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Abstract

The linear bifurcation and stability of periodic solutions to the

Ginzburg-Landau Equations in the plane are investigated. In partic-

ular, we find new infinite families of solutions, which include the few

solutions previously reported in the literature. Then, the vortex struc-

ture of these new solutions is examined. In addition, the energy of a

large class of solutions is approximated in the limit case for which the

fundamental cell is a very thin and long rectangle. In that limit, we
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find that the energy of the solution representing the well-known tri-

angular lattice is the lowest. Finally, we examine the stability of one

infinite family of solutions, including both the triangular and square

lattices, in an infinite-dimensional space of perturbations (in contrast

to a previous work in which stability was examined only in a finite-

dimensional space). We find that in addition to the triangular lattice

other solutions are stable as well.

1 Introduction

Periodic solutions to the Ginzburg-Landau equations have first been

obtained by Abrikosov [1], who analyzed the bifurcation of these so-

lutions from the normal state. Abrikosov [1] focused attention on the

square lattice which is the only periodic solution which has one vortex

in its fundamental cell. Following the same procedure in [1], Kleiner

et al. [10] found that the energy of the triangular lattice, which is

the solution possessing two vortices in its fundamental cell, is lower

than that of the square lattice. The triangular lattice has also been

observed in experiments [7], and is therefore believed to be the only

stable periodic solution.

In a recent contribution, Chapman [3] presented Abrikosov’s anal-
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ysis [1] as a formal asymptotic expansion by applying the framework in

[11] for the bifurcation of weakly non-linear solutions to the Ginzburg-

Landau equations. In addition, Chapman [3] obtained new solutions

possessing either three or four vortices within the unit cell. He also

examined, in [4] the linear stability of the square lattice and the trian-

gular one, and found that the square lattice is unstable, whereas the

triangular lattice was found to be stable for two modes of perturba-

tions.

Evidently, linear bifurcation analysis as well as linear stability anal-

ysis are far from being complete. Only very few solutions, out of infin-

ity, have been found. Furthermore, their stability was examined only

in a finite dimensional space of perturbations. The present contribu-

tion, thus, extends both the linear bifurcation and the linear stability

analyzes of periodic solutions. We obtain infinite sets of solutions (in-

cluding all the solutions that were previously derived), and describe

the vortex structures manifested by some of these solutions. We also

demonstrate that the energy of the triangular lattice is the lowest, at

a certain asymptotic limit, in a class which may contain all possible

weakly non-linear periodic solutions. Finally, we examine the linear

stability of one of the infinite families of solutions obtained in this
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work. In contrast to [4] the space of perturbations in which stability

is being examined is infinite-dimensional.

The Ginzburg-Landau energy functional may be represented in the

following dimensionless form [5]

E =

∫ (
−|ψ|2 + |ψ|4

2
+ |H|2 +

∣∣∣∣1κ∇ψ − iAψ

∣∣∣∣2
)
dxdy (1.1)

in which Ψ is the (complex) superconducting order parameter, such

that |Ψ| varies from |Ψ| = 0 (when the material is at a normal state)

to |Ψ| = 1 (for the purely superconducting state). The magnetic

vector potential is denoted by A (the magnetic field is, then, given by

H = ∇ × A), and κ is the Ginzburg-Landau parameter which is a

material property. Superconductors for which κ < 1/
√
2 are termed

type I superconductors, and those for which κ > 1/
√
2 have been

termed type II. Note that E is invariant to the gauge transformation

Ψ → eiκηψ ; A → A+∇η (1.2)

We seek periodic local minimizers of E in the xy plane, i.e., we

require both |Ψ| and H to be periodic. The Euler-Lagrange equations

associated with E (the steady state Ginzburg-Landau equations) are
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given by(
i

κ
∇+A

)2

Ψ = Ψ
(
1− |Ψ|2

)
, (1.3a)

−∇× (∇×A) =
i

2κ
(Ψ∗∇Ψ−Ψ∇Ψ∗) + |Ψ|2A , (1.3b)

What are the natural boundary conditions of the problem? Let

(ψ,A) be a solution of (1.3), and let ψ = ρ(x, y)eiθ(x,y). Both ρ and

H have to be periodic on the boundary of any fundamental periodic

cell, i.e., any rectangle R = [x, x+Lx]× [y, y+Ly]. Let t denote either

Lxî or Ly ĵ, and let x = (x, y). Then,

ψ(x+ t) = eiκζ(x,t)ψ(x) ; A(x+ t) = A(x) +∇Υ(x, t) . (1.4)

Since the zero set of ψ is discrete [6] we can substitute (1.4) in (1.3)

to obtain ∇Υ = ∇ζ [cf. also [12]]. The latter is equivalent to the

“boundary condition”

ρ

[
1

κ
∇θ −A −−− periodic on ∂R

]
(1.5)

The above condition together with the requirement that ρ and H

should both be periodic constitute the natural boundary conditions

of the problem. Chapman [3] proposed boundary conditions different

than (1.5). Instead he suggested to impose periodicity of
(
i
κ∇+A

)
ψ·

n̂. Chapman’s condition is, however, too restrictive. In fact, none of

the solutions derived in [3] satisfy it.
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As the Ginzburg-Landau equations are invariant to (1.2) we may

choose the gauge (following [1, 3]) A = (0, A(x, y), 0). Then, H =

(0, 0, H(x, y)) and H = ∂A/∂x. We investigate the linear bifurcation

from the normal state Ψ ≡ 0, A = hx, with h serving as a bifurcation

parameter. Following the same steps taken in [3] we assume first the

asymptotic expansion

Ψ = ϵ1/2ψ (1.6a)

A = hx+ ϵa (1.6b)

h = h(0) + ϵh(1) + . . . (1.6c)

a = a(0) + ϵa(1) + . . . (1.6d)

ψ = ψ(0) + ϵψ(1) + . . . (1.6e)

The linearized equations possess the form

− 1

κ2

(
∂2ψ(0)

∂x2
+
∂2ψ(0)

∂y2

)
+

2ih(0)x

κ

∂ψ(0)

∂y
= ψ(0) − (h(0))2x2ψ(0) ,

(1.7a)

−∂
2a(0)

∂x∂y
=

i

2κ

(
ψ(0)∗∂ψ

(0)

∂x
− ψ(0)∂ψ

(0)∗

∂x

)
, (1.7b)

∂2a(0)

∂x2
= h(0))x|ψ(0)|2 + i

2κ

(
ψ(0)∗∂ψ

(0)

∂y
− ψ(0)∂ψ

(0)∗

∂y

)
. (1.7c)

The boundary condition (1.5) for the specific gauge we have chosen

6



become after linearization

∂θ

∂x

∣∣∣∣(x,y+Ly)

(x,y)

=
∂θ

∂y

∣∣∣∣(x,y+Ly)

(x,y)

= 0 (1.8a,b)

∂θ

∂x

∣∣∣∣(x+Lx,y)

(x,y)

= 0 ;
∂θ

∂y

∣∣∣∣(x+Lx,y)

(x,y)

= κh(0)Lx (1.8c,d)

Integrating (1.8a,b) and (1.8c,d) we obtain

θ|(x,y+Ly)
(x,y) = Λ ; θ|(x+Lx,y)

(x,y) = κh(0)Lxy +Θ , (1.9a)

where Λ and θ are constants. Hence the overall variation of θ along

∂R is κh(0)LxLy. Continuity of ψ(0), then, yields

κh(0)LxLy = 2πN (1.10)

where N is the number of vortices within R, or the winding number

of ψ(0).

If ψ(x, y) is a solution of (1.7), then so is e−iΛyψ(x−Λ/κ, y). Yet,

the latter solution is periodic in y in view of (1.9a). We can there-

fore substitute into (1.7) without any loss of generality the Fourier

expansion

ψ(0) =
∞∑

n=−∞
eiknygn(x) (1.11)

to obtain

− 1

κ2
g′′n =

(
1− k2n2

κ2
+

2kn

κ
h(0)x− (h(0)x)2

)
gn . (1.12)
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Note that the sequence {gn(x)}∞n=1 must be in ℓ2 for any fixed value

of x. The periods in the x and y directions are given in terms of the

new variables k and N , in view of (1.10) and (1.11), as

Ly =
2π

k
; Lx =

kN

κh(0)
(1.13)

Applying the transformation x→ x− nk/κh(0) to (1.12) we obtain

ψ(0) =
∞∑

n=−∞
eikny

[
C1
ng

(1)

(
x− nk

κh(0)

)
+ C2

ng
(2)

(
x− nk

κh(0)

)]
,

(1.14)

in which g(1)(x) and g(2)(x) are the fundamental solutions of (1.12)

for n = 0.

In view of (1.13), (1.9) and the periodicity of ρ we have

ψ(0)(x+ Lx, y) = ei(kNy+Θ)ψ(0)(x, y) . (1.15)

Substitution of the above relation into (1.14) yields

Cj
n+N = eiΘCj

n ; j = 1, 2 (1.16)

As the sequence

{
C1
ng

(1)

(
x− nk

κh(0)

)
+ C2

ng
(2)

(
x− nk

κh(0)

)}∞

n=1

must be in ℓ2 for all x, at least one solution of (1.12) has to be in

L2(R) in view of (1.16). Non-trivial L2 solutions to (1.12) with n = 0
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exist when h(0) = κ/(2n+1) . The largest eigenvalue is h(0) = κ, with

the corresponding eigenfunction

g0 = exp

{
−κ

2

2

(
x− k

κ2

)2
}

. (1.17)

Substituting in (1.14) we obtain the general periodic solution to (1.7a)

for h(0) = κ

ψ(0) =
∞∑

n=−∞
Cn exp

{
ikny − κ2

2

(
x− nk

κ2

)2
}

. (1.18)

where Cn+N = Cne
iΘ, N is a natural number, and Θ ∈ [0, 2π). Since

we may remove Θ by applying the transformation y → y−Θ/kN , we

shall require Cn+N = Cn in the sequel.

We may now solve for (1.7b) and (1.7c), and then, by applying the

expansion (1.6), obtain the next order balance for ψ(1) which is an

inhomogeneous version of (1.7a). The orthogonality condition which

must be satisfied in order for the inhomogeneous next order balance

to be solvable, is

1√
2

(
1

2κ2
− 1

) ∞∑
r,m=−∞

Cn−r+mC
∗
mCr exp

{
−κ

2

2

[
(r −m)2 + (r − n)2

]}
−h

(1)

κ
Cn = 0 ,

where 0 ≤ n ≤ N − 1. The detailed derivation of the above condition

can be found in [3]. It is more convenient to write the above condition
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in the form

N−1∑
r=0

N−1∑
m=0

Cn+rC
∗
n+r+mCn+mSN,rSN,m − h̄(1)Cn = 0 (1.19a)

wherein 0 ≤ n ≤ N − 1,

h̄(1) =
2
√
2κ

1− 2κ2
h(1) , (1.19b)

and

SN,r =

∞∑
n=−∞

q(Nn+r)2 ; q = e−
k2

2κ2 (1.19c)

As was pointed out in the beginning of this section, a few solutions

to (1.19) are already known. The most obvious one is

Cn = C (1.20)

which is the only solution for N = 1. For k = κ
√
2π it is known as

Abrikosov’s square lattice. For N = 2 we have, in addition to (1.20),

the solution

C2n = C , C2n+1 = ±iC , (1.21)

which for k = κ
√
π
√
3 is known as the triangular lattice. Chapman

[3] obtained some of the solutions for N = 3 and N = 4.

The following transformations leave (1.19) invariant

Cn → eiθCn ∀n ∈ N ; θ ∈ R , (1.22a)
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which changes only the phase of ψ in view of (1.18).

Cn → ei2πn/NCn , (1.22b)

which is equivalent to the translation: y → y + Ly/N .

Cn → Cn+1 , (1.22c)

or equivalently, x→ x+ k/κ2, and a phase change in ψ.

Cn → CN−n , (1.22d)

or x → −x, ψ → ψ∗. Another important property of any solution

of (1.19) is that Cn(h̄
(1)) =

√
h̄(1)Cn(1), as can be verified by direct

substitution. This would allow us to consider only h̄(1) = 1 in the

sequel.

The rest of this contribution is arranged as follows: In the next

section we obtain some of the properties of the solutions which are

analytic functions of q near q = 0. Some of these solutions will be

derived in closed form. In § 3 we obtain the lattices, or the vortex

structures, embedded in some of the solutions obtained in § 2, and

discuss their symmetry properties. In § 4 we demonstrate that in the

limit q → 0 (1.21) has the lowest energy of all solutions which are

analytic functions of q, and thus support the claim that the triangular
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lattice has the lowest energy of all the periodic solutions of (1.3).

In § 5 we analyze the local stability of some of the solutions derived

in § 2, including the square lattice, the triangular lattice, and the

solution which has been obtained for N = 3 [3]. In the last section,

we summarize the main results of this work and extend the discussion

of several key points, insufficiently emphasized within the analysis.

Finally, the appendix includes an analysis of the geometry of periodic

lattices which are invariant to 180◦ rotations with respect to each point

in the lattice.

2 Solutions as analytic functions of q

In the following we investigate some of the properties of the solutions

of (1.19) which are analytic functions of q near q = 0, i.e.,

Cn =

∞∑
k=0

ankq
k . (2.1)

In general, solutions of a polynomial system whose coefficients are an-

alytic functions of a parameter [including (1.19)], need not necessarily

be analytic functions of that parameter. For instance the solutions

may be meromorphic functions of that parameter.

In this section attention is focused, however, on analytic solutions
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only. Though we cannot prove this in general, it appears reasonable

to believe that all solutions can essentially be described by (2.1). The

exception is, of course, the degrees of freedom the system (1.19) may

possess. It easily follows from (1.22a) that at least one degree of

freedom always exists: the arbitrary parameter θ. Thus (2.1) can be

true only when θ(q) is analytic near q = 0.

Substituting (2.1) into (1.19) we obtain the recurrence relation

ank =
∑

r2+s2≤k

∑
m,j≥0

m+j≤M

a(n+r)ja
∗
(n+r+s)(M−m−j)a(n+s)m , (2.2)

where M(r, s) = k − r2 − s2. (Note that in the above r and s may be

negative.) For k = 0 it reduces to

an0 = |an0|2an0 , (2.3)

and thus, |an0| ∈ {0, 1}. As an immediate corollary of (2.3), it is

possible now to show that at least all real solutions of (1.19) must be

analytic functions of q near q = 0: Any formal series of q derived from

(2.2) must converge in some neighborhood of q = 0 (cf. [2]). Since

the number of real formal series satisfying (2.2) is [by (2.3)] 3N , which

is, by Bezout theorem [9], the maximal number of real solutions to

(1.19), every real solution must have the form (2.1) in the vicinity of

q = 0. This corollary supports our conjecture that any solution of
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(1.19) can essentially be described by (2.1).

Substituting (2.3) into (2.2) with k = 1 we obtain

an1 = [−2 + ibn1]an0 (2.4)

where the bn1’s are arbitrary. The apparent non-uniqueness of an1 will

be subsequently examined.

Substituting (2.3) and (2.4) in (2.2) with k = 2 we obtain the

solvability condition

ℑ
{
a∗(n+2)0a

2
(n+1)0a

∗
n0 + 2a(n+1)0(a

∗
n0)

2a(n−1)0 + a∗(n−2)0a
2
(n−1)0a

∗
n0

}
= 0

(2.5)

which must be satisfied whenever |an0| = 1. Setting an0 = exp{iθn}

we obtain

sinχn+1 − 2 sinχn + sinχn−1 = 0 (2.6a)

where

χn = θn+1 − 2θn + θn−1 (2.6b)

Hence, in the case |an0| = 1 for all n we must have sinχn =const., or

χn ∈ {χ, π − χ} , where χ ∈ [−π/2, π/2] (2.7)

and hence

cosχn = αn cosχ (2.8)
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where αn ∈ {−1, 1}. Periodicity then implies,

N−1∑
n=0

χn =
(π
2
− χ

)N−1∑
n=0

αn +N
π

2
= 2πL (2.9)

where 0 ≤ L ≤ N − 1 is an integer. We may now distinguish between

two different cases:

N−1∑
n=0

αn ̸= 0 (2.10a)

and

N−1∑
n=0

αn = 0 . (2.10b)

In the first case χ can assume at most N − 1 distinct values. In the

second case, solutions may exist if and only if N is divisible by 4, in

which case χ may assume any value in the interval [−π/2, π/2]. The

foregoing discussion thus explains the non-uniqueness of solutions for

N = 4 which was discovered in [3], as in this case the solutions depend

on an additional arbitrary parameter: χ.

If (2.6) is satisfied, (2.2) with k = 2 yields

an2 =
1

2

[
12− cosχ (αn+1 + 2αn + αn−1)− b2n1 + ibn2

]
(2.11)

We now focus on the special class of solutions for which |Cn| = |C| for

all n. Denote this class by A (C ∈ A(⊂ CN ) ⇒ |Cn| = |C| ∀0 ≤ n ≤
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N − 1). Clearly, every solution in A must satisfy |an0| = 1. Hence,

from (2.11) it follows that

αn+1 + 2αn + αn−1 = const. . (2.12)

Two different solutions for (2.12) exist:

αn = ±1 ; αn = ±(−1)n (2.13a,b)

Since in case (b)
∑N−1

n=0 αn = 0, N must be divisible by 4 in this case

in view of (2.9). In case (a) χ = 2πL/N for 0 ≤ L ≤ N − 1, and in

case (b) χ is arbitrary.

The foregoing discussion is the basis for the following result, stating

the general structure of solutions in class A.

Theorem 1 Let C ∈ A and Cn = |C|eiθ̄n. Then, either

χ̄n = θ̄n+1 − 2θ̄n + θ̄n−1 =
2πL

N
; 0 ≤L ≤ N − 1 (2.14a)

or

χ̄n =
π

2
± (−1)n

(π
2
− χ

)
; −π

2
≤χ ≤ π

2
(2.14b)

proof: We first prove that (2.14) indeed represent solutions in class A.

To this end, it suffices to show that they satisfy (1.19). Indeed, since

(θ̄n+p − θ̄n)− (θ̄n+p+q − θ̄n+q) = −
p∑

m=0

q∑
k=0

χ̄n+m+k (2.15)
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and since SN,p = SN,N−p, both (2.14a) and (2.14b) satisfy (1.19).

To prove that any C ∈ A satisfies (2.14) we first show that for any

C ∈ A we must have

C = exp{iθ(q)}C̃ , (2.16a)

where the coefficients in the power series expansion of C̃ ∈ A must

satisfy

ank = [fk + i(−1)ndk] an0 ∀k ≥ 1 , (2.16b)

in which fk and dk are real numbers, and θ(q) is analytic near q = 0.

We demonstrate in the following that for (2.14a) dk = 0 for all k, as

the dk’s reflect possible dependence of χ on q in (2.14b).

We prove (2.16) by invoking inductive arguments. We first show

its validity for n = 1. To this end we need to examine (2.2) with

k = 3. In view of (2.4) and (2.11) this relation is solvable iff

Ab1 = 0 , (2.17)

where b1 = [b11, . . . , bn1]
T and A is an N×N symmetric matrix whose
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components are given by

Amj =



αn+1 (j −m) = 2 mod N

−2 (αn+1 + αn) (j −m) = 1 mod N

(αn+1 + 4αn + (αn−1) j = m

−2 (αn−1 + αn) (m− j) = 1 mod N

αn−1 (m− j) = 2 mod N

0 otherwise

.

(2.18)

For both case (2.14a) and (2.14b) A is a circulant matrix. In case

(2.13a) r(A) = N − 1 and kerA = span [1, . . . , 1]T . In case (2.13b)

r(A) = N − 2 and kerA = span
{
[1, . . . , 1]T ,

[
−1, 1, . . . , (−1)N

]T}
.

Hence,

an1 = [−2 + ib1 + i(−1)nd1] an0 ,

where d1 = 0 in case (2.13a). Multiplication of C by exp{−ib1q}

demonstrates the validity of (2.16) for k = 1.

Assume by induction the validity of (2.16) for 0 ≤ k ≤ K − 1 for

any C ∈ A. In case (2.13a) we assume dk = 0 as well. It is sufficient

to consider only θ(q) ≡ 0 in (2.16a). If not, we can obtain the next

order term for e−iθ(q)C, which must be in A as well.
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As |Cn| = |C| for all n we have

k∑
m=0

anma
∗
n(k−m) = Fk . (2.19)

Substituting (2.16b) into the above relation with k = K we obtain

FK =
K∑

m=1

(fmfK−m − dmdK−m) + 2ℜ (anKa
∗
n0) ,

and hence

anK = [fK + ienK ] an0 . (2.20)

Substitution of (2.20) into (2.19) with k = K + 1 yields

ℜ
(
an(K+1)a

∗
n0

)
= f̃K+1 − enKd1(−1)n . (2.21)

wherein f̃K+1 ∈ R We now substitute (2.16b) for 1 ≤ k ≤ K − 1

together with (2.20) and (2.21) into (2.2) with k = K + 2. A tedious

calculation leads to the solvability condition

AnmemK = (−1)nGK , (2.22a)
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where

GK = −2d1f̃K+1 − 2d2fK + 4d1fK

+
∑

m,j≥1
3≤m+j≤K

[2fjfK+2−m−jdm − fjdK+2−m−jfm + djdK+2−m−jdm]

+
∑

m,j≥1
2≤m+j≤K

[2fjfK+1−m−jdm − fjdK+1−m−jfm + djdK+1−m−jdm]

+
∑

2≤r2+s2≤K+2

∑
m,j≥1

m+j≤M

{
fjfM−m−jdm [(−1)s + (−1)r]− fjdM−m−jfm(−1)r+s + djdM−m−jdm

}
,

(2.22b)

and M = K + 2 − r2 − s2. za In case (2.13a) GK vanishes, and

hence enK = bK . Then, multiplying C by exp{−ibKqK} yields a

solution in A which satisfies (2.16). In case (2.13b) if GK ̸= 0 no

solution to (2.22a) can exist as the right-hand-side is not orthogonal

to kerA. Consequently, in such a case C is not a solution of (1.19)

and is, therefore, not of any interest. If GK = 0 (2.16) is satisfied with

dk ̸= 0, which completes the proof of (2.16).

In case (2.13a), the proof of the theorem is complete since by (2.16)

any solution must satisfy

Cn = eiθ(q)

( ∞∑
k=0

fkq
k

)
an0 . (2.23)

If the power series on the right-hand-side of (2.23) converges in some

neighborhood of q = 0 [2], it satisfies (2.14a). In case (2.13b) any
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solution must be of the form

Cn = eiθ(q)

[ ∞∑
k=0

(fk + i(−1)ndk) q
k

]
an0 . (2.24)

Let

χ(q) = arctan

{∑∞
k=0 dkq

k∑∞
k=0 fkq

k

}
,

Which is an analytic function near q = 0, as d0 = 0 and f0 = 1. Then,

Cn = eiθ(q)|C(q)|ei(−1)nχ(q)an0 . (2.25)

It is easy to show that (2.25) satisfies (2.14b).

□

To conclude this sections we present solutions for which |Cn| ∈ {|C|, 0}.

Two different types of solutions exist in this class, in addition to class

A solutions:

1. Solutions for which

C =

C0, 0, . . . , 0︸ ︷︷ ︸
R terms

, C1, . . . , CN−1, . . . , 0


T

,

where C̄ = [C0, C1, . . . , CN−1]
T ∈ A, and R ≤ 2 is an integer.

In view of (1.18) we obtain, however, ψ(C, k/R) = ψ(C̄, k), and

hence, this type of solutions is not of any particular interest.
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2. Solutions for which C3n = 0, |C3n+1| = |C3n+2| = |C|, in which

case N must be divisible by 3. As in class A, there are two

different cases (θn = arg{Cn}):

θ3n+4 − 2θ3n+1 + θ3n−2 = θ3n+5 − 2θ3n+2 + θ3n−1 =
2πL

N/3

(2.26a)

and

θ3n+4 − 2θ3n+1 + θ3n−2 = θ3n+5 − 2θ3n+2 + θ3n−1 =
π

2
± (−1)n

(π
2
− ϕ

)
(2.26b)

where 0 ≤ L ≤ N/3 − 1 and −π/2 ≤ ϕ ≤ π/2. In case (2.26b)

N must be divisible by 12.

Unlike class A, we do not prove that the above types include all pos-

sible solutions for which |Cn| ∈ {|C|, 0}. Though it seems reasonable

to believe that this is indeed the situation, the proof appears to be

technically difficult.

3 Vortex structure

In this section we first present the vortex structures embedded in

(2.14a) and (2.26a), and analyze some of their properties. We then
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briefly sketch via a simple numerical calculation, the dependence of

the vortex location on the parameters k and χ for the solution (2.14a)

with N = 4.

It is more convenient to present the location of the vortices by the

normalized coordinates

ξ = x/Lx and η = y/Ly (3.1)

rather than by the original coordinates x and y. In terms of these

coordinates ψ(0) is expressible in the form

ψ(0) =

∞∑
n=−∞

Cne
i2πnηq(Nξ−n)2 . (3.2)

The points at which ψ(0) vanishes, or the vortices, for the class of

solutions (2.14a) are given by

(ξm, ηm) =

(
2m+ 1

2N
,
2(M +mL) + 1

2N

)
, (3.3)

where 0 ≤ m ≤ N − 1, and the integer 0 ≤ M ≤ N − 1 reflects

the possibility of translating the entire lattice by multiples of 1/N

in η (arbitrary translations are not permitted as Cn+N = Cn), and

L is defined in (2.14a). The validity of (3.3) can be easily verified

by substituting it, together with (2.14a) into (3.2). Similarly, when
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(2.26b) is satisfied, the vortices are located at

(ξ3m, η3m) =

(
3m

N
,
(2M + 3mL)

2N

)
, (3.4a)

(ξ3m+1, η3m+1) =

(
3m

N
,
(2M + 3mL)

2N
+

1

2

)
, (3.4b)

(ξ3m+1, η3m+1) =

(
6m+ 3

2N
,
(4M + 6mL+ 3)

4N

)
. (3.4c)

In which 0 ≤M ≤ N − 1 and 0 ≤ m ≤ N/3− 1.

Equation (3.3) represents lattices whose vortices are located along

parallel straight lines with equal spacing between them. The separa-

tion in the η direction between two adjacent lines is exactly 1 (or Ly in

the original coordinates x and y). The lattices which (3.4) represents

are characterized by pairs of parallel lines: the spacing between the

vortices along one of the lines in the pair is twice larger (or smaller)

than the spacing along the other line. The separation in the η direc-

tion between two adjacent lines is 1/2 in that case. It is very easy to

show that both (3.3) and (3.4) are invariant to the transformation

ξ → 2ξm − ξ ; η → 2ηm − η ∀m .

Alternatively we may state that all the lattices satisfying either (3.3)

or (3.4) are invariant to rotations of 180◦ with respect to each lattice

point (vortex). In appendix A we briefly discuss lattices which are

invariant to such rotations. We show that their points must either be
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located along parallel straight lines with equal spacing between them

[similar to the lattices satisfying (3.3)], or else be located along pairs

of parallel straight lines in a similar manner to the lattices described

by (3.4).

Figure 1 displays pictures of sample lattices. In part (a) we present

two lattices of type (3.3) for the case N = 6. The first one, whose

vortices are marked by squares corresponds to the case L = 1, M = 0

(both lattices in figure 1a are translated by 1
2N in both the ξ and η

directions). All the vortices lie in that case on the principal diagonal

of the unit cell, marked by a solid line in the figure. The second

lattice corresponds to L = 5 and M = 0. The vortices are located

on the dashed lines which are separated in the ξ direction by 1/5.

It is also possible to present this lattice by substituting L = −1 in

(3.3) instead of L = 5. The vortices, marked by circles, are indeed

located on the diagonal connecting (0, 1) and (1, 0) in the unit cell.

The transformation L→ L±N , thus, does not chance the loci of the

vortices, but can offer us different explanations of the lattice structure.

Figure 1b displays a picture of a lattice of type (3.4) for N = 9, L = 1,

and M = 0.

From a physical point of view, the fact that the above mentioned
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lattices can exist is not surprising, since the repulsion forces between

the vortices must cancel each other in view of the invariance to 180◦

rotations. As this symmetry exists independently of q, or the ratio

between Lx and Ly, the coordinates of the vortices in the ξη plane are

independent of q as well [as can be seen directly from (3.3) and (3.4)].

In the following, we prove that if C is an analytic function near q = 0

[(2.1) is satisfied], and if |an0| = 1 for all n, then the vortex location,

in the ξη plane, must either depend on q, or be of the form (3.3).

We look, then, for lattices for which dξm/dq = dηm/dq = 0, for all

0 ≤ m ≤ N−1. We look for the first vortex in the strip 0 ≤ ξ0 < 1/N .

We then substitute (2.1) into (3.2), to obtain the leading order balance

a00q
(Nξ0)

2

+ ei2πη0a10q
(Nξ0−1)2 ∼ O

(
q(Nξ0+1)2 , q(Nξ0−2)2

)
(3.5)

Since |a00| = |a10|, a vortex would exist when ξ0 ∈ [0, 1/N) only if

ξ0 = 1/2N , and

a00 + ei2πη0a10 = 0 .

Similar considerations would lead to the conclusion that a vortex can

exist in the strip n/N ≤ ξ ≤ (n+ 1)/N only if

ξn =
2n+ 1

2N
; an0 + ei2πηna(n+1)0 = 0 , (3.6)

It is easy to show by expanding ψ(0) near (ξn, ηn) and q = 0, that the
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vortex which can exist there must be a simple vortex. Hence, (3.6)

must be satisfied simultaneously for n = 0, . . . , N − 1.

As the O(q5/4) balance does not convey any new information on

possible lattice geometries we move to present the O(q9/4) directly

a(n−1)0e
−i2πηn + an2 + a(n+1)2e

i2πηn + a(n+2)0e
i4πηn = 0 . (3.7)

Substitution of (2.11) and (3.6) into (3.7) yields

αn+2 + 3αn+1 − 3αn − αn−1 = 0 ; ∀0 ≤ n ≤ N − 1 ,

admitting the unique solution αn = ±1 for all n. Theorem 1 demon-

strates that any solution for which αn = ±1 is expressible in the form

(2.14a), representing the lattice (3.3).

Finally, we consider one of the cases in which equilibrium is not

guaranteed by the special symmetry of the lattice. In these cases the

lattice depends on q(k). Figure 2 plots the loci of the vortices as a

function of ∆ = Lx/Ly in the (ξ, η) plane, for the solution (2.14) with

N = 4 and χ = 0. In general, four distinct vortices exist, two of

them are located along the full curves, and the other two along the

dashed curves. Note that when Lx = Ly, two double vortices exist, a

situation which must be highly unstable.
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4 Energies

Abrikosov [1] demonstrates that the energy functional is proportional

to

1

2
+ H̄2 − κ− H̄

1 + (2κ2 − 1)β

where H̄ is the average magnetic field, and

β =
|ψ(0)|4(
|ψ(0)|2

)2 .

Thus, for κ > 1/
√
2 and fixed H̄, the free energy is minimized by

minimizing β. At a critical point, when C is a solution of (1.19), we

have

β = N
k

κ
√
2π

∥C∥−2 . (4.1)

Hence, when ∥C∥2 is maximal β is minimal and vice versa.

We now present an asymptotic calculation of ∥C∥2 in the limit

q → 0, for the set of all the solution of (1.19) which obey (2.1). Since

∥C∥2 =
N−1∑
n=0

∞∑
k=0

k∑
m=0

anma
∗
n(k−m)q

k (4.2)

we have

∥C∥2 =
N−1∑
n=0

|an0|2 +O(q) .

The above relation shows that as q → 0 solutions for which |an0| = 1

for all n have lower energy than those for which for at least one value

of n, we have |an0| = 0.
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Suppose now that |an0| = 1 for all n. Then, in view of (4.2), (2.4),

and (2.11)

∥C∥2 = N

[
1− 4q +

(
16− 4

N
cosχ

N−1∑
n=0

αn

)
q2 +O(q3)

]
(4.3a)

or,

β =

√
log(1/q)

π

[
1 + 4q +

4

N
cosχ

N−1∑
n=0

αnq
2 +O(q3)

]
. (4.3b)

Hence, β is minimized when χ = π and αn = 1 for all n, or alterna-

tively, in view of (2.6), when χn = π for all n. It is easy to show, from

(2.6) that the only solution satisfying this requirement is (1.21).

The above calculation demonstrates that (1.21), which represents

the triangular lattice, has the lowest possible energy among all the

solutions of (1.19) which are analytic near q = 0, in the limit q →

0. The preferred value of q is found in the literature [1, 10, 3] by

minimizing β(C, q) for fixed values of C. The exact expression for β,

for solutions of the type (2.14a) is given by

β(χ, q) =

√
log(1/q)

π

∞∑
m,r=−∞

qm
2+r2e−iχmr . (4.4)

For the triangular lattice χ = π and β is minimized at q = e−π
√
3/2

[10, 3]. Substituting these values into both (4.3b) and (4.4) we obtain,

by comparison, a relative error of O(10−5). The error for the square

lattice is of the same order of magnitude.
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We conclude this section by comparing the energies of the different

solutions of the form (2.14a). Figure 3 plots the dependence of the

value of β, after minimization with respect to q, as a function of χ/π.

Applying the transformation m → −m in (4.4) we obtain β(χ, q) =

β(−χ, q), and hence, we plot β for 0 ≤ χ ≤ π only. We note that the

square lattice (χ = 0) has the highest energy, whereas the triangular

lattice has the lowest.

5 Linear stability

The time-dependent Ginzburg-Landau equations are [8]

α

κ2
∂ψ

∂t
+
αiϕ

κ
+

(
i

κ
∇+A

)2

Ψ = Ψ
(
1− |Ψ|2

)
, (5.1a)

−∇× (∇×A)
∂ψ

∂t
+∇ϕ =

i

2κ
(Ψ∗∇Ψ−Ψ∇Ψ∗) + |Ψ|2A ,

(5.1b)

where α is a time scale and ϕ is the magnetic potential. Following [4]

we consider a small perturbation of a steady solution of (1.3). Thus,

Ψ = Ψ0 + δeσtΨ1 (5.2a)

A = A0 + δeσtA1 (5.2b)

Φ = δeσtΦ1 , (5.2c)
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wherein 0 < δ ≪ ϵ≪ 1, Ψ0 and A0 are given by the expansion (1.6),

and Ψ1, A1 = (0, A1(x, y), 0), Φ1, and σ may be similarly expanded,

i.e.,

Ψ1 = ϵ1/2ψ1 (5.3a)

A1 = ϵa1 (5.3b)

Φ1 = ϵϕ1 (5.3c)

ψ1 = ψ
(0)
1 + ϵψ

(1)
1 + . . . (5.3d)

a1 = a
(0)
1 + ϵa

(1)
1 + . . . (5.3e)

ϕ1 = ϕ
(0)
1 + ϵϕ

(1)
1 + . . . (5.3f)

σ = σ(0) + ϵσ(1) + . . . . (5.3g)

Substituting (5.2) and (5.3) into (5.1) we obtain the leading order

balance

ασ(0)

κ2
ψ
(0)
1 − 1

κ2

(
∂2ψ

(0)
1

∂x2
+
∂2ψ

(0)
1

∂y2

)
+

2ih(0)x

κ

∂ψ
(0)
1

∂y
= ψ

(0)
1 − (h(0))2x2ψ

(0)
1 ,

(5.4a)

−∂
2a

(0)
1

∂x∂y
− ∂ϕ

(0)
1

∂x
=

i

2κ

(
ψ
(0)∗
0

∂ψ
(0)
1

∂x
+ ψ

(0)∗
1

∂ψ
(0)
0

∂x
− ψ

(0)
0

∂ψ
(0)∗
1

∂x
− ψ

(0)
0

∂ψ
(0)∗
1

∂x

)
,

(5.4b)

∂2a
(0)
1

∂x2
− ∂ϕ

(0)
1

∂y
− σ(0)a

(0)
1 =

i

2κ

(
ψ
(0)∗
0

∂ψ
(0)
1

∂y
+ ψ

(0)∗
1

∂ψ
(0)
0

∂y
− ψ

(0)
0

∂ψ
(0)∗
1

∂y
− ψ

(0)
0

∂ψ
(0)∗
1

∂y

)

+h(0)x
(
ψ
(0)
1 ψ

(0)∗
0 + ψ

(0)∗
1 ψ

(0)
0

)
. (5.4c)

31



Equation (5.4a) possesses nontrivial solutions whenever

σ(0) =
κh(0)

α

( κ

h(0)
− 2n− 1

)
. (5.5)

When h(0) = κ all the modes are stable except for n = 0 for which

σ(0) = 0. The periodic modes in this case are given by

ψ
(0)
1 =

∞∑
n=−∞

Bn exp

{
ikny − κ2

2

(
x− nk

κ2

)2
}

. (5.6)

and Bn = Bn+N̄ for some natural N̄ . More generally we should con-

sider Bn = Bn+N̄e
iΘ, as translated mode of perturbations are also of

interest. We shall, however, examine this case only later.

Proceeding with the next order balance (in powers of ϵ) we obtain

the solvability condition [4]

2
√
2ασ(1)

1− 2κ2
Bn =

∑
r,m

[
2Bn−r+mC

∗
mCr + Cn−r+mB

∗
mCr −

CrC
∗
mCn−r+m

Cn
Bn

]
·

· exp
{
−κ

2

2

[
(r −m)2 + (r − n)2

]
.

}

With the aid of (1.19) we obtain (for h̄(1) = 1)

N−1∑
r=0

N−1∑
m=0

[
2Cn+rC

∗
n+r+mBn+m + Cn+rB

∗
n+r+mCn+m

]
SN,rSN,m −Bn = σ̄(1)Bn

(5.7a)

wherein

σ̄(1) =
2
√
2α

1− 2κ2
σ(1) (5.7b)
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The left hand side of (5.7) is a linear transformation of the vector

B = [B0, . . . , BN−1]
T ∈ CN . Denote this transformation by T : CN →

CN . The field above which we define CN must be R rather than C,

otherwise T (B,B∗) would not be a linear transformation. Our goal

is than to find the eigenvalues of T . Since the field of scalars is R

we have 2N eigenvalues. Naturally, the eigenvalues depend on the

steady solution C, whose stability is examined. There is, however,

an infinite number of presentations for every solution. Consider for

instance (1.21): we may present it as a vector in C2

C = [C, iC]T , (5.8a)

or as a vector in C2P

C = [C, iC,C, iC, . . . , C, iC]T , (5.8b)

or as a vector in C2PR

C = [C, 0, . . . , 0︸ ︷︷ ︸
R terms

, iC, 0, . . . , 0, C, . . . , iC]T . (5.8c)

In the latter case, in order to maintain Ly invariant, we need to sub-

stitute k/R instead of k in (1.18).

The difference between the various presentations is not only seman-

tic. If we adopt the presentation (5.8a) we will be forced to present
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the eigenvalue problem (5.7) in C2. Such an analysis has been per-

formed by Chapman [4]. As B ∈ C2 the analysis is confined to a

four-dimensional perturbation space.

Adopting the presentation (5.8a), we may consider B ∈ C2P . Such

a presentation allows us to consider perturbations whose period in the

y direction is still Ly, but their period in the x direction would be

PLx where P can be set to be arbitrarily large. Furthermore, by

applying the transformation (1.22b) we may consider translations by

αLy in the y direction of the perturbation (5.6), where α is a rational

number (irrational values of α can be allowed only if we replace the

requirement Bn = Bn+N̄ by Bn = Bn+N̄e
iΘ). The most general class

of periodic perturbations, which can be examined within the present

framework, is obtained by adopting the presentation (5.8c). Such a

presentation allows for perturbations whose respective periods in the

x and y directions are PLx and RLy, where both P and R can be set

to be arbitrarily large.

It is convenient to rewrite (5.7) in the form

σ̄B = T1B + T2B
∗ , (5.9a)
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where

[T1B]n =

N̄−1∑
r=0

N̄−1∑
m=0

2Cn+rC
∗
n+r+mBn+mSN,rSN,m −Bn , (5.9b)

and

[T2B
∗]n =

N̄−1∑
r=0

N̄−1∑
m=0

Cn+rB
∗
n+r+mCn+mSN,rSN,m . (5.9c)

We examine the stability of steady solutions of the form (2.14a). The

transformation T1 can be represented in this case by an Hermitian

matrix whose eigenvectors are given by

B(r,s)
n =

1

|C|(N̄/R)1/2


Clϵ

l
r n = lR+ s

0 otherwise

(5.10)

where 0 ≤ l, r ≤ N̄/R− 1, 0 ≤ s ≤ R− 1, and

ϵr = e
i 2π
N̄/R

r
.

The eigenvalues of T1 are given by

λ(r,s) = 2|C|2
∞∑

l,m=−∞
ql

2+(m−ν)2ei(−lmχ+2lµ) − 1 (5.11a)

in which

µ =
πr

N̄/R
, (5.11b)
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and

|C|−2 =
∞∑

l,m=−∞
ql

2+m2
e−ilmχ . (5.11c)

In the above χ is given by (2.14a) with N replaced by N̄/R. We note

that λ(r,s) is real for all r and s.

Since the eigenvectors of T1 constitute an orthonormal basis to CN̄

above C, we have

B(m,j)∗ · T1B(r,s) = λ(r,s)δmrδjs , (5.12)

wherein the symbol · represents the ordinary scalar product in RN̄ .

Furthermore, it can be easily shown that

B(m,j)∗ · T2B(r,s)∗ = γ(r,s)δm(N̄/R−r+L)δj(R−s) , (5.13)

in which

γ(r,s) = (−1)L exp

{
−i 2π

N̄/R
J

}
|C|2ei(

χ
2
−2µ)

∞∑
l,m=−∞

q(l+ν)2+(m−ν)2ei[−lmχ+2(m+l)µ] ,

(5.14a)

where

ν =
s

R
, (5.14b)

and J is an integer which can be set equal to 0 by appropriately

applying (1.19) to C. Note that

λ(r,s) = λ(N̄/R−r+L,R−S) ; γ(r,s) = γ(N̄/R−r+L,R−S) . (5.15)
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In view of (5.12) and (5.13) we look for eigenvectors of T in the

form

(a1 + ia2)B
(r,s) + (b1 + ib2)B

(N̄/R−r+L,R−S)

We find that the linear transformation T possesses the eigenvalues

σ̄(r,s) = λ(r,s) ±
∣∣∣γ(r,s)∣∣∣ . (5.16)

For N̄ even and L ̸= 0, there are N̄ distinct eigenvalues, in view of

(5.15), and each eigenvalue corresponds to two independent eigenvec-

tors. Hence, in view of (5.16) and (5.7b), the steady solution described

by (1.18) and (2.14a) is linearly stable only if

λ(r,s) −
∣∣∣γ(r,s)∣∣∣ ≥ 0 . (5.17)

We allow for a weak inequality in the above since λ(0,0) = |γ(0,0)| = 1

independently of χ. It can be easily verified from (5.7) that the mode

which is always marginally stable is B = iC (or Ψ1 = iΨ0). This

mode corresponds to an infinitesimal gauge transformation [13], i.e.,

Ψ = Ψ0(1 + iδ) +O
(
δ2
)
= eiδΨ0 +O

(
δ2
)

Naturally, such a transformation must be marginally stable as the

Ginzburg-Landau equations are invariant to the transformation (1.2).

Other than this special mode, we require that all modes would be

strictly stable.
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As N̄/R and R may be set arbitrarily large, it is only natural to

consider continuous µ, ν, and χ. The condition (5.17) may then be

written in the form

λ(χ, µ, ν)− |γ(χ, µ, ν)| > 0 ; 0 < µ < π 0 < ν < 1 (5.18)

In the above χ represents the steady solution whose stability is ex-

amined , and µ and ν represent the mode of the perturbation. The

above inequality can be solved numerically. Special care should be

given to the vicinity of µ = ν = 0 where the solution is marginally

stable. The numerical technique we utilized included thus an asymp-

totic expansion of λ − |γ| near µ = ν = 0, together with a numerical

calculation on a 1000 × 1000 grid. We have examined only the in-

terval 0 ≤ q ≤ 0.12. It is reasonable to expect that stable solutions

can be found in another interval of q values would exist, as the min-

imal energy of (1.21) is obtained for two different values of k(q): (a)

k = κ
√
π
√
3, (b) k = κ

√
π/

√
3.

Figure 4 displays the dependence of the interval of k values for

which (5.18) is satisfied on the value of χ. We plot it for 0 ≤ χ ≤ π

only as
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λ(χ, µ, ν) = λ(−χ, π − µ, ν)

γ(χ, µ, ν) = γ∗(−χ, π − µ, ν) .

The part of the curve which lies left to the minimum point, denotes

the minimal value of (log(1/q)/π)2 for which (5.18) is satisfied as a

function of χ/π, whereas the part of the curve right to it denotes the

maximal one. It can be seen that a non-empty interval of k values

where the solution is stable exists whenever 3π/5 ∼≤ χ ≤ π. The

largest interval is obtained for χ = π. The latter fact my be alter-

natively described by stating that (1.21) representing the triangular

lattice is the “most stable” among the solutions (2.14a). It is impor-

tant to emphasize here that solutions have been found stable only to

perturbations for which the ratio between the periods in the x and y

directions and the respective periods of the steady solutions are ratio-

nal numbers. The stability to other modes of perturbations is left to

future research.
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6 Conclusion

Previous works [1, 3] show that periodic solutions to the Ginzburg-

Landau equations (1.3) near their bifurcation from the normal state

can be presented by a vector C ∈ CN , where N is the number of

vortices inside the unit cell. The components of this vector are found

by simultaneously solving N polynomial equations of the third order

[Eqs. (1.19)]. The solutions depend on the parameter q which in turn

depends on the ratio between the sides of the unit cell.

In § 2 we discuss solutions which are analytic functions of q near

q = 0. We show that all real solutions of (1.19) must be analytic

functions of q near q = 0. For complex solutions the situation is

more complicated. If we allow for non-real C, the solutions can be

determined, in view of (1.22a), only up to an arbitrary parameter

θ which need not be an analytic function of q. Another arbitrary

parameter χ arises, when N is divisible by 4, in the case (2.10b). For

fixed θ and χ it seems reasonable to conjecture that any C satisfying

|Cn| = 1 at q = 0 for all n, must be analytic near q = 0.

In the remainder of § 2 we focus on analytic solutions for which

|Cn| = |C| for all n (class A). We derive the closed forms (2.14) and

prove, in theorem 1, that any solution in this class is representable
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by one of these forms. We also discuss briefly solutions for which

|Cn| ∈ {|C|, 0} for all n. We derive the closed forms (2.26a,b) which

are respectively analogous to (2.14a,b).

In § 3 we analyze the geometrical structure of the vortex lattices

which the closed forms (2.14) and (2.26) represent. We find that

for (2.14a) the vortices are arranged along parallel lines with equal

spacing between them. For (2.26a) all lattices are characterized by

pairs of parallel lines: the spacing between the vortices along one of

the lines in the pair is twice larger (or smaller) than the spacing along

the other line. The separation in the η direction between two adjacent

lines is 1/2 in that case.

Both the aforementioned lattice geometries are invariant to 180◦

rotations with respect to each point in the lattice. In appendix A we

show that any lattice which has this property must be arranged ac-

cording to one of the above-mentioned geometries. Physically it means

that the repulsion forces between the vortices must balance each other.

Such lattice geometries are therefore possible independently of the ra-

tio between the sides of the unit cell (or q). We show that any solution

for which |Cn| = 1 at q = 0 for all n and the normalized coordinates ξ

and η defined in (3.1) are independent of q must represent the lattice
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geometry (3.2).

In § 4 we calculate the energies of all the solutions of (1.19) which

are analytic near q = 0 in the limit q → 0 up to O(q2) terms. We

find that (1.21) has the lowest energy in that limit. We then compare

between the minimal values, in q ∈ [0, 1), of the energies of the solu-

tions (2.14a) and find again that the triangular lattice has the lowest

energy. We note that these minimal values can be obtained up to the

fourth decimal point by using the expansion (4.3) in the limit q → 0

instead of the exact expression (4.4).

In § 5 we present a linear stability analysis of the solutions (2.14a).

In contrast to [4] in which the local stability is examined in a finite-

dimensional subspace corresponding to the largest eigenvalue of (5.4a),

we use an infinite-dimensional perturbation subspace including all pe-

riodic perturbations whose periods in the normalized coordinates (3.1)

are rational numbers. We find that (1.21) is not the only solution in

the family (2.14a) which is linearly stable. It is stable, however, for

the largest interval of q values compared to other solutions in this

family.

In section 1 we have derived the natural boundary conditions of the

problem by showing that any periodic solution of (1.3) must satisfy
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(1.5) (cf. also [12]). Another intersting question is in which space can

(ψ,A) serve as a minimizer of E? Let ψ = ρ(x, y)eiθ(x,y). Consider

the real valued function e(τ) = E(ψ + τϕ(τ),A) where ϕ(τ) must

be chosen so that ψ + τϕ belongs to the space in which we minimize

E. We shall assume here that this space is a subset of the space of

W 1,2(R) functions whose absolute value is periodic on the boundaries

of the fundumental cell ∂R. Hence,

ψ + τϕ = (ρ+ τr)ei(θ+τζ) , (6.1)

where r must be periodic and ζ can be any C1 function. Clearly,

(ψ,A) can serve as a local minimizer of E only if e′(0) = 0 for all

appropriate ϕ. Since ϕ is bounded as τ → 0 we have

e′(0) = lim
τ→0

2

κ

∫
∂R

|ϕ|
[
1

κ
∇ρ cos(θ − arg ϕ) + ρ

(
1

κ
∇θ −A

)
sin(θ − arg ϕ)

]
· n̂dl

=

∫
∂R
r

[
1

κ
∇ρ− ρζ

(
1

κ
∇θ −A

)]
· n̂dl (6.2)

by (1.5) e′(0) would vanish for any periodic r iff ζ is periodic on ∂R.

Hence, ψ+τϕ must satisfy (1.5) for all τ . Thus, Abrikosov’s solutions

can serve as minimizers for E in a rather limited sense, if we focus

on subspaecs of periodic functions with given periods in the x and y

directions.

The stability results we have obtained indicate that the triangular
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lattice and other periodic solutions are minimizers in the above space

of W 1,2(R) periodic functions satisfying (1.5). The periods can be

any product by integers of the minimal periods of the cell. Further

research is necessary in order to determine the structure of the space,

when we let the above integers tend to infinity.

The existence of stable periodic solutions is definitely a surpris-

ing result. There might be several explanation to the fact that stable

periodic solutions to (1.3) exist in addition to the triangular lattice,

despite the fact that none of them has been observed in experiments.

For instance: the initial conditions in their domain of attraction can-

not be set in real situations, they may become unstable shortly after

the bifurcation when the magnetic field is further decreased, the in-

teraction with the boundaries may play an important role, etc.
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A Lattices invariant to 180◦ rotation

Consider the set (ηk, ξk) ∈ R2/Z2, where 0 ≤ k ≤ N − 1. We look for

the geometrical structure of the lattices which are invariant to 180◦

rotation, or,

∀k, j ∃n s.t. ξj − ξk = −(ξn − ξk) ; ηj − ηk = −(ηn − ηk) .

Let ξ0 = η0 = 0. Then, invariance to rotation implies that the ξ

components are equally spaced on [0,1], i.e.,

∃ 0 ≤M ≤ N − 1 s.t. ∀ 0 ≤ m ≤M − 1 ∃k s.t. ξk =
m

M
,

where 1 ≤ M ≤ N . Denote by lm the number of lattice points for

which ξ = m/M . The lattice’s symmetry implies that the lm’s must

be arranged in pairs, i.e., l2j = l0 and l2j+1 = l1 (0 ≤ j ≤ M/2 − 1).

If M is odd we must have l1 = l0. Otherwise, assume without loss

of generality l0 ≤ l1. Suppose that ξ1 = 1/M . Symmetry implies the

existence of a lattice point at (2ξ1, 2η1). Another lattice point must

exist at (ξ1, η1 + 1/l1). Rotating the the lattice with respect to the

latter point by 180◦, we find that (2ξ1, 2η1) becomes (0, 2/l1) at which

another lattice point must reside. Hence,

2

l1
=
p

l0
,
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and hence, as l0 ≤ l1, we must have p ≤ 2. If p = 1, then l1 = 2l0,

otherwise l1 = l0 for p = 2.

We now rescale η by l0, i.e., η̄ = η/l0. The lattice is still periodic

in η̄, with period Lη = 1. In the rescaled unit cell we have l0 = 1

and l1 ∈ {1, 2}. In the case l1 = 1 the lattice points are located

along parallel straight lines with equal spaces between them. The

separation in the η̄ direction between two adjacent lines is exactly 1.

In the case l1 = 2, the lattice is characterized by pairs of parallel lines:

the spacing between the lattice points along one of the lines in the

pair is twice larger (or smaller) than the spacing along the other line.

The separation in the η̄ direction between two adjacent lines is 1/2 in

that case.
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Figure 1: Sample lattices of type (3.3) (a) and (3.4) (b)
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Figure 2: The loci of vortices as a function of ∆ = Lx/Ly in the normalized

unit cell for the case (2.14b) with N = 4 and χ = 0.
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