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Abstract

It is well known that when the Ginzburg-Landau parameter x = 1/v/2, the second
order Ginzburg-Landau equations may be reduced to the first-order Bogomolnyi equa-
tions. It is established in this critical case that, for any given set of vortex locations
and orders, these equations possess a unique solution which tends to the purely super-
conducting state at infinity. In the present contribution we focus on cases in which
normal state conditions at infinity are imposed. It is found that, for any given set of
vortex locations and orders, an infinite number of solutions satisfying such conditions

at infinity exist.

*Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel



1 Introduction

We study vortex solutions to the Ginzburg-Landau equations, which serve as the com-
mon model for superconductivity. Existence of such solutions was first predicted by
Abrikosov [1]. Most studies of these solutions (cf. for instance [8], [9] and [11]) assume
the material to be purely superconducting at infinity. When the applied magnetic field
is strong enough to insure the presence of regions in which the material is essentially at
a normal state, different conditions at infinity need be imposed. Obukhov & Schunck
[10] have considered recently single-vortex solutions satisfying normal state conditions
at infinity.

In general, when more than a single vortex is present in an infinite domain, the
solution is expected to be time-dependent. This conjecture is based on the numerical
results of Jacobs & Rebbi [9] which demonstrate that the force between two identical
vortices in type Il superconductors is repulsive . Multi-vortex solutions have been
obtained for the periodic Abrikosov [1] lattice, as well as arbitrary N-vortex solutions
[13] for the critical case when the Ginzburg-Landau parameter x = 1/4/2 (in which
case the superconductor exhibits the so-called self-duality [3]). Existence of the latter
solutions has been established for purely superconducting state conditions at infinity.
Arbitrary N-vortex solutions satisfying normal-state conditions at infinity have never
been studied.

The present contribution focuses on the critical case » = 1/y/2, and considers
solutions which satisfy normal-state conditions at infinity. We demonstrate that an

infinite number of such solutions exist for a given set of vortex locations and orders.



The steady state Ginzburg-Landau dimensionless equations are [5]
; 2
(;V“‘) v=9(1-[vP) (1.1a)
and

VX (VX A) = (V- ) 4 [P A (1.1b)
in which 1 is the (complex) superconducting order parameter, such that || varies
from || = 0 (when the material is at a normal state) to |¢| = 1 (for the purely
superconducting state). The magnetic vector potential is denoted by A (so that the
magnetic field is given by H = V x A), and s is the Ginzburg-Landau parameter
which is a material property. Superconductors for which x < 1/4/2 have been termed
type I superconductors, and those for which x > 1/y/2 have been termed type II.

We shall consider the situation in the zy plane, in which a uniform magnetic field

(directed along the z axis) is applied on an infinite sample of superconductor. The

superconductor satisfies in that case, normal-state conditions at infinity, i.e.

| l|im VxA=hk |, (1.1c)
and in view of (1.1a)
| 1|im =0 |, (1.1d)

wherein k denotes a unit vector in the z direction, r = || is a radial coordinate, and
h denotes the intensity of the applied magnetic field.
For x = 1/v/2 the Ginzburg-Landau equations exhibit the self-duality property:

Some of the solutions of (1.1a) and (1.1b) may be obtained, by solving the system of



partial differential equations [4], [13]

0Yn 0

ﬁ% + Apthy — ﬁa—y + Ay =0 (1.2a)
b Iz _
ﬁa—y + Aytps + ﬁ% — At =0, (1.2b)
and
1
H+ﬁ(¢%+¢%—1)=0 : (1.2¢)

wherein 1 and 1y respectively denote the real and imaginary parts of ¥, A, and
A, are, respectively, the components of A in the z and y directions and H denotes
the magnetic field magnitude. It is possible to reduce (1.2) into a scalar second-order

non-linear eliptic partial differential equation. Towards this end we set (as in [13])

. , o 1[0 .0
T 1t
J 1790 .0
82* = 5 (8_$ —|— Za—y) . (1.3a,b,c)

Equations (1.2a) and (1.2b) may then be written in the form of a single, complex-valued

equation

oy
2V2— — 1Ay = 1.4
V2o —idy =0 (1.4)
which is integrated to obtain
: .0log
A=-2Vv2 1.
V2i——— (1.5)
Consequently,
H=—V2V*f (1.6)



wherein f = log|1|. Combining (1.6) and (1.2c) we obtain
2 1 2f
Vf—|—§(1—e )=20 (1.7)

Taubes [13] examined the case in which f — 0 as r — o0, i.e., the material is purely
superconducting at infinity. For this case he proved the existence and uniqueness of
the solution for a given set of vortex locations (aq,...,ay) and respective orders
(ma,...,mpn), such that f ~ m,log|x — a,| as | — a,| — 0. We shall subsequently
demonstrate the existence of a different class of solutions for which f — —o0 as r — oc.
In this case the superconductor attains a normal state at infinity and the applied
magnetic field attains the value A = 1/v/2 [cf. (1.2¢)], or the critical value [5]. In
the next section we prove the existence of these solutions and discuss their properties.
In the last section we summarize the results obtained in this work and the questions

which remain as yet unresolved.

2 Self-duality solutions

Our goal in this section is to prove

Theorem 1 For a given set of vortex locations (aq,...,an) and respective orders
(ma,...,mp) there exist an infinite number of solutions to the equation
2 1 2f
Vf—|-§(1—e )=0 (2.1a)

satisfying the boundary conditions

lim f=-00 (2.1b)

T—00



and

f~mylogle —a,| as |x—a,]—0 n=1,...,N . (2.1¢)

We first establish existence of solutions of (2.1a) in a spherical domain containing all

the vortices. Explicitly, we seek a solution of the problem

1
V2R (1= 2™y =0 (2.2a)
1 N
fR‘T:R: —§R2+;mnlog|w—an|—|—ClogR (2.2b)
Bam,loglz —a, as |z—a,]—0 n=1,...,N (2.2¢)
for any €' > 0. To avoid the singularities at (aq,...,ay) it is convenient to introduce
the function
N
gt = R - Z mylog |z — a, (2.3)
n=1
obviously satisfying
1 N R
Vigh 4 (1= 1:[1 |z —a,|*"e? ) =0 (2.4a)
R 1 2
g ‘T:R: —gR + ClogR . (2.4b)

Existence of solutions of (2.4) is verified by use the following theorem, which is proved

in [12] for more general elliptic operators.

Theorem 2 Let f(z,u) be C' with respect to u and Holder continuous with respect
to z for some 0 < @ < 1 in a bounded domain Q € R™. Let ¢ be continuous on 0fQ.

Suppose that functions w and u exist, such that

V3 + f(z,u) <0 inQ a>¢ on dQ

VQQ—I—f(a:,g)ZO mn Q u< ¢ ondf



Then, a solution to the problem
Viu+ f(z,u) =0 inQ (2.5a)
u=¢ ondQd (2.5b)
exists, and satisfies u < u < 1u

The functions @ and u are, respectively, a supersolution and a subsolution of (2.5).

In order to find such a supersolution and a subsolution for (2.4), consider the function

1
gé% = —grz—l—ClogR

Since
1 N
R
Vzgé% + 5(1 — 1:[1 |z — an|2m"6290 ) <0,

g& serves as a supersolution for (2.4). Consider now the problem

N
1
Vvigh 4 S - I] Iz - a.* ) = 0 (2.6a)
n=1
1
gﬂT:R = —gRQ + ClogR . (2.6b)

Inasmuch as this problem is governed by a Poisson equation in a bounded domain it

is solvable. Since

N

1 R

R R n
V2(gl_go):§H|w_(ln2m6290 <0 ,
n=1
we obtain by the maximum principle

R R

91 < %

Hence, by (2.6a)

N
1
Vit + (1= [ le - au i) > 0
n=1
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Therefore, g{% serves as a subsolution for (2.4) and the existence of g is proved.

We next turn to prove equicontinuity of the set of functions ¢ for R > Ry in the
compact domain Br, = {z | || < R} containing all the vortices (other than that
Ry is arbitrary). To this end we first need to prove uniform boundedness of the set
{9"YrsR, in Br,. The above-obtained estimates g5’ and g¢f* are insufficient for this

purpose because for every fixed z € R?

lim ¢t = 0o
R—oo 9o

lim ¢f = —
R—oo 9

A useful upper bound may be obtained by subtraction of EnNzl my log |z — a,| from

Taubes’ [13] solution. The result, denoted by u, thus satisfies

N
1
Viu + 5(1 — 1:[1 |z — a,|*"e**) =0 |,
and
N
UN—Zmnlog|w—an| as x| — oo
n=1

and since for sufficiently large R (say, for R > Ry, because we choose arbitrarily large

Ry) we have
R
u|7’:R > 9 ‘T:R

Thus, u can serve as a supersolution for (2.4), whence
u>g® YR>Ry, Ve € Bp . (2.6)

Thus,

M = sup sup gR§ sup u < 00
R>RO fEEBRO IIJEBRO



Next we estimate Vg in Bp,. Here we need, (as is evident in the following) to derive
an upper bound for g which tends to —occ as |z| — oo for R — oc. We thus define

the function
M T S Ro
gt = ) (2.8a)
[C 4 e(R)] 1ogRi —S(P=R)+M  Ro<r<R
0
wherein

0 . (2.8b)
By (2.6), g© < g in Bpr,, whereas in the annular domain Ry < r < R we have
1 N R
vigh + (1= 1:[1 |z — a,|*™e¥ ) > 0
gt = gf on 0BRr
"> " ondBp

and hence, gf > ¢ Va.

We now represent (2.4) in the alternative form

N

=gt Clogr+y [ G T[le-afrentde L 29
8 2 Jiel<r .
> n=1
where
L o R
Gl.€) = 5-og o — € — - log (g llePe — %

is the Green’s function for Laplace equation in Bgr. Taking the gradient of (2.9) we

obtain
1
sup [V <1 Ro+ sup / € — an P dg 1
©€Bp, w€Bxr, JIE|<R 47T|f13—§| H
1 2 2 _2R2
+ sup / |£| ‘|£| g 6‘ H |£ an|2mn 2g df
vebr, Jel<r AT |16z — 27 (2.10)
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The first two terms on the right-hand-side of (2.10) are bounded as R — oo, whereas

the last term is of O(1/R?). Hence,

sup sup |Vl <L <o . (2.11)
R>R0 IIJEBRO

It remains to prove uniform boundedness from below of ¢t for R > Ry in Bpr,.

Towards this end we prove

Lemma 1 Let " be a solution of (2.4). Then

/ImISRI

wherein ¢ is defined by (2.8b).

H |l — an|2m"629Rdx > 47(C + ¢)

n=

N
=1

Proof: Since g% — ¢! is non-negative in Bg and vanishes on 9 Bpr, we must have

g™
or

99"
r=R — oo

- ~ R
r=R R 4

Hence,

N R 1
/ H |z — a,|*""e* dx = 2/ (VzgR + —) de =
je|<B 25 jel<R 2

R
:2/ aids—l-ﬂ'RzZZlﬂ'(C—l-G)
|x|=R

r

O

If we suppose that ¢t is not uniformly bounded for R > Rg in Bpg,, then a sequence

{Rr}72, and a point xy € Bp, exist such that

lim g™ () = —oc

k—o0

In view of (2.11) we must then have

lim gf*(z) = —c V& € Bp,

k—o0
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Hence,
V6 >0, IK(§) such that k> K = exp{2¢™*)} <& Va € Bp,

In the annular domain Ry < r < Ry we can show, similarly to the derivation of (2.8),

that

1 1
9" <[C +eRy)log o — (7 = RY) + S logs
0

wherein

C'log Ry — R3/8 — (logé)/2
log(Ri/Ro)

€(Ry) =
Therefore, evidently

N
k> K= / H |z — a,|*"" exp{2¢T*}dz < A5 (2.12)
|| <R

n=1
wherein A is independent of both k& and 6. The last result contradicts lemma 1, and
hence the set of functions {g%} rs g, must therefore be bounded uniformly from below
in Bg,.
From the uniform boundedness of {g%}rsr, and |[Vg®|rs g, in Br, and the Arzela-
Ascoli theorem follows the existence of an increasing sequence {Rj}72, such that
limy_o R = o0 and

sup [g™ —g| —— 0
mEBRO k—o0

where g € C'(Bp, ). The latter limit is valid for any positive Rg, hence ¢ is well defined

and continuous for any € R?% Furthermore, by (2.8)

1
g < Clog (9%0) — §(T2 - RH+ M Vr > Ro (2.13)

11



in which SRo can assume any value of Ry for which g%t serves as an upper bound for g¥.
To complete the proof of theorem 1 we need to show that ¢ satisfies (2.4). We,

thus, represent (2.9) in the form

1
gfh = ——p2 4 |C - —/ H |z — a,|*™" exp{2¢gT*}da| log Ry, +
8 o |<Rul ,
N
+ = log|z — &| ] 1€ — an|*"" exp{2g™}d¢ —
A7 Jie1<ry nl;[l
N
1 |z|° €] 233'5) 2 R
R log (1_|_ - £ —a,|" " exp{2¢97*}dE . (2.14
5 Jygen, Rl 2 nl;[l| | {297} (2.14)

In view of (2.13), the last term on the right-hand-side of (2.14) must vanish as k — oo.

For the third term we have

N
o1 m
Jim g [ ol €l T 16—l exppog™ e =
>4k n=1
1 N
= log|z — ¢ }1 & — a,|*"e?de . (2.15)

In order for g to be single-valued and bounded we must have

lim C——/ H|:13—a 12" exp{2¢™}da | log Ry = b < 00,
koo x| <Rkl
(2.16)
hence
1 N
—/ H |z — a,|*""eda = C . (2.17)
T JR2 el
Combination of (2.14), (2.15), and (2.16) yields
1 N
g=—gr +b+—/ log|z — &| [[ 1€ - anl™ e de . (218
n=1

consequently,

N
1
Vig + 3 (1 — H |z —a, 2mn€2g) =0 , (2.19a)

n=1

12



and, in view of (2.18),

1
g~ —grz—l—Clogr asr — 00 . (2.19b)
From (2.19) it follows that

N
f:g+2mnlog|w—an|

n=1

is a solution for (2.1) for any €' > 0. Theorem 1 is thus proved.

By the very construction of f, at least one solution exists for each ' > 0. Further-
more, we can arbitrarily choose the center of Br. As we demonstrate in the following,
the latter merely represents a translation of the solution and the locations of the vor-
tices.

The most general solution of (2.19a) can be represented

N
1y 1 2my 297
g=—gr 4ot [ togle—el J[IE-aifrreae L 220

n=1

where ¢ is harmonic in R%. In order to satisfy (2.1b)
Y=+ oyt

By relocating the origin we may eliminate the dependence of 4 on x and y. The solution
thus obtained corresponds to an appropriately translated set of vortex locations.
In the following we demonstrate that for a fixed origin location and a given value

of C' the solution must be unique.

Theorem 3 Let fi and f; be solutions of (2.1) for a given set of vortex locations

(a1,...,an) and respective orders (mq,...,my) and a given origin location. Let

/ 2hdy = 470y ; / e22dy = 470y
R2 R2

13



in which Cy > Cy > 0. Then, fy > fi V& € R% Furthermore, if Cy = Cy then fi = fo

Proof: Set ¢ = fo — f1. Clearly,

and, by (2.20), we have, as r — 00, ¢ ~ (C3 —C7)logr . Hence, when Cy > (7, by the
maximum principle, ¢ must be positive everywhere. Suppose now that Cy = C5, then,
¢ ~ (by — b1) as 7 — co. By the maximum principle we have ¢ = (b — b1). In view of

the equation ¢, it then necessarily vanishes identically.

Theorems 1 and 3 demonstrate an analogy between the solutions of the one-dimensional
(cf. [7],[5], [2]) and the two-dimensional Bogomolnyi equations. The Taubes’ [13] solu-
tion is similar to the solution ¢ = 1, A = 0, and the solutions presented in this section
are analogous to the symmetric solutions presented by Chapman [5]. Despite this anal-
ogy there are major differnces between the one-dimensional and the two dimensional
cases, e.g., one-dimensional solutions do not admit vortices.

Finally, we examine the behavior of solutions in the limit ' — oo. Theorem 3
shows that f(z,C') is a monotonically increasing function of C for any # € R? and
a given set of vortex locations and orders. Clearly, f(z,C) is bounded by Taubes’
solution, and therefore the limit of f(x,C) as €' — oo must exist. It is possible to
show that the limit must be a solution of (2.1) as well . For the radially symmetric
case, when at most a single vortex is present, the limit is necessarily Taubes’ solution.

This is so because if the limit of f as @ — oo exists, it must be either —oco or 0. In the

14



former case C' must be finite since V2 f ~ —1/2 and hence f ~ —r?/8. Consequently, f
must vanish at infinity, and is thus identical with Taubes’ solution, which is the unique
solution in that case.

When a number (larger than one) of vortices are present the solution is not radially
symmetric and lim,_ ., f may not exist. It is not clear in that case whether f indeed

converges to Taubes’ solution as ' — oc.

3 Conclusion

In the following we summarize the main results obtained in this work as well as point
out some open questions.

For the critical case kK = h = 1/v/2, we have extended to the real plane the results
obtained by Chapman [5] on the real line. Chapman [5] has obtained closed-form
solutions satisfying the boundary conditions 1 — 0 and A’ — 1/v/2 as |2| — oo, which
characterize the normal state. These solutions converge pointwise as f¢2dx — 0
to the purely superconducting state v = 1, A = 0. In the two-dimensional case the
situation is more complicated. The solutions are characterized in that case by a set of
vortex locations and orders. For each set we can find a unique solution which tends to
a perfectly superconducting state at infinity. In addition, as is demonstrated in section
2, there exists a whole family of solutions, characterized by the same set of vortex
locations and orders which tend to a normal state at infinity. Each solution of this
family is characterized by the parameter C' = f|¢|2dx/47r which may be interpreted

as the total amount of superconductivity in the plane. Furthermore, these solutions

15



increase monotonically with €' for any = € R2.

The situation in the limit ' — oo, for any arbitrary set of vortex locations and
orders, is not yet clear. Naturally, one expects that the limit would be Taubes’ [13]
solution corresponding to the same set of vortex locations and orders. However, this
result was proved here only for radially-symmetric cases, where at most a single vortex
is present. In other (non-radially symmetric) cases, it is not clear whether the limit
function, which must solve (2.1a), is indeed identical with Taubes’ solution.

Radially symmetric solutions, describing a normal state at infinity, have recently
been reported by Obukhov & Schunck [10] for values of x which are not necessarily
close to the critical value. Much of the report in [10] is devoted to discussion of results
obtained via numerical integration of (1.1) in radially-symmetric cases. The analysis
in section 2 proves existence of such solutions for the critical case.

Finally, we comment on the energy of the self-duality solutions whose existence was
proved in section 2. Since the energy of the normal state is infinite, in view of (1.1c),
all the solutions must have infinite energy. Yet the difference between their energy and
the energy of the normal state is finite. In fact this difference identically vanishes for
all of these solutions. To demonstrate this fact we first write the difference between

the Gibbs free energies of the superconducting solution and the normal state in the

2
) dxdy

form [6]

_ ., vl ~ o |1 .
J—/(—w LA T
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Then, rearranging the integrand yields

J = / {Jf LRIV X (\/§|¢|2A F (Ve — ¢v¢*)) : k} dady +

/ [(f— 2h)H + h* — % + (i - 2) Vo +i (% - ﬁ) (V*A-Vip — A wp*)] drdy

2
wherein Jy, Jo, and Js are the respective right hand sides of (1.2a), (1.2b), and (1.2¢).
Obviously, For the critical case, h = x = 1/v/2, the minimum is obtained when
J =J1 = Jy = Js = 0. Hence, all the self-duality solutions we have obtained, are

energetically equivalent to the normal state.
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