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Abstract

The Ginzburg-Landau model of superconductivity is considered in three dimensions.

We show, for smooth bounded domains, that the superconductivity order parameter

decays exponentially fast away from the boundary as the Ginzburg-Landau param-

eter κ tends to infinity. We prove this result for applied magnetic fields satisfying

hex − κ � κ1/2. Additionally, we prove that for applied fields greater than HC2 , the

only solution in R3 satisfying a certain decay condition is the normal state. Finally

we prove that bulk superconductivity decreases to zero as hex ↑ HC2 , and thus extend

(though in a weaker sense), the results in [?] to three-dimensional settings.
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1 Introduction

Consider a superconducting body which is placed in a sufficiently low temperature (below

the critical one) under the action of an external magnetic field . Its energy is given by the

Ginzburg-Landau energy functional which can be represented in the following dimensionless

form [?]

E =

∫
Ω

−|Ψ|2 +
|Ψ|4

2
+ |h− hex|2 +

∣∣∣∣ iκ∇Ψ + AΨ

∣∣∣∣2 (1.1)

in which Ψ is the (complex) superconducting order parameter, such that |Ψ| varies from

|Ψ| = 0 (when the material is at the normal state) to |Ψ| = 1 (for the purely superconducting

state). The magnetic vector potential is denoted by A (the magnetic field is, then, given by

h = ∇×A), hex is the applied magnetic field, which is assumed constant in this work, and κ

is the Ginzburg-Landau parameter which is a material property. Superconductors for which

κ < 1/
√

2 are termed type I superconductors, and those for which κ > 1/
√

2 are termed

type II. The domain Ω is the domain of superconductor whose Gibbs free energy is given by

E. Note that E is invariant to the gauge transformation

Ψ → eiκηψ ; A→ A+∇η . (1.2)

It is known both from experiments [?] and rigorous analysis [?] that for a sufficiently

strong magnetic field the normal state (ψ ≡ 0, h = hex) would prevail. If the field is then

decreased, there is a critical field, depending on the sample’s geometry, where the material

would enter the superconducting state. For samples with boundaries, this field is known as

the onset field and has been termed HC3 .
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The simplest case in which the bifurcation from the normal state to the superconduct-

ing one was calculated is the case of a domain-wall [?]. The analysis in this case is one

dimensional: the linearized Ginzburg-Landau equations were solved on R+. Even in this

simple case the onset field is substantially larger than the bifurcation field on R [?], which

has been termed HC2 , Thus, HC3 ≈ 1.7κ, whereas HC2 = κ. Furthermore, it was found

that superconductivity is concentrated at the onset near the wall, i.e. ψ decays exponen-

tially fast away from the boundary, which is why this phenomenon has been termed surface

superconductivity.

The situation is no different in two dimensions: it was proved in [?] and [?] that the

bifurcating mode R2
+ is one-dimensional and that the value of HC3 is exactly the same as

in the one-dimensional case (similarly, HC2 = κ in R2 where the bifurcation takes place in

the form of periodic solutions). It was later proved for general two-dimensional domains

with smooth boundaries [?, ?], that as the domain’s scale tends to infinity the onset field

tends to de-Gennes’ value, and that ψ decays exponentially fast away from the boundary.

For boundaries which include wedges the onset field will be larger than de-Gennes’ value

[?, ?, ?, ?].

Three recent contributions [?, ?, ?] study the behaviour of the global minimizer of the

energy functional (??) for external fields satisfying κ = HC2 < hex < HC3 . In [?] the limit

κ→∞ is considered: it is demonstrated that ψ decays, in L2 sense, exponentially fast away

form the boundary. The results are valid whenever hex − κ� 1 as κ→∞. In addition the

energy of the global minimizer is shown to be evenly distributed along the boundary. In [?]
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the exponential rate of decay is demonstrated for hex − κ � 1/κ. In [?] the large domain

limit is considered: it is demonstrated for the global minimizer that both ψ and h tend, in

Cα sense, exponentially fast away from the boundary, to the normal state. The results are

valid whenever hex − κ ∼ O(1) as the domain’s size tends to infinity.

In contrast with the significant progress in the study of surface superconductivity in two

dimensions, very few works address this problem in three dimensions. Lu and Pan obtained

in [?] several important results in the limit κ → ∞. Some of these results, for the case of

constant applied field, are listed below:

1. HC3 ≈ 1.7κ.

2. Let ∂Ωh denote the portion of ∂Ω whose normal is orthogonal to the applied field hex.

Then, as hex ↑ HC3 ,

(a) ‖ψ‖L∞(Ω) → 0

(b) ‖h− hex‖L∞(Ω) → 0

(c) ψ(x)
‖ψ‖L∞(Ω)

→ 0 on Ω̄ \ ∂Ωh.

In a previous contribution [?] the same authors obtained similar results for cylindrical do-

mains.

In the present contribution we focus on the limit κ → ∞ for general smooth three

dimensional domains. We prove that any solution of the Ginzburg-Landau equations (??)

(which are the Euler-Lagrange equations associated with the energy functional (??)) together

with the natural boundary conditions (??), tends to the normal state (ψ ≡ 0, h = hex)
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exponentially fast away from the boundary as long as hex − κ � κ1/2. This improves the

results in [?] in three different aspects:

1. While the results in [?] are valid only as hex ∼ HC3 , or near the linear bifurcation, the

present results remains valid deep into the non-linear regime, as long as hex−κ� κ1/2.

2. While the rate at which the solution attends the normal state is not clear in [?], we

prove exponentially fast convergence.

3. The results in [?] are valid only for the global minimizer of (??), whereas here the

estimates are valid for any solution of the Euler-Lagrange equations and the natural

boundary conditions.

In contrast, however, the information on the distribution of ψ over ∂Ω, provided in [?] near

the nucleation, has not been obtained here.

In addition to the above results concerning surface superconductivity we briefly discuss

the decrease of bulk superconductivity as hex ↑ HC2 . In a recent contribution, Sandier and

Serfaty [?], proved that in the above limit, in two dimensions,

1

|Br|

∫
Br

|ψ|4 → 0

for any ball Br ⊂ Ω. We show here, for three-dimensional domains, that

1

|Ω|

∫
Ω

|ψ|4 → 0

in the same limit. While the above result is weaker than the one obtained in [?], it still

shows that bulk superconductivity decays, in three dimensions, as hex ↑ HC2 .
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Finally, we prove that no solution, satisfying the decay condition (??c) of the Ginzburg-

Landau equation, but the normal state, can exist in R3 as long as hex > κ. In [?] we showed

the same result in R2, for a larger class of bounded solutions (for which h→ hex as x→∞).

Thus, the additional dimension requires an additional decay condition.

In the next section we prove the above non-existence result in R3. In § 3 we prove expo-

nentially fast convergence of any solution of the Ginzburg-Landau equations and the natural

boundary conditions to the normal state away from the boundary, as long as

hex − κ � κ1/2. In addition, we show in this section that bulk superconductivity decreases

as hex ↑ HC2 . Finally, in § 4 we briefly discuss a few key points which are insufficiently

emphasized in the previous sections.

2 Non-existence in R3

In this section we prove the following result:

Theorem 2.1 Let ψ : R3 → C and A : R3 → R3 satisfy the equations(
i

κ
∇+ A

)2

Ψ = Ψ
(
1− |Ψ|2

)
x ∈ R3 (2.1a)

−∇× (∇× A) =
i

2κ
(Ψ∗∇Ψ−Ψ∇Ψ∗) + |Ψ|2A x ∈ R3, (2.1b)

together with the rate of decay condition

lim inf
R→∞

1

R

∫
R<|x|<βR

|ψ|4 + |h− hex|2 = 0 (2.1c)

where the applied magnetic field, hex, is a constant and k̂ is a unit vector in the z direction,

and β > 1 . (For reasons of convenience we pick the Coulomb gauge in sequel, i.e., ∇·A = 0.)
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Then if either

1. hex > κ and κ > 1/
√

2,

or

2. hex <
1
2κ

and κ < 1/
√

2,

then, ψ ≡ 0, h ≡ hex is the unique solution of (??).

Proof: Let ψ = ρeiφ. Multiplying (??a) by e−iφ and taking the real part we obtain

1

κ2
∇2ρ+ ρ(1− ρ2) = ρ

∣∣∣∣1κ∇φ− A

∣∣∣∣2 =
|∇ × h|2

ρ3
, (2.2a)

whenever ρ 6= 0. [To obtain the second equality in (??) we used (??b)]. Taking the curl

of (??b) [by standard elliptic estimates any solution of (??) must be C∞ on any smooth

compact subset of R3] yields

∇2h− ρ2h =
2

ρ
∇ρ× (∇× h) , (2.2b)

whenever ρ 6= 0. Consider first the case hex > κ, κ > 1/
√

2. Define

vα = h− κ+
1

2κ
ρ2α̂ ; uα = vα · α̂ (2.3)

where α̂ is any constant unit vector. Combining (??a) and (??b) we obtain after some

manipulation

∇2uα − ρ2uα = κ

∣∣∣∣∇× vα
ρ

∣∣∣∣2 +
1

κ
|α̂ · ∇ρ|2 +

(
κ− 1

2κ

)
ρ4 (2.4)

whenever ρ 6= 0. Note that when α̂ = k̂, h = h(x, y)k̂, and ρ = ρ(x, y) we obtain the same

equations as in the two-dimensional case.
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It is possible to derive a similar equation which is valid when ρ = 0 as well. As

∇2h− ρ2h = ∇(ρ2)× A+
i

κ
∇ψ∗ ×∇ψ , (2.5a)(

∇2 − ρ2
) (

1

2κ
ρ2 − κ

)
= κ

∣∣∣∣( i

κ
∇+ A

)
ψ

∣∣∣∣2 +

(
κ− 1

2κ

)
ρ4, (2.5b)

we have,

κ

2

∣∣∣∣( i

κ
∇+ A

)
ψ + iα̂×

(
i

κ
∇+ A

)
ψ

∣∣∣∣2 =

= κ

∣∣∣∣( i

κ
∇+ A

)
ψ

∣∣∣∣2 + α̂ ·
[
∇(ρ2)× A+

i

κ
∇ψ∗ ×∇ψ

]
− κ

2

∣∣∣∣( i

κ
∇+ A

)
ψ · α̂

∣∣∣∣2 (2.6)

Combining (??) and (??) yields, then

∇2uα − ρ2uα =
κ

2

∣∣∣∣( i

κ
∇+ A

)
ψ + iα̂×

(
i

κ
∇+ A

)
ψ

∣∣∣∣2 +

+
κ

2

∣∣∣∣( i

κ
∇+ A

)
ψ · α̂

∣∣∣∣2 +

(
κ− 1

2κ

)
ρ4, (2.7)

and comparing with (??) we obtain

J2
α

def
=

κ

2

∣∣∣∣( i

κ
∇+ A

)
ψ + iα̂×

(
i

κ
∇+ A

)
ψ

∣∣∣∣2 +
1

2

∣∣∣∣( i

κ
∇+ A

)
ψ · α̂

∣∣∣∣2 =

=

∣∣∣∣∇× vα
ρ

∣∣∣∣2 +
1

κ2
|α̂ · ∇ρ|2 (2.8)

whenever ρ 6= 0.

We now pick α̂ to be parallel with hex and denote uα by u in that direction. Let

u+ =


u u > 0

0 u ≤ 0

.
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Multiplying (??) by u+ and integrating over B(0, r) we obtain∫
∂B(0,r)

u+∂u
+

∂r
≥ F (r) (2.9a)

where

F (r) =

∫
B(0,r)

κu+J2
α + ρ2

(
u+

)2
+

∣∣∇u+
∣∣2 . (2.9b)

multiplying (??a) by 1/r2 and integrating between R0 and R1 yields

1

2

∫
S2

(
u+

)2

∣∣∣∣R1

R0

≥
∫ R

R0

F (r)

r2
dr (2.10)

Hence, ∫ R1

R0

F (r)

r2
dr ≤ − 1

2

∫
S2

[
(hex − κ)2 −

(
u+

)2
]∣∣∣∣R1

r=R0

Yet,∣∣∣∣∫
S2

[
(hex − κ)2 −

(
u+

)2
]∣∣∣∣
r=Ri

≤ C

{∫
S2

∣∣h2
ex − h2

∣∣ +

∫
S2

|hex − h|+
∫
S2

ρ4

}
r=Ri

i = 0, 1.

However,

∫
S2

∣∣h2
ex − h2

∣∣
r=Ri

≤
{∫

S2

|hex + h|2
}1/2

r=Ri

{∫
S2

|hex − h|2
}1/2

r=Ri

≤

≤
{

2

∫
S2

|hex − h|2 + h2
ex

}1/2

r=Ri

{∫
S2

|hex − h|2
}1/2

r=Ri

i = 0, 1,

and ∫
S2

|hex − h| ≤ C

{∫
S2

|hex − h|2
}1/2

.

Thus, ∫ R1

R0

F (r)

r2
dr ≤ C

∑
i=0,1

[{∫
S2

|hex − h|2
}1/2

+

∫
S2

|hex − h|2 + ρ4

]
R=Ri

. (2.11)
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In view of (??c) there exists a sequence {Rk}∞k=0 such that Rk ↑ ∞ and

R2
k

∫
S2

|hex − h|2 + ρ4
∣∣
r=Rk

→ 0 .

Hence, by (??) ∫ Rj

Rk

F (r)

r2
dr ≤ εk

Rk

+
εj
Rj

j > k εk → 0,

from which we conclude that ∫ ∞

Rk

F (r)

r2
dr ≤ εk

Rk

. (2.12)

Suppose, for a contradiction, that ∃r0 > 0 such that F (r0) > 0. Since F (r) is monotone

increasing we have ∫ ∞

Rk

F (r)

r2
dr ≥ F (r0)

Rk

which contradicts (??), and hence F (r) ≡ 0. Consequently, we must have u+ = C and if

C > 0 we must also have ρ = 0. By (??c) we must have, however, u = hex − κ > 0 from

which our theorem can readily be proved for type II superconductors.

To prove that the same result holds whenever κ < 1/
√

2 and hex >
1
2κ

we define

wα = h− 1

2κ
(1− ρ2)α̂ (2.13)

to obtain (
∇2 − ρ2

)
wα · α̂ = κJ2

α +

(
1

2κ
− κ

)
(ρ2 − ρ4),

and proceed in the same manner as in the previous case.

�
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3 Surface superconductivity as κ→∞

In this section we consider the Ginzburg-Landau equations (??) in a bounded domain Ω ⊂ R3

whose boundary is at least C2,α for some 0 < α < 1. Let (ψ,A) satisfy (??) and the boundary

conditions (
i

κ
∇+ A

)
ψ · n̂ = 0 ; (h− hex)× n̂ = 0 . (??a,b)

We show here that as long as the applied magnetic field hex is sufficiently greater than κ, ψ

decays exponentially fast away from the boundaries. Thus, we prove the following result

Theorem 3.1 Let (ψ,A) satisfy (??) and (??). Let λ =
√

(hex − κ)κ. If hex − κ � κ1/2

as κ→∞, then there exist β,C > 0, independent of κ and λ, such that

‖ψ‖L2[B(x,1/λ)] ≤
C

λ3/2
e−βλd(x,∂Ω (3.2)

For every x ∈ Ω satisfying d(x, ∂Ω) > 1/λ

We note that the above theorem is valid not only for the global minimizer of (??) but

for any solution of (??) and (??). To prove the theorem we need first the following lemma.

Lemma 3.2 Let (ψ,A) denote any solution of (??) and (??). Then if hex ≥ κ

∫
Ω

ρ4 ≤ C

κ
(3.3a)∫

Ω

|h− hex|2 ≤
C

κ
(3.3b)

where C is independent of κ. Furthermore, let Â denote the vector field satisfying

∇× Â = hex ; ∇ · Â = 0 ; Â · n̂
∣∣∣
∂Ω

= 0. (3.4)
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Then, ∥∥∥A− Â
∥∥∥
L∞(Ω)

≤ C

κ1/2
. (3.5)

Proof: Multiplying (??a) by ρ2ψ̄ and integrating over Ω we obtain, after some manipulation∫
Ω

ρ2

∣∣∣∣( i

κ
∇+ A

)
Ψ

∣∣∣∣2 +
1

κ2

∫
Ω

ρ2|∇ρ|2 =

∫
Ω

ρ4(1− ρ2) (3.6)

By (??b) we then have ∫
Ω

|∇ × h|2 ≤
∫

Ω

ρ2

∣∣∣∣( i

κ
∇+ A

)
Ψ

∣∣∣∣2 ≤ ∫
Ω

ρ4 (3.7)

Note that ∇ · h = 0 and that (h− hex)× n̂|∂Ω = 0, and hence [?],∫
Ω

|h− hex|2 +

∫
Ω

|∇h|2 ≤ C

∫
Ω

|∇ × h|2 (3.8)

where C = C(Ω) is independent of κ. Consequently,∫
Ω

|∇h|2 +

∫
Ω

|h− hex|2 ≤ C

∫
Ω

ρ4. (3.9)

Let Ωδ denote the following subdomain of Ω

Ωδ = {x ∈ Ω | d(x, ∂Ω) ≥ δ} ,

where δ = δ(κ). For sufficiently small δ ∂Ωδ is as smooth as ∂Ω (at least C2,α in our case).

Integration of (??) over Ωδ yields∫
Ωδ

ρ2u+

(
κ− 1

2κ

) ∫
Ωδ

ρ4 ≤
∫
∂Ωδ

∂u

∂n
,

where u = uα and α̂ = î3. Hence,∫
Ωδ

ρ2(hex − κ) +

∫
Ωδ

ρ2(h3 − hex) + κ

∫
Ωδ

ρ4 ≤
∫
∂Ωδ

∂u

∂n
. (3.10)
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However, by (??)

∣∣∣∣∫
Ωδ

ρ2(h3 − hex)

∣∣∣∣ ≤ 1

2

[∫
Ω

ρ4 + |h− hex|2
]
≤ C

∫
Ω

ρ4.

Consequently, since ‖ρ‖∞ < 1 [?],

(κ− C)

∫
Ωδ

ρ4 ≤
∫
∂Ωδ

∂u

∂n
+ Cδ

From the foregoing discussion we may conclude that for sufficiently large κ

∫
Ωδ

ρ4 ≤ C

κ

∫
∂Ωδ

∂u

∂n
+ C

δ

κ
(3.11)

We now estimate the boundary integral on the right-hand-side of (??). Clearly,

∫
∂Ωδ

∂u

∂n
≤

∫
∂Ωδ

|∇h|+ 1

2κ

∫
∂Ωδ

|∇ρ2|

The second term on the right-hand-side can be bounded as follows

1

2κ

∫
∂Ωδ

|∇ρ2| ≤ C

[
1

κ2

∫
∂Ωδ

ρ2|∇ρ|2
]1/2

≤ C

[∫
∂Ωδ

ρ2

∣∣∣∣( i

κ
∇+ A

)
Ψ

∣∣∣∣2
]1/2

.

Hence, ∫
∂Ωδ

∂u

∂n
≤ C

[∫
∂Ωδ

|∇h|2 + ρ2

∣∣∣∣( i

κ
∇+ A

)
Ψ

∣∣∣∣2
]1/2

However, there exists 1/κ < δ < 2/κ such that

∫
∂Ωδ

|∇h|2 + ρ2

∣∣∣∣( i

κ
∇+ A

)
Ψ

∣∣∣∣2 ≤ Cκ

∫
Ω

|∇h|2 + ρ2

∣∣∣∣( i

κ
∇+ A

)
Ψ

∣∣∣∣2
Utilizing (??) and (??) we obtain

∫
Ω

ρ4 ≤ C

κ1/2

[∫
Ω

ρ4

]1/2

+
C

κ
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yielding ∫
Ω

ρ4 ≤ C

κ
,

and, by (??), ∫
Ω

|h− hex|2 ≤
C

κ
.

To prove (??) we need (??) and theorem 10.5 in [?]. The boundary value problem satisfied

by A− Â is

∇2(A− Â) = −∇× h in Ω (3.12a)

(A− Â) · n̂ = 0 on ∂Ω (3.12b)

∇× (A− Â)× n̂ = 0 on ∂Ω (3.12c)

Since (??) fits into the rather general framework in [?] we may conclude that

‖A− Â‖2
H2(Ω) ≤ C

[∫
Ω

|∇ × h|2 +

∫
Ω

|A− Â|2
]
. (3.13)

However, in view of (??a) and (??b) we have (cf. [?])∫
Ω

|A− Â|2 ≤ C

∫
Ω

|h− hex|2 (3.14)

where C = C(Ω) is independent of κ. Combining (??), (??), (??), and (??), we obtain

‖A− Â‖2
H2(Ω) ≤

C

κ

Sobolev embedding completes the proof of the lemma.

�

We note that the condition hex ≥ κ is crucial only in deriving (??) from (??). If hex < κ

we can still prove the following result
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Theorem 3.3 Let (ψ,A) denote any solution of (??) and (??). Let further b = hex/κ.

Then, if b(κ) ≤ 1 we have ∫
Ω

ρ4 ≤ C

κ
+ |Ω|(1− b)2 (3.15a)∫

Ω

|h− hex|2 ≤ C

[
1

κ
+ (1− b)2

]
(3.15b)

Furthermore, if (ψ,A) is the global minimizer, then

−1

2
|Ω|(1− b)2 − C

κ
≤ E(ψ,A) ≤ 0 (3.16)

Proof: From (??) we easily obtain∫
Ω

ρ4 ≤ C

κ

∫
∂Ωδ

∂u

∂n
+ Cδ + (1− b)

∫
Ω

ρ2. (3.17)

Following the same steps as in the proof of lemma ?? below (??), we obtain that for some

1/κ < δ < 2/κ we have ∫
∂Ωδ

∂u

∂n
≤ C

κ1/2

[∫
Ω

ρ4

]1/2

.

Combining the above with (??) yields∫
Ω

ρ4 ≤ C

κ1/2

[∫
Ω

ρ4

]1/2

+
C

κ
+ (1− b)|Ω|1/2

[∫
Ω

ρ4

]1/2

,

from which (??a) is easily obtained. To obtain (??b) we use (??). Finally, since (ψ,A) is a

solution of (??) and (??) we have

E(ψ,A) =

∫
Ω

|h− hex|2 −
1

2

∫
Ω

ρ4.

The lower bound in (??) follows now from (??a) and the upper bound from the fact that

ρ ≡ 0 and h = hex is a solution of (??) and (??).

�
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Stronger results were obtained in [?] for domains in R2. We compare theorem ?? to the

results in [?] in the last section.

Proof of theorem ??: We prove the theorem by invoking blow-up arguments. Let

λ =
√
k(hex − κ.

We first prove (??). Let

Ω(λ, k, s) =
{
x ∈ Ω| d(x, ∂Ω) ≥ k

s

λ

}
.

We prove (??) by showing that

∃λ0, s0 : sup
x∈Ω(λ,k,s)

‖ψ(κ, λ)‖L2[B(x,1/λ)] ≤
1

2
sup

x∈Ω(λ,k+1,s)

‖ψ(κ, λ)‖L2[B(x,1/λ)] ∀s > s0 λ > λ0, k ∈ N

(3.18)

Suppose, for a contradiction, that (??) does not hold. Then, sequences {λj}∞j=1,{κj}
∞
j=1,

{sj}∞j=1, and {kj}∞j=1 exist such that λj ↑ ∞, κj ↑ ∞, sj ↑ ∞, kj ∈ N, and

sup
x∈Ω(λj ,kj+1,sj)

‖ψ(κj, λj)‖L2[B(x,1/λj)]
≥ 1

2
sup

x∈Ω(λj ,kj ,sj)

‖ψ(κj, λj)‖L2[B(x,1/λj)]

def
=

1

2
mj (3.19)

Let

ψ̃j
def
=

ψ(κj, λj)

mj

.

By (??) there exists xj ∈ Ω(λj, kj +1, sj) such that ‖ψ̃j‖L2[B(xj ,1/λj)] ≥ 1
2
. Furthermore, since

B(xj, 1/λj) ∈ Ω(λj, kj, sj) we have

1

2
≤

∥∥∥ψ̃j∥∥∥
L2[B(xj1/λj)]

≤ 1.
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Define

fj = ψ̃j

(
xj +

x

λj

)
.

In view of the above we have

1

4
λ3
j ≤

∫
B(0,1)

|fj|2 ≤ λ3
j . (3.20)

It is easy to show that

(
iλj
κj
∇+ Ãj

)2

fj = fj
(
1−m2

j |fj|
2) x ∈ B(0, sj) (3.21a)

wherein

Aj = Aj(xj + x/λj). (3.21b)

we now define a cut-off function

ηr =


1 in B(0, r)

0 in R3/B(0, 2r)

|∇ηr| ≤ C in R3

Multiplying (??a) by η2
r , and integrating over B(0, 2r) we obtain, for all r ≤ sj

2
(cf. [?]),

that

∫
B(0,2r)

∣∣∣∣(iλjκj ∇+ Aj

)
(ηrfj)

∣∣∣∣2 =

∫
B(0,2r)

η2
r |fj|2

(
1−m2

j |fj|
2) +

λ2
j

κ2
j

|∇ηr|2 |fj|2 (3.22)
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Let Âj = Â(xj + x/λj), where Â is defined in (??) . Then,

∫
B(0,2r)

∣∣∣∣(iλjκj ∇+ Aj

)
(ηrfj)

∣∣∣∣2 =

∫
B(0,2r)

∣∣∣∣(iλjκj ∇+ Âj

)
(ηrfj)

∣∣∣∣2 +

+

∫
B(0,2r)

λj
κj

(Aj − Âj)η
2
r

[
i
(
f̄j∇fj − fj∇f̄j

)
+ 2

κj
λj
|fj|2 Âj

]
+

+

∫
B(0,2r)

∣∣∣Aj − Â
∣∣∣2 η2

r |fj|2 .

Clearly,

η2
r

[
i
λj
κj

(
f̄j∇fj − fj∇f̄j

)
+ 2 |fj|2 Âj

]
= 2<

{
ηrf̄j

(
iλj
κj
∇+ Âj

)
(ηrfj)

}
,

and hence

∫
B(0,2r)

∣∣∣∣(iλjκj ∇+ Aj

)
(ηrfj)

∣∣∣∣2 ≥
≥


[∫

B(0,2r)

∣∣∣∣(iλjκj ∇+ Âj

)
(ηrfj)

∣∣∣∣2
]1/2

−
[∫

B(0,2r)

∣∣∣Aj − Â
∣∣∣2 η2

r |fj|2
]1/2


2

.

By (??) we have

∫
B(0,2r)

∣∣∣∣(iλjκj ∇+ Aj

)
(ηrfj)

∣∣∣∣2 ≥
≥


[∫

B(0,2r)

∣∣∣∣(iλjκj ∇+ Âj

)
(ηrfj)

∣∣∣∣2
]1/2

− C

κ
1/2
j

[∫
B(0,2r)

η2
r |fj|2

]1/2


2

(3.23)

However, in [?] it was shown that∫
R3

∣∣∣∣(iλjκj ∇+ Âj

)
(ηrfj)

∣∣∣∣2 ≥ (
1 +

λ2
j

κ2
j

) ∫
R3

η2
r |fj|2

Combining the above with (??) and (??) we obtain[(
1 +

λ2
j

κ2
j

)1/2

− C

κ
1/2
j

]2 ∫
B(0,2r)

η2
r |fj|2 ≤

∫
B(0,2r)

η2
r |fj|2 +

λ2
j

κ2
j

∫
B(0,2r)

|∇ηr|2 f 2
j .
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Hence, [
1− C

κ
1/2
j

κ2
j

λ2
j

] ∫
B(0,2r)

η2
r |fj|2 ≤

∫
B(0,2r)

|∇ηr|2 f 2
j .

Thus, as long as λ2
j � κ

3/2
j (or hex − κ� κ1/2) we have, for sufficiently large j

∫
B(0,2r)

η2
r |fj|2 ≤ 2

∫
B(0,2r)

|∇ηr|2 f 2
j .

Consequently, ∫
B(0,r)

|fj|2 ≤
C

r2

∫
B(0,2r)

|fj|2 ≤
C

r4

∫
B(0,4r)

|fj|2.

By (??) we have, however, ∫
B(0,4r)

|fj|2 ≤ C(rλj)
3,

and hence,

1

4
λ3
j ≤

∫
B(0,r)

|fj|2 ≤
C

r
λ3
j ,

a contradiction. Hence, ψ must satisfy (??).

�

4 Concluding remarks

In the following we briefly summarize the main results of this work and address some key

points insufficiently emphasized within the previous section:

1. In § 2 we proved that no solution which satisfies (??c) can exist in R3 as long as

hex > κ. We note that in [?] it was shown that no bounded solution can exist in

R2 for hex > κ (as long as h → hex as |x| → ∞. It is not clear whether (??c) is
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really necessary so that theorem ?? would hold. Nevertheless, the necessity of this

decay condition in the proof of the theorem results from the additional dimension: in

(??) we integrate F (r)/r2 instead of F (r)/r. The fact that such an additional decay

condition is necessary in R3 and not in R2 is not unusual (cf. [?] for instance).

2. In § 3 we proved exponentially fast decay of ψ away from the boundary whenever

hex − κ � κ1/2. This result is much weaker than the result in [?] where exponential

rate of decay is proved, in two dimensions, whenever hex − κ � 1/κ. This relative

weakness of the present results stems from the difficulty to provide good estimates for

|∇h| in three dimensions: while in two-dimensional settings |∇ × h| = |∇h|, we need

more complicated relationships, like (??), between |∇×h| and |∇h| in three dimensions.

We note that (??) is valid only because of (??b), and hence, we cannot apply it to

subdomains of Ω. For the same reason it appears difficult to prove exponentially fast

convergence, away from the boundaries, of h to a constant, in contrast to the situation

in two dimensions. The large domain limit, which has been addressed in [?] in two

dimensions appears to be also difficult for the same reason.

3. We note that while the decay of ψ is proved in theorem ?? only in L2 sense, it is

possible to show, in the same manner shown in [?] that

|ψ| ≤ C
(κ
λ

)3/2

e−βλd(x,∂Ω)

It is also possible to obtain similar estimates for the derivatives of ψ.

4. In theorem ?? we prove that ‖ψ‖L4(Ω) decays as both hex → κ and κ → ∞. Much
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stronger results were obtained in [?] for two-dimensional settings:

(a) The upper bound of E(ψ,A) in H1(Ω) ×H1(Ω) is better than the rather trivial

upper bound in (??).

(b) In [?] it is proved that

1

|Br|

∫
Br

ρ4 → 0

as both hex → κ and κ→∞, for any ball Br ⊂ Ω, whereas here the above result

is proved only for the whole domain Ω.

It seems possible to obtain better estimates than (??) using the same techniques as

in [?]. In contrast, it appears more difficult to obtain (??) for any Br ⊂ Ω since the

estimates of |∇h| and |∇ρ| obtained in [?] are not available in three dimensions yet.
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