
The loss of stability of surface superconductivity

Y. ALMOG ∗

Abstract

The Ginzburg-Landau equations in a half-plane are considered in the large κ limit.

We look at the reduced set of equations obtained in that limit. It is proved that the

one-dimensional solution presented by Pan [22] undergoes a bifurcation for an infinite

number of applied magnetic field values which are lower than HC2 . We also prove

that each bifurcating mode is energetically preferable to the one-dimensional surface

superconductivity solution, and thus, prove that the surface superconductivity becomes

unstable for applied fields which are lower than HC2

1 Introduction

Consider a planar superconducting body which is placed at a sufficiently low temperature

(below the critical one) under the action of an applied magnetic field . Its energy is given

by the Ginzburg-Landau energy functional which can be represented in the following dimen-
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sionless form [10]

E =

∫
Ω

(
−|Ψ|2 +

|Ψ|4

2
+ |h− hex|2 +

∣∣∣∣ iκ∇Ψ + AΨ

∣∣∣∣2
)
dx1dx2 (1.1)

in which Ψ is the (complex) superconducting order parameter, such that |Ψ| varies from

|Ψ| = 0 (when the material is at a normal state) to |Ψ| = 1 (for the purely superconducting

state). The magnetic vector potential is denoted by A (the magnetic field is, then, given

by h = ∇ × A), hex is the constant applied magnetic field, and κ is the Ginzburg-Landau

parameter which is a material property. Superconductors for which κ < 1/
√

2 are called

type I superconductors, and those for which κ > 1/
√

2 are called type II. Ω is a connected

domain of superconductor, whose Gibbs free energy is given by E. Note that E is invariant

to the gauge transformation

Ψ → eiκηΨ ; A→ A+∇η . (1.2)

where η is any smooth function.

For sufficiently large magnetic fields it is well known, both from experimental observations

[21] and both from theoretical predictions [15], that superconductivity is destroyed and the

material must be in the normal state. If the applied magnetic field is then decreased there

is a critical field where the material enters the superconducting phase once again. This field

is called “the onset field” and is denoted by HC3 .

It is well-known that at the bifurcation from the normal state, superconductivity remains

concentrated near the boundary. Alternatively we can say that Ψ decays exponentially fast

away from the boundaries as either κ or the size of Ω tend to infinity, which is the reason
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why the phenomenon has been termed surface superconductivity. This result has first been

obtained for a half-plane [24], then also for disks [6], and for general smooth domains in R2

[7, 20, 13, 17]. It was extended later to weakly non-linear cases in the large κ limit [18].

In the absence of boundaries the critical field at which superconductivity nucleates is

denoted by HC2 and is smaller than HC3 (HC3 ≈ 1.7κ whereas HC2 = κ). Furthermore,

the bifurcating modes are periodic lattices, named after Abrikosov [2, 9, 4] which have been

observed experimentally [14]. It has been conjectured, therefore, by Rubinstein [23] that

superconductivity remains concentrated near the boundary for HC2 < hex < HC3 . When

hex ≈ HC2 (either for κ large or for large domains) a bifurcation of Abrikosov’s lattices far

away from the wall was conjectured [23].

Recently, it has been proved both in the large κ limit [22, 3], and in the large domain

limit [5] that as long as HC2 < hex < HC3 superconductivity remains concentrated near

the boundaries. From a different direction, Sandier and Serfaty [25] showed for the global

minimizer of (1.1) that as hex → HC2 from below and κ → ∞, superconductivity vanishes

in the domain’s interior, away from the boundaries.

Despite the above-mentioned progress the transition from the surface superconductivity

solution to the mixed state, where Abrikosov’s lattices appear in the bulk of the material,

has not been clarified yet. In particular, if the applied magnetic field is decreased below HC2

it has not been proved yet that:

1. The surface superconductivity solution becomes unstable, i.e., it is not a local mini-

mizer of E for hex < HC2 .
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2. The bifurcating mode is indeed the global minimizer and has to be periodic.

In the present contribution we prove, in the large κ limit, for a domain wall, that the

surface superconductivity solution in a half-plane is not a local minimizer of E for hex < HC2 ,

and hence cannot be stable. To this end we assume, just like Pan [22] did, that the global

minimizer is essentially one-dimensional in the boundary layer. In addition to the instability

proof, we find the bifurcating modes and show, by an heuristic argument, that when properly

superposed, Abrikosov’s lattices can be formed. However, since linear superposition of modes

is impossible, in view of the equation’s non-linearity, further research is necessary in that

direction.

The Euler-Lagrange equations associated with (1.1), known as the steady state Ginzburg-

Landau equations, are given in the form

(
i

κ
∇+ A

)2

Ψ = Ψ
(
1− |Ψ|2

)
, (1.3a)

−∇×∇× A =
i

2κ
(Ψ∗∇Ψ−Ψ∇Ψ∗) + |Ψ|2A , (1.3b)

and the natural boundary conditions by

(
i

κ
∇+ A

)
Ψ · n̂ = 0 ; h = hex . (1.4a,b)

In [22, 3] it is proved that as κ→∞, hex − κ� 1/κ we have, near the boundary

Ψ(x0 + ξ/κ) −−−→
κ→∞

ψ(ξ) pointwise

where x0 ∈ ∂Ω, ξ ∈ R2
+,

R2
+ = {(x1, x2) ; x1 > 0}
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and ψ must satisfy

(
i∇+ x1î2

)2

ψ = λψ
(
1− |ψ|2

)
in R2

+ (1.5a)

∂ψ

∂x1

= 0 on ∂R2
+ (1.5b)

where

λ =
κ

hex

.

Let

H =
{
u ∈ H1(z,∞) | xu ∈ L2(z,∞)

}
, (1.6)

where z is a real number, and let

β(z) = inf
φ∈H

∫∞
z
|φ′|2 + x2|φ|2∫∞

z
|φ|2

. (1.7)

The dependence of β on z has been studied in [8] and [19] afterward. In particular, it has

been proved that there exist z1(λ) and z2(λ) such that λ > β(z) if and only if z1 < z < z2,

and that z2(1) = 0 and z1(1) = −∞ It is also proved in [20] that

β0 = inf
z∈R

β(z) = lim
κ→∞

κ

HC3

≈ 0.59.

The same result was also proved in [13].

Pan [22] conjectured that any bounded solution of (1.5a) for β0 < λ ≤ 1 must be in the

form

ψ = ei(ω0x2+c)f(x1) (1.8)

where ω0 is a real number and f(x1, λ) satisfies in R+

−f ′′ + (x− ω0)
2f = λf(1− f 2) ; f ′(0) = 0. (1.9)
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In [22] it is proved that if β(−ω0) < λ ≤ 1 and

−z2 < ω0 < −z1

then there exists a solution for (1.9). Furthermore, it is proved in [22] the

f(x) ∼ x−
1−λ

2 e−
1
2
x2

as x→∞ (1.10)

The discussion in [22] was limited to the case λ ≤ 1, since this is the regime where the surface

superconductivity solution is expected to be the global minimizer of E. Nevertheless, it is

not difficult to show that the above existence result and (1.10) still hold when λ > 1 for any

ω0 ≥ 0. We bring the proof in appendix A.

Weaker conjectures can be made instead of assuming that (1.8) is the unique class of

bounded solutions of (1.5a). Consider the energy functional

E(ψ) =

∫
R2

+

|
(
i∇+ x1î2

)
ψ|2 + λ

(
1

2
|ψ|4 − |ψ|2

)
, (1.11)

where î2 is a unit vector in the x2 direction, and let

H1
mag(Ω) =

{
φ ∈ L2(Ω) | ∂x1φ ∈ L2 , ∂x2φ+ ix1φ ∈ L2

}
(1.12)

It is well-known [22] that when λ > β0 we have

inf
φ∈H1

mag(R2
+)

E(φ) = −∞

We therefore modify the definition of H1
mag so it would guarantee the existence of a global

minimizer to E in the modified space. We thus apply the transformation

x1 → x1 − ω0 ; ψ → e−iω0x2ψ
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to obtain

E(ψ) =

∫ ∞

−ω0

dx1

∫
R
dx2

{
|
(
i∇+ x1î2

)
ψ|2 + λ

(
1

2
|ψ|4 − |ψ|2

)}
, (1.13)

and define the space

Pω0
L =

{
φ ∈ H1

mag([−ω0,∞)× R) | φ(x1, x2 + L) = φ(x1, x2)
}
. (1.14)

We can now conjecture, just like Pan [22] did, that

ψ = f(x1, λ)

is the global minimizer of E in Pω0
L , for every L > 0 and ω0 ≥ 0.

We note that Pan [22] studied the same problem for λ > 1 and found that the global

minimizer of (1.11) in Pω0
L decays exponentially fast away from the wall. Moreover, it is

proved in [22] that the global minimizer of (1.1) in a smooth bounded domain must tend,

as κ→∞, to a periodic solution whose period is of O(κ).

Periodic solutions have already been studied in the absence of boundaries [2, 9, 4]. Peri-

odicity was imposed in those works in both the x1 and the x2 directions. In this work we add

the effect of a planar wall: we impose periodicity only in the direction which is parallel to

the wall, whereas away from the wall we expect the solution to decay. This problem, which

is still much simpler than the determination of the global minimizer of (1.1), is much closer

to real situations than the problem in R2 [2, 9, 4].

The present contribution can be summarized by the following theorem

Theorem 1.1 There exists n0 ∈ N, which may depend on ω = 2π/L and ω0, and a sequence

{λn}∞n=n0
, such that
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1. There exists a solution to (1.5a) in Pω0
L which bifurcates from ψ = f(x1, λ), in some

right semi-neighborhood of λn for every n ≥ n0.

2. For every n ≥ n0

1 + C1 exp

{
−(nω + ω0)

2

2

}
< λn < 1 + C2 exp

{
−(nω + ω0)

2

2

}
, (1.15)

where C1 and C2 are independent of n.

3. Denote the bifurcating solution in Pω0
L by ψn(x1, λ). Then

E(ψn, λ) < E(f, λ)

in some right semi-neighborhood of λn for every n ≥ n0.

In the next section we discuss the linearized equation and prove (1.15). Statements 1

and 3 are proved in § 3. Finally, in § 4 we briefly summarized the results obtained in § 2 and

§ 3 and list some related open problems.

2 Linear analysis

Consider the problem

(
i∇+ x1î2

)2

ψ = λψ
(
1− |ψ|2

)
(x1, x2) ∈ (−ω0,∞)× R (2.1a)

ψx1(−ω0, x2) = 0 ; ψ(x1, x2 + L) = ψ(x1, x2) (2.1b)

Let

u = ψ(x1, x2)− f(x1, λ) (2.2)
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wherein f satisfies (1.9). Denote by X the space

X =
{
u ∈ C2 {[−ω0,∞)× R}

⋂
Pω0

L | ux1(−ω0, x2) = 0
}

with the C2 norm. Let F : R+ × X → C {[−ω0,∞)× R} be the operator

F (λ, u) =
(
i∇+ x1î2

)2

u− λ
[
u− f 2(2u+ ū)− f

(
2|u|2 + u2

)
− |u|2u

]
. (2.3)

Clearly, if u ∈ X satisfies F (u, λ) = 0 for some λ > β0, then ψ = u + f is a solution of

(2.1). Furthermore, since F (λ, 0) ≡ 0 for all λ > β0 we can consider the linear bifurcation of

nontrivial solutions of F (u, λ) = 0 from u ≡ 0. Let Fu denote the Fréchet derivative of F .

Then, the linearized form of F (u, λ) = 0 near u ≡ 0 is

Fu(0, λ)φ = 0

or, (
i∇+ x1î2

)2

φ− λ
[
φ− f 2(2φ+ φ̄)

]
= 0. (2.4)

Our first result proves the existence of non-trivial solutions in X for (2.4) and gives the

corresponding critical values of λ.

Theorem 2.1 There exists n0(ω0, ω) ∈ N and a sequence {λn}∞n=n0
, such that when λ = λn

non trivial solutions of (2.4) exist. Furthermore, for all n ≥ n0 λn satisfies (1.15).
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Proof: Since we look for periodic solutions we multiply (2.4) by e−inωx2 where n ∈ N and

integrate with respect to x2 over [−π/ω, π/ω] to obtain

−φ̂′′n +
[
(x− nω)2 − λ

]
φ̂n + λf 2

(
2φ̂n + φ̂−n

)
= 0 (2.5a)

−φ̂′′−n +
[
(x+ nω)2 − λ

]
φ̂−n + λf 2

(
2φ̂−n + φ̂n

)
= 0 (2.5b)

φ̂′n(−ω0) = φ̂′−n(−ω0) = 0 (2.5c)

where

φ̂n(x1) =

∫ π/ω

−π/ω

φ(x1, x2)e
−inωx2dx2. (2.6)

To prove the lower bound in (1.15) we need the following perturbation lemma.

Lemma 2.2 Let H(ξ) be defined by (1.6), and let

α(ξ, g) = inf
φ∈H

‖φ‖L2(−ξ,∞)=1

∫ ∞

−ξ

|φ′|2 +
(
x2 + g(x+ ξ)

)
|φ|2dx,

where g : [0,∞) → R is continuous and decays as x→∞. Then,

α = 1 +

∫ ∞

−ξ

gv2 + δ(ξ). (2.7a)

In which v is the quasi-mode

v = cξχ(x+ ξ)e−x2/2 (2.7b)

whose L2(−ξ,∞) norm is unity, χ is a C∞ cutoff function satisfying

χ =


0 0 ≤ x < 1

2

1 1 < x

(2.7c)
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and, for sufficiently large ξ,

δ(ξ) ≤ 2

∫ ∞

−ξ

g2v2 + Ce−ξ2

(2.7d)

where C is independent of ξ.

Proof: Denote by P the operator

P =: − d2

dx2
+ x2 + g,

and let

ν = 1 +

∫ ∞

−ξ

gv2.

Then,

(P− ν)v = cξ [−χ′′ + 2xχ′ + gχ] e−x2/2 − (ν − 1)v,

and hence, ∣∣∣∣∫ ∞

−ξ

v(P− ν)v

∣∣∣∣ ≤ ∫ ∞

−ξ

∣∣∣∣−χ′′χ + 2x
χ′

χ

∣∣∣∣ v2 ≤ Ce−ξ2

. (2.8)

Let {µj}∞j=0 denote the eigenvalues and {uj}∞j=0 the corresponding eigenmodes, whose L2

norm is unity, of the following problem

Puj = µjuj x > ξ

u′j(−ξ) = 0.

It is well known [11], that µj ↑ ∞ and that {uj}∞j=0 are square integrable and orthogonal.

Let

ṽ = v − a0u0 (2.9a)
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where

a0 =

∫ ∞

−ξ

vu0 (2.9b)

Substituting (2.9) in (2.8) we obtain (note that µ0 = α)

a2
0|α− ν| ≤

∫ ∞

−ξ

|ṽ(P− ν)ṽ|+ Ce−ξ2

(2.10)

To estimate the first term on the right-hand side of (2.10)we make use of the following

inequality

∫ ∞

−ξ

|(P− ν)ṽ|2 ≤
∫ ∞

−ξ

|(P− ν)v|2 =

=

∫ ∞

−ξ

∣∣∣∣−χ′′χ + 2x
χ′

χ
+ g − (ν − 1)

∣∣∣∣2 v2+ ≤
∫ ∞

−ξ

g2v2 + Ce−ξ2

. (2.11)

Since the distance of ν from the spectrum of P in H \ Span(u0) is |µ1 − ν| we have

(µ1 − ν)2

∫ ∞

−ξ

|ṽ|2 ≤
∫ ∞

−ξ

|(P− ν)ṽ|2 ≤
∫ ∞

−ξ

|(P− ν)v|2 (2.12)

It is not difficult to show, using standard arguments from semi-classical analysis (cf. for

instance theorem 3.4.1 in [16]), that

µ1 −−−→
ξ→∞

3. (2.13)

Hence, for sufficiently large ξ,∫ ∞

−ξ

|ṽ(P− ν)ṽ| ≤
[∫ ∞

−ξ

|ṽ|2
∫ ∞

−ξ

|(P− ν)ṽ|2
]1/2

≤
∫ ∞

−ξ

|(P− ν)v|2

Substituting (2.11) in the above inequality yields

a2
0|α− ν| ≤

∫ ∞

−ξ

g2v2 + Ce−ξ2

(2.14)
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By (2.12) and (2.13) we have

a2
0 = 1−

∫ ∞

−ξ

|ṽ|2 ≥ 1−
∫ ∞

−ξ

g2v2 − Ce−ξ2

from which (2.7) can be easily obtained.�

We now continue the proof of Theorem 2.1. Let

αn(λ) =: α(−nω − ω0, λf
2). (2.15)

Since, by (1.10)

∫ ∞

−nω−ω0

f 2(x+ nω + ω0)e
−x2 ≥ C(nω + ω0)

λ−1 exp

{
−1

2
(nω + ω0)

2

}
,

we have, by (2.7),

αn ≥ 1 + C(nω + ω0)
λ−1 exp

{
−1

2
(nω + ω0)

2

}
. (2.16)

We now define the functional

J(χn, χ−n) =:

∫ ∞

−ω0

|χ′n|
2
+ (x− nω)2|χn|2 +

∣∣χ′−n

∣∣2 + (x+ nω)2|χ−n|2−

− λ
[
|χn|2 + |χ−n|2 − f 2

(
|χn|2 + |χn + χ̄−n|2 + |χ−n|2

)]
(2.17)

Let (φn, φ−n) ∈ H ×H satisfy (2.5a,b) and

∫ ∞

−ω0

(
|φn|2 + |φ−n|2

)
= 1.

Multiplying (2.5a) by φ̄n and the complex conjugate of (2.5b) by φ−n and integrating their

sum over [−ω0,∞) we obtain

J(φn, φ−n) = 0.
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However, from the definition of αn it follows that

∫ ∞

−ω0

|φ′n|
2
+ (x− nω)2|φn|2 − λ

(
1− f 2

)
|φn|2 ≥ (αn − λ)

∫ ∞

−ω0

|φn|2.

Furthermore, for sufficiently large n, we have (x+nω)2 > (x−nω)2 for every x ∈ [−ω0,∞),

and hence

J(φn, φ−n) ≥ (αn − λ) (2.18)

Consequently, the value of λ for which the minimal value of J vanishes, must be greater than

αn. Therefore, by (2.16) the lower bound in (1.15) is proved.

To prove the upper bound we need, once again, to prove an auxiliary result:

Lemma 2.3 Let

γn(λ) = inf
(χn,χ−n)∈H×H

‖χn‖2
L2+‖χ−n‖2

L2=1

J(χn, χ−n).

Then,

1. For every λ ≥ 1, there exists a minimizer in H ×H.

2. γn is a continuous function of λ.

Proof: Since the proof is rather standard, we bring here only the main details and very

briefly. Let {φm
n , φ

m
−n}∞m=1 denote a minimizing sequence satisfying ‖φm

n ‖2 + ‖φm
−n‖2 = 1 for

all m. Obviously, ∫ ∞

a

|φm
n |2 + |φm

−n|2 ≤
C

a2

otherwise lim supm→∞ J(φm
n , φ

m
−n) = ∞. It is easy to show that the minimizing sequence

is bounded in H1 × H1, and hence, there exists a subsequence which converges weakly to
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(φn, φ−n). Clearly,

1 ≥
∫ a

−ω0

|φn|2 + |φ−n|2 ≥ 1− C

a2
,

and hence ‖φn‖2 + ‖φ−n‖2 = 1. To complete the proof of existence we need yet to show that

E is weakly lower semicontinuous. This, however is a very simple task. For instance,

∫ ∞

−ω0

(φm
n )′φ′n →

∫ ∞

−ω0

|φ′n|2

in view of the weak convergence. Applying the Cauchy-Schwarz inequality we obtain

lim inf
m→∞

‖(φm
n )′‖ ≥ ‖φ′n‖.

Similar treatment can be given to the rest of the terms in (2.17).

The proof that γn(λ) is continuous is completely straightforward.�

We now calculate J(wn, 0) where wn = exp{−(x − nω)2/2}. It is not difficult to show

that

J(wn, 0) ≤ (1− λ)
√
π +

∫ ∞

−ω0

f 2w2
n + Ce−(ω0+nω)2 ≤ (1− λ)

√
π + Ce−(ω0+nω)2/2.

Hence, there exists C > 0 such that when

λ > 1 + Ce−(ω0+nω)2/2

we have J(wn, 0) < 0, and therefore, γn(λ) < 0. Since, in view of (2.18), for sufficiently

large n, γn(λ) > 0 whenever λ < αn, and since γn(λ) must be continuous, there exists λn

satisfying (1.15) and γn(λn) = 0. By lemma 2.3 there exists a minimizer which must satisfy

(2.5), which completes the proof of the theorem. �

15



We note that the above theorem proves, only for sufficiently large n, that bifurcating

modes can exist and that λn > 1. Nevertheless, it seems plausible to conjecture that the

bifurcation may take place only for λ > 1. Furthermore, it appears reasonable to believe

that λn is monotone decreasing, from which the previous conjecture readily follows.

It still remains necessary to find the dimension of the space of solutions of (2.4) for

λ = λn. Consider then, (2.5), once again. Let φr
n = <φn, and φi

n = =φn. Then, the real part

satisfies

− (φr
n)′′ +

[
(x− nω)2 − λ

]
φr

n + λf 2
(
2φr

n + φr
−n

)
= 0 (2.19a)

−
(
φr
−n

)′′
+
[
(x+ nω)2 − λ

]
φr
−n + λf 2

(
2φr

−n + φr
n

)
= 0 (2.19b)

(φr
n)′ (−ω0) =

(
φr
−n

)′
(−ω0) = 0 (2.19c)

whereas the imaginary part satisfies

−
(
φi

n

)′′
+
[
(x− nω)2 − λ

]
φi

n + λf 2
(
2φi

n − φi
−n

)
= 0 (2.20a)

−
(
φi
−n

)′′
+
[
(x+ nω)2 − λ

]
φi
−n + λf 2

(
2φi

−n − φi
n

)
= 0 (2.20b)(

φi
n

)′
(−ω0) =

(
φi
−n

)′
(−ω0) = 0. (2.20c)

Consequently, if (φr
n, φ

r
−n) is a solution of (2.19), then (φr

n,−φr
−n) is a solution of (2.20). By

(2.6) we have

φ = φne
inωx2 + φ−ne

−inωx2

Substituting in the above a linear combination of the two independent modes (φr
n, φ

r
−n) and

(iφr
n,−iφr

−n) we obtain

φ = Cφr
ne

inωx2 + C̄φr
−ne

−inωx2 ,
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where C ∈ C is an arbitrary constant. We can now represent φ, upon substituting C =

|C|e−ix0
2 , in the following form,

φ = |C|
[
φr

ne
inω(x2−x0

2) + φr
−ne

−inω(x2−x0
2)
]
.

Consequently, the additional mode stands for translations in the x2 direction and is, therefore,

of very limited interest. Furthermore, since λn must be of even multiplicity in X, it is not

possible to apply the Crandall-Rabinowitz theorem [12]. Thus, it is desirable to confine the

discussion to an appropriate real subspace of X. We thus define

X∗ =
{
u ∈ X | ū(x1, x2) = u(x1, L− x2)

}
.

In this space, we have φn = φr
n for all n, and hence we need only to show that the solution

space of (2.19) is one-dimensional.

Lemma 2.4 λn is a simple eigenvalue of (2.19).

Proof: Let (φn, φ−n) and (φ̃n, φ̃−n) be two different solutions of (2.19). We show that they

must be linearly dependent. To this end we first multiply (2.19a) by φ̃n to obtain

∫ ∞

−ω0

f 2
(
φnφ̃−n − φ̃nφ−n

)
= 0

Hence,

∃x0 ∈ (−ω0,∞)
[
φnφ̃−n − φ̃nφ−n

]
x=x0

= 0.

Consequently,

∃C ∈ R such that

 χn

χ−n

 =

 φn

φ−n

+ C

 φ̃n

φ̃−n

 (2.21)
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vanishes at x = x0. Since (χn, χ−n) is a solution of (2.19) we must have J(χn, χ−n) = 0. Let

then,

χ̃n =


χn x0 ≤ x

−χn −ω0 ≤ x < x0

Clearly, J(χ̃n, χ̃−n) = 0, and hence, (χ̃n, χ̃−n) is a minimizer, which must have a continuous

derivative at x0. Consequently, χ′n(x0) = χ′−n(x0) = 0 from which we conclude that χn ≡

χ−n ≡ 0. �

3 Weakly non-linear analysis

In the previous section, we showed that the linearized equation (2.4) has non-trivial solutions

for a sequence of eigenvalues satisfying (1.15). However, our goal is to prove that each of

these eigenvalues is a bifurcation point for the non-linear equation

F (λ, u) = 0 (3.1)

where F is defined in (2.3).

In this section we prove the existence of a bifurcating branch at (0, λn), for sufficiently

large n. Furthermore, we prove that the bifurcation is supercritical and prove that the bifur-

cating branch is energetically lower than u ≡ 0, representing the one-dimensional solution

(1.8).
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3.1 Existence of the bifurcation

Theorem 3.1 Equation (3.1) has a bifurcation point at (0, λn) in
∗
X.

Proof: We use Theorem 1.7 in [12] to prove the existence of bifurcation. In view of the

results of the previous section it remains to show that

Fλuφ 6∈ R (Fu(0, λn))

where φ spans the solution space of (2.4) in
∗
X at λ = λn. Alternatively, we can write

<
{∫ ∞

−ω0

φ̄Fλuφ

}
= 0 (3.2)

The above condition may be applied also by applying to (3.1) the Taylor expansion

u = εu(0) + ε2ũ (3.3a)

λ = λ(0) + ελ̃ (3.3b)

In the above λ(0) = λn satisfies (1.15), and u(0) is a solution of (2.4). Theorem 1.18 in [12]

guarantees that

ũ = u(1) + εu(2) +O(ε2) (3.4a)

λ̃ = λ(1) + ελ(2) +O(ε2) (3.4b)

This Taylor expansion, in powers of ε, would be useful while investigating whether the

bifurcation is subcritical or supercritical and while estimating the energy of the bifurcating

branch near the bifurcation point.
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The O(ε2) equation is given by

(
i∇+ x1î2

)2

u(1) − λ(0)
[
u(1) − (f(x, λ(0)))2(2u(1) + ū(1))

]
= λ(1)gλ+

+λ(0)f(x, λ(0))
[
2|u(0)|2 + (u(0))2

]
(3.5a)

where

gλ =
∂

∂λ

{
λ
[
u(0) − (f(x, λ))2(2u(0) + ū(0))

]}∣∣∣∣
λ=λ(0)

(3.5b)

which is exactly equation 1.20 in [12] applied to our particular case. Multiplying (3.5a) by

ū(0) we obtain after some manipulation that

λ(1)Iλ = λ(0)<
{∫

f |u(0)|2(u(0) + 2ū(0))

}
(3.6a)

where

Iλ =
∂

∂λ

{
λ

∫
|u(0)|2 − 1

2
f 2(x, λ(0))

∣∣u(0) + ū(0)
∣∣2 − f 2|u(0)|2

}∣∣∣∣
λ=λ(0)

(3.6b)

Condition (3.2) is a solvability condition of (3.5). By (3.6) it can be expressed in the

form Iλ 6= 0.

In the previous section we showed that when λ(0) = λn we have

u(0) = φne
iωnx2 + φ−ne

−iωnx2 , (3.7)

where (φn, φ−n) is a solution of (3.6). Hence,

Iλ =
2π

ω

∫ ∞

−ω0

|φ′n|
2
+ (x− nω)2|φn|2 +

∣∣φ′−n

∣∣2 + (x+ nω)2|φ−n|2−

− 2λ2
nf
∂f

∂λ

(
|φn|2 + |φn + φ̄−n|2 + |φ−n|2

)
(3.8)
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In the following, we prove that Iλ > 0. To this end we need first the following lemma.

Lemma 3.2 Let

β̃n = inf
φ∈H

∫∞
−ω0

|φ′|2 + (x− nω)2|φ|2 − 2λ2
nf

∂f
∂λ
|φ|2∫∞

−ω0
|φ|2

. (3.9)

Then, lim β̃n = 1.

Proof: We first prove that ∥∥∥∥∂f∂λ
∥∥∥∥
∞
≤ C.

The equation satisfied by ∂f/∂λ = fλ is

−f ′′λ +
[
x2 − λ+ 3λf 2

]
fλ = f(1− f 2) ; f ′λ(0) = 0

Clearly, there exists x0 such that

x > x0 ⇒ x2 − λ+ 3λf 2 > 1

Suppose now, for a contradiction, that at some x1 > x0, for some λ = λ0 we have fλ(x1, λ0) >

1 and f ′λ(x1, λ0) > 0. Then, since for x > x0 fλ cannot have a maximum greater than 1 we

must have fλ(x, λ0) > 1 for all x > x1. Since both fλ and f ′λ are continuous in λ there must

be a neighborhood (λ0 − ε, λ0 + ε) where fλ(x1, λ) > 1 and f ′λ(x1, λ) > 0. Consequently,

x ≥ x1 ; λ ∈ (λ0 − ε, λ0 + ε) ⇒ fλ(x, λ) > 1,

and hence,

f(x, λ0 + ε)− f(x, λ0 − ε) ≥ 2ε
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for all x ≥ x1, contradicting (1.10). Thus, for x > x0 we have

fλ(x, λ) > 1 ⇒ f ′λ(x, λ) ≤ 0

from which we can conclude that, for x > x0,

fλ(x, λ) ≤ max(fλ(x0, λ), 1) ≤ C(λ)

where C is independent of x. In a similar manner we can obtain a lower bound for fλ, and

hence, ∣∣∣∣f ∂f∂λ
∣∣∣∣ ≤ Cx(λ−1)/2 exp{−x2/2}. (3.10)

The lemma now follows from (2.7) with g = −2λ2
nf∂f/∂λ and ξ = −nω − ω0. �

We now return to the proof of Theorem 3.1. From (3.8) it easily follows that

Iλ ≥
4π

ω
β̃n,

and hence, for sufficiently large n, Iλ must be positive, which proves our theorem.

3.2 Nature of the bifurcation.

In the following we show that in some neighborhood of (0, λn) in X∗×R we must have λ > λn

along the bifurcating branch. Alternatively, we can state that the bifurcation is supercritical.

From a physical point of view we can say that if we decrease the applied magnetic field (and

consequently increase λ) below the critical field which corresponds to λn then the bifurcating

branch continues to develop, i.e., ‖u‖ increases.
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Consider then, once again, (3.6). Using (3.7) it is not difficult to show that λ(1) = 0,

which is a natural result inasmuch as we do not expect the sign of λ− λ(0) to depend on the

sign of ε. Hence,

(
i∇+ x1î2

)2

u(1) − λ(0)
[
u(1) − f 2(2u(1) + ū(1))

]
= λ(0)f

[
2|u(0)|2 + (u(0))2

]
. (3.11)

The next order equation is given by

(
i∇+ x1î2

)2

u(2) − λ(0)
[
u(2) − f 2(2u(2) + u(2))

]
=

= λ(2)gλ − λ(0)
{
|u(0)|2u(0) + 2f

[
u(0)u(1) + u(1)u(0) + u(1)u(0)

]}
. (3.12)

The above equation no longer follows directly from Theorem 1.18 in [12]. Nevertheless, it

can be easily obtained, using the implicit function Theorem, in the same way it is used in

the proof of equation 1.20 in [12].

Multiplying (3.12) by u(0) and integrating by parts we obtain

λ(2)Iλ = λ(0)

∫
|u(0)|4 + 2f |u(0)|2(u(1) + u(1)) + 2fu(0))

2
u(1). (3.13)

We now multiply (3.11) by u(1) to obtain

∫
|(i∇+ x1î2)u

(1)|2 − λ(0)

[
|u(1))|2 − 2f 2|u(1))|2 − 1

2
f 2
(
u(1)

2
+ (u(1))2

)]
=

= λ(0)

∫
2f |u(0)|2

(
u(1) + u(1)

)
+

1

2
f
[
u(0)

2
u(1) + u(1)(u(0))2

]
. (3.14)

Hence,

λ(2)Iλ = λ(0)

∫
|u(0)|4 + 2

∫
|(i∇+ x1î2)u

(1)|2 − λ(0)

[∣∣u(1)
∣∣2 − f 2|u(1))|2 − 1

2
f 2
∣∣∣u(1) + u(1)

∣∣∣2]
(3.15)
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By (2.17) and (3.7) we obtain, that if we substitute u(0) instead of u(1) in the second

integral on the right hand side of (3.15) it must vanish identically. Furthermore, except for

a finite number of n values, (3.7) must span the solution space of (2.4) in X∗ when λ(0) = λn.

Hence, u(0) must serve as the non-trivial global minimizer of the second integral on the right

hand side of (3.15). Consequently,

∫
|(i∇+ x1î2)u

(1)|2 − λ(0)

[∣∣u(1)
∣∣2 − f 2|u(1))|2 − 1

2
f 2
∣∣∣u(1) + u(1)

∣∣∣2] ≥ 0 (3.16)

and hence,

λ(2) ≥ λ(0)

Iλ

∫
|u(0)|4 > 0. (3.17)

This proves our assertion, namely, that λ > λ(0) along the bifurcating branch, or, that the

bifurcation is supercritical.

3.2.1 Energy

In this subsection we prove that (1.8) is not a local minimizer of (1.13) for λ > 1. To this

end we show that for every n ≥ n0, there exist a right neighborhood of λn in R such that

E(f + u, λ) < E(f, λ). Let

E0(λ) = E(f, λ) =
2π

ω

∫ ∞

−ω0

|f ′|+ x2f 2 + λ

[
1

2
f 4 − f 2

]

Let further

∆E(u, λ) = E(f+u)−E0(λ) = 2<
{∫

(i∇+ x1î2)f · (−i∇+ x1î2)ū

}
+

∫ ∣∣∣(i∇+ x1î2)u
∣∣∣2 +

+ 2λ<
{∫

|f |2
[
fū+ |u|2

]
+

1

2
f 2ū2 + |u|2

[
fū+

1

4
|u|2
]
− fū− 1

2
|u|2
}
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Using (1.9) and integration by parts yields

∆E(u, λ) =

∫ ∣∣∣(i∇+ x1î2)u
∣∣∣2 + λ

∫
2 |f |2 |u|2 + 2 |u|2< (fū) +

+ λ

∫
1

2
|u|4 − |u|2 +

1

2

∣∣fū+ ψ̄0u
∣∣2 (3.18)

We now multiply the (3.1) by ū and integrate to obtain∫ ∣∣∣(i∇+ x1î2)u
∣∣∣2 = −λ

∫
2 |f |2 |u|2 + |u|2

(
2fū+ uψ̄0

)
+ f 2ū2 + |u|4 − |u|2.

Combining the above with (3.18) we obtain

∆E(u, λ) = −1

2
λ

∫ [
|f + u|2 − |f |2

]
|u|2. (3.19)

We now expand ∆E in powers of ε. By (3.4) we have

∆E = ε3∆E(0) + ε4∆E(1) +O(ε5)

Substituting (3.4) in (3.19) yields

∆E(0) = −λ(0)

∫ ∣∣u(0)
∣∣2<(fu(0)

)
= 0.

Once again, this result corresponds to the natural expectation that the sign of ∆E does not

depend on the sign of ε. The next order term is expressible in the form

∆E(1) = −λ(0)

∫
1

2

∣∣u(0)
∣∣4 +

∣∣u(0)
∣∣2<(fu(1)

)
+ 2<

(
fu(0)

)
<
(
u(0)u(1)

)
(3.20)

Using (3.14) we obtain

∆E(1) = −λ(0)

∫
1

2

∣∣u(0)
∣∣4−

−
{∫

|(i∇+ x1î2)u
(1)|2 − λ(0)

[∣∣u(1)
∣∣2 − f 2|u(1))|2 − 1

2
f 2
∣∣∣u(1) + u(1)

∣∣∣2]}
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and by (3.16) we have

∆E(1) ≤ −1

2
λ(0)

∫ ∣∣u(0)
∣∣4 < 0

which proves our assertion, and hence completes the proof of theorem 1.1.

4 Concluding remarks

In § 2 we proved the existence of a set of critical values {λn}∞n=n0
for which non-trivial so-

lutions of (2.4) exist. We also show that λn ↓ 1 exponentially fast according to (1.15).

However, there might exist, finitely many, additional values of λ for which non-trivial so-

lutions of (2.4) can exist. It would be reasonable to conjecture that {λn}∞n=1 is monotone

decreasing, yet, this hypothesis is proved only for large n. In fact, it is not proved yet that

λn > 1 for all n.

One can formulate the above conjecture in the following alternative manner: Let ω = 1

and

γ(λ, α) = inf
(φα,φ−α)∈H×H

‖φα‖2
L2+‖φ−α‖2

L2=1

J(φα, φ−α),

where J is defined in (2.17). We look for values of λ and α for which γ = 0. For sufficiently

large α it is proved in § 2 that there exists α0 > 0 and a function λ(α) : [α0,∞) → R such

that γ(λ(α), α) = 0, and such that λ(α) ↓ 1 as α → ∞. If one can show that λ(α) can

be continued into R+ such that λ(α) is monotone decreasing, the the above conjecture is

proved.

In § 3 we proved:

26



1. Existence of the bifurcation points.

2. Super-criticality of the bifurcation.

3. That the bifurcating solution is energetically preferable to the one-dimensional surface

superconductivity solution.

Statements 1 and 2 were proved only for sufficiently large n. For n which is not large,

the existence of non-trivial solutions of (2.4) does not guarantee Iλ > 0, and hence the

bifurcation points do not necessarily exist. In fact, even if the bifurcation from (λn, 0) exists,

it is not clear that it must be supercritical (if Iλ < 0 then a subcritical bifurcation exists).

In contrast, statement 3 is correct whenever a bifurcating solution exists. It is correct even

for n which is not necessarily large, and even in the unlikely situation that the bifurcation

takes place at λ < 1. The surface superconductivity one-dimensional solution becomes

therefore locally unstable at each bifurcation point.

Finally, we note that if it was possible to linearly superpose the bifurcating modes then

the resulting combination would have the form

ψ = f +
∞∑

n=−∞

Cnφne
iωnx2

and since

φn ∼ e−
1
2
(x1−nω)2

as n→∞ for x1 ∼ O(n) we have

ψ ∼ eiωPx2

∞∑
n=−∞

Cn+P e
iωnx2e−

1
2
[x1−(n+P )ω]2 (4.1)
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for P � 1 and x ∼ O(P ). The above formula thus approximates ψ far away from the wall

at x1 = 0. If

∃N : Cn+N = Cn ∀n

Then the right-hand-side of (4.1) is periodic, or an Abrikosov lattice [2, 9, 4].

Clearly, it is impossible to linearly superpose modes since the equations are non-linear

and since the bifurcations take place at different values of λ. Nevertheless, if 0 < λ− 1 � 1

then 0 < λ − λn < λ − 1 for almost every n. Hence, one might expect that the effect of

non-linearity tends to 0 as λ→ 1, and thus, that the solution far away from the wall can be

approximated by an Abrikosov lattice.
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A The one-dimensional solution

Theorem A.1 Let H and β(z) be, respectively defined by (1.6) and (1.7). Let λ > β(z).

Then, there exists a positive solution in H to the equation

−f ′′ + x2f = λf(1− f 2) ; f ′(z) = 0 . (A.1)

Moreover,

f(x) ∼ x−
1−λ

2 e−
1
2
x2

as x→∞ (A.2)
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Proof: Let

εz(φ) =

∫ ∞

z

(φ′)2 + x2φ2 − λ

[
φ2 − 1

2
φ4

]
dx.

We first prove the existence of a minimizer H. Clearly, there exists x0 > z such that for

x ≥ x0 we have x2 ≥ λ+ 1. Then, since

φ2 − 1

2
φ4 ≤ 1

2

we have for all φ ∈ H

εz(φ) ≥ −λ
2
(x0 − z).

Since εz is semibounded there is a minimizing sequence {φn}∞n=1 in H. As

1

x0 − z

(∫ x0

z

φ2
n

)2

≤
∫ x0

z

φ4
n ≤ 2

∫ x0

z

φ2
n + C

where C is independent of n, we obtain that ‖φn‖L2[z,x0] ≤ C. Recalling that x2 − λ ≥ 1

in [x0,∞) yields ‖φn‖L2(z,∞) ≤ C and hence ‖φn‖H1(z,∞) ≤ C. Thus, there is a subsequence

which converges weakly in H1(z,∞) to a limit, which we denote by f . We skip the proof of

lower semicontinuity - some of the details can be found in the proof of lemma 2.4.

Since f is a minimizer of εz in H it must satisfy (A.1). Suppose for a contradiction that

it changes sign at x = x1. Then let

g =


f(x) x ≤ x1

−f(x) x > x1

.

Clearly, εz(f) = εz(g), and thus, g must be a minimizer and therefore, a solution of (A.1).

Thus, either f ≡ 0, or f does not change its sign (both f and −f are minimizers).
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We now prove that f is non-trivial. Let uz be the minimizer of the fraction on the

right-hand-side of (1.7) such that ‖uz‖2 = 1. Then

εz(cuz) = −c2[λ− β(z)] + c4
∫ ∞

z

|uz|4

Therefore, for sufficiently small c the minimizer must be non-trivial.

It remains necessary, yet, to prove (A.2). We first prove that f → 0 as x→∞. Suppose

first, for a contradiction, that for some x2 > x0 we have f ′(x2) > 0. Then, since f cannot

have a maximum for x > x0, f must be greater than f(x2), contradicting f ∈ H. Thus,

f ′ ≤ 0 for all x > x0 from which we easily conclude that f → 0 at infinity.

Let w(x, t), where t > x0, denote the decaying solution of

−w′′ + [x2 − λ]w = 0 ; x > tw(t, t) = 1

By the maximum principle we must have that f < f(t)w for all x > x0. Let f(x) =

f(t)v(x, t)w(x, t). Substituting in (A.1) we obtain

v′ = − λ

f(t)w2

∫ ∞

x

f 3(s)w(s, t)ds ≥ −λf 2(t)

∫ ∞

x

w2(s, t)ds

The properties of w have been obtain in [19] but can be also found in chapter 19 of [1]. From

both references we find that as t→∞, x→∞

w ∼
(x
t

)λ−1
2
e−

1
2
(x2−t2) ∀x ≥ t

and hence, for all x > t

−2λf 2(t)
xλ−2

tλ−1
et2−x2 ≤ v′ < 0
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Since v is decreasing it must converge to a limit as x→∞. Integrating the above inequality

by parts we obtain

v∞(t) = lim
x→∞

v(x, t) ≥ 1− λ
f 2(t)

t

For sufficiently large t we therefore have v∞(t) > 0, proving (A.2).
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