε9

|η2 − η1|6 dη2 dη1 ≤ C

N
β̄2 . (4.10)

For the second term we use (3.7) to obtain that

(N − 1)(N − 2)Ef

(〈∇φ1(·, η2),∇φ1(·, η3)〉B(η1,ε)

) ≤ C

N
β̄3 .

Substituting the above together with (4.10) and (4.9) into (4.8) yields

Ef

(
‖f‖p

)
≤ CN

1
p ε3

(
1
p
− 1

2

)
1

N1/2
β̄ ≤ Cβ̄

p+1
p
− 1

2 . (4.11)

As (4.11) is valid for any 1 < p ≤ 2 we may conclude that

Ef

(
‖f‖2

)
≤ Cβ̄ .

Substituting the above together with (4.11) into (4.5) yields (4.4).

Proof of Theorem 1. We recall from [1] that

NEf (φ1) +
3(σ − 1)

2 + σ
∆−1

(∇ · (β∇φ̄)
)

= NEf (φ1,2) , (4.12)

where φ1,2 satisfies

{
−∆φ1,2 = σ−1

2+σ
∇ · ([a1(x, η)− 1][∇φ̄(x)−∇φ̄(η)]

)
+∇ · ([a1(x, η)− 1]∇u1(x, η)

)
in Ω ,

φ1,2 = 0 on ∂Ω ,

and ∆−1 denotes the inverse Dirichlet Laplacian. Upon taking the average of the
above equation, we use (2.2) to obtain that for any 1 < p ≤ 2 we have

‖∇Ef (φ1,2)‖p ≤ C
[‖Ef ([a1(·, η)−1][∇φ̄(·)−∇φ̄(η)])‖p+‖Ef ([a1(·, η)−1]∇u1(·, η))‖p

]
.

(4.13)
As in [1] we can show that

‖Ef ([a1(·, η)− 1][∇φ̄(·)−∇φ̄(η)])‖p ≤ Cε4 ,

and that
‖Ef ([a1(·, η)− 1]∇u1(·, η))‖p ≤ Cε7/2 .
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Substituting the above into (4.13) and (4.12) then yields, with the aid of Poincare
inequality

‖NEfb(φ1) +
3(σ − 1)

2 + σ
∆−1

(∇ · (β∇φ̄)
)‖1,p ≤ Cε1/2β̄ . (4.14)

By (4.1) and (4.4) in conjunction with Minkowsky inequality we have that

‖Ef (φ)− φ̄−NE(φ1)‖1,p ≤ Cβ̄
p+1

p
− 1

2 .

With the aid of (4.14) we then obtain

‖Ef (φ)− φ̄− 3(σ − 1)

2 + σ
∆−1

(∇ · (β∇φ̄)
)‖1,p ≤ C

(
β̄

p+1
p
− 1

2 + ε1/2β̄
)
.

Hence, by (1.9) we have

‖Ef (φ)− φ̄− 3(σ − 1)

2 + σ
∆−1

(∇ · (β∇φ̄)
)‖1,p ≤ Cβ̄

p+1
p
− 1

2 . (4.15)

Let φe denote the solution of (1.13). In [1] we showed that

‖φe − φ̄+
3(σ − 1)

2 + σ
∆−1

(∇ · (β∇φ̄)
)‖1,2 ≤ Cβ̄2 .

Hölder inequality readily yields for all 1 < p < 2

‖φe − φ̄+
3(σ − 1)

2 + σ
∆−1

(∇ · (β∇φ̄)
)‖1,p ≤ Cβ̄2 .

Combining the above with (4.15) yields (1.15).
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A Proof of (2.23)

Let Ω ⊂ R3 be bounded with smooth boundary ∂Ω ∈ C2,α for some α > 0. For some
ε > 0, let Ωε be defined by (1.11). Let δ0 > 0 be sufficiently small so that for every
y ∈ Ω \Ωδ0 there exists a unique point ȳ ∈ ∂Ω so that d(y, ∂Ω) = |y− ȳ|. Denote the
reflection of y with respect to ȳ by y∗. We begin by the following elementary lemma
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Lemma A.1. There exists C > 0 depending only on Ω such that

sup
(x,y)∈Ω×(Ω\Ωδ0

)

1

|x− y∗| ≤
C

[|x− ξ|2 + 4d(x, ∂Ω)d(ξ, ∂Ω)]1/2
. (A.1)

Proof. Let y ∈ Ω \ Ωδ0 . We set the origin of a coordinate system at its projection
on ∂Ω, i.e., ȳ = (0, 0, 0). We further set y = (0, 0, d) and hence for the reflection
point we have y∗ = (0, 0,−d). Let x = (x1, x2, x3) ∈ Ω \ Ωδ0 , and let r = |x − y|
and r∗ = |x− y∗|. We next describe the boundary ∂Ω by the explicit representation
z = z(x1, x2), which is possible, in some neighborhood of ȳ, if we choose δ0 small
enough. By the smoothness of ∂Ω there exists C0(Ω) such that

|z| ≤ C0(x
2
1 + x2

2) x2
1 + x2

2 ≤ δ2
0 , (A.2)

which can again be guaranteed by choosing δ0 to be sufficiently small.
Suppose first that x2

1 + x2
2 ≤ δ2

0. Clearly,

|r∗|2 = r2 + 4dx3 .

Since dx = d(x, ∂Ω) ≤ x3 − z, we have by (A.2) that

|r∗|2 = r2 + 4dx3 ≥ r2 + 4dxd− 4d|z| ≥ r2 + 4dxd− 4δ0(x
2
1 + x2

2) .

Using the fact that r2 ≥ x2
1 + x2

2 we easily obtain (A.2) for sufficiently small δ0.
If x2

1 + x2
2 ≥ δ2

0 then |r∗|2 ≥ δ2
0. Since for some C(Ω),

sup
(x,y)∈Ω2

|x− y|2 + 4d(x, ∂Ω)d(y, ∂Ω) ≤ C2 ,

we have that

|r∗| ≥ δ0
C

[|x− y|2 + 4d(x, ∂Ω)d(y, ∂Ω)]1/2 ,

from which (A.2) easily follows.

Proof of (2.23). step 1: We first prove that

|τ(x, y)| ≤ C(Ω)

[|x− y|2 + 4d(x, ∂Ω)d(y, ∂Ω)]1/2| ∀(x, y) ∈ Ω2 . (A.3)

Let τ be given by (2.20). In [1] we show that

‖τ(·, y)‖∞ ≤ 1

4πd(y, ∂Ω)
. (A.4)

Consequently, there exists C(Ω) such that for all (x, y) ∈ Ω× Ωδ0

|τ(x, y)| ≤ 1

4πδ0
≤ C(Ω)

[|x− y|2 + 4d(x, ∂Ω)d(y, ∂Ω)]1/2
. (A.5)
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Suppose that y ∈ Ω \ Ωδ0 . Set then

τ(x, y) = h(x, y)− 1

4π|x− y∗| .

In [1] we show that
sup

y∈Ω\Ωδ0

‖h(·, y)‖∞ ≤ C ,

and hence, for all y ∈ Ω \ Ωδ0 we have

h(x, y) ≤ C ≤ C

[|x− y|2 + 4d(x, ∂Ω)d(y, ∂Ω)]1/2

Combining the above with (A.5) yields (A.3).
Step 2: We next show that

|∇yτ(x, y)| ≤ C(Ω)

[|x− y|2 + 4d(x, ∂Ω)d(y, ∂Ω)]
(A.6)

Suppose first that y ∈ Ω \ Ωδ0 . In this case we have by Theorem 6.6 in [6]

‖∇xτ(·, y)‖∞ ≤ C

δ2
0

. (A.7)

Next, let y ∈ Ωδ0 . In this case we distinguish again between three different cases

1. 2d(x, ∂Ω) ≥ δ0

2. δ0 ≥ 2d(x, ∂Ω) > |x− y∗| ,
3. 2d(x, ∂Ω) ≤ min(δ0, |x− y∗|) .

In case 1 we prove in the same manner as in the proof of (A.7) that for some C(δ0,Ω)
we have

|∇xτ(x, y)| ≤ C

δ2
0

∀x ∈ Ω \ Ωδ0/2 . (A.8)

In case 2 we use the fact that τ is harmonic in B(x, |x− y∗|/2) to obtain with the aid
of Theorem 4.8 that

|∇xτ(x, y)| ≤ C

|x− y∗|‖τ(·, y)‖L∞(B(x,|x−y∗|/2) ≤ C

|x− y∗|2 . (A.9)

In case 3 we denote by x̄ the projection of x on ∂Ω. Set further δ1 = 2d(x, ∂Ω) < δ0.
Let D = B(x̄, δ1)∩Ω. Then, since τ is harmonic in D we obtain by Lemma 6.5 in [6]
that there exists C > 0, independent of ξ, such that

|∇xτ(x, y)| ≤ C

d(x, ∂D \ ∂Ω)
‖τ(·, y)‖L∞(D) ≤ C

|x− y∗|2 .
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Combining the above, (A.9), and (A.7) yields

sup
(x,y)∈Ω×Ω

∣∣ |x− y∗|2∇xτ(x, y)
∣∣ ≤ C .

The symmetry of τ then yields (A.6).
Step 3: We complete the proof of (2.23) as in [1].
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