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Abstract
We consider the Ginzburg-Landau model of superconductivity in two dimensions

in the large κ limit. For applied magnetic fields weaker than the onset field HC3 but
greater than HC2 it is well known that the superconductivity order parameter decays
exponentially fast away from the boundary. It has been conjectured by X. B. Pan
that this surface superconductivity solution converges pointwise to a constant along
the boundary. For applied fields that are in some sense between HC2 and HC3 , we
prove that the solution indeed converges to a constant but in a much weaker sense.

1 Introduction

The Ginzburg-Landau energy functional of superconductivity is given in the form

J (Ψ, A) =

∫
Ω

(
−|Ψ|2 + |Ψ|4

2
+ |h− hex|2 +

∣∣∣∣( iκ∇+ A

)
Ψ

∣∣∣∣2
)
dx1dx2 , (1.1)

in which Ω ⊂⊂ R2 is smooth, Ψ is the (complex) superconducting order parameter, such that
|Ψ| varies from |Ψ| = 0 (when the material is at a normal state) to |Ψ| = 1 (for the purely
superconducting state). The magnetic vector potential is denoted by A (the magnetic field is,
then, given by h = ∇×A), hex is the constant applied magnetic field, and κ is the Ginzburg-
Landau parameter which is a property of the material. The functional J is invariant under
the gauge transformation

Ψ → eiκηΨ , A→ A+∇η , (1.2)

where η is a smooth function. We focus here on the properties, for a given hex, of the global
minimizers1 (Ψκ, Aκ) of J in H1(Ω,C) ×H1(Ω,R2) for type II superconductors (for which
κ > 1/

√
2). Note that every global minimizer represents actually an orbit of minimizers

associated to the group of transformations (1.2).
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1.1 The onset of superconductivity

It is known both from experiments [18] and rigorous analysis [13] that for a sufficiently
strong magnetic field the normal state (Ψ ≡ 0, h = hex) would prevail. If the field is then
decreased, there is a critical field, depending on the sample’s geometry, where the material
would enter the superconducting state. For samples with boundaries, this field is known as
the onset critical field (or nucleation field) and is called HC3 . This leads to the definition
(cf. [19, 15, 10] for instance)

HC3(κ) = inf{hex > 0 : (0, Â) is the unique global minimizer of J }, (1.3)

where Â : Ω → R2 satisfies ∇× Â = hex. The minimizer (0, Â) is unique in the sense that
any other minimizer is gauge equivalent to it, i.e. it should be in the form (0, Â+∇η). We
note that in that for our choice of scaling in (1.1) we have HC3 ∼ κ

Θ0
as κ → ∞ for smooth

Ω [17], where Θ0 is approximately 0.59.
The simplest case in which the bifurcation from the normal state (0, Â) to the supercon-

ducting one was described is the case of a half-plane [20]. The analysis in this case is one
dimensional : the linearized Ginzburg-Landau equations were solved on R+. A similar situa-
tion occurs in two dimensions : it was proved in [17] and [7] that the bifurcating mode in R2

+

is one-dimensional and that the value of HC3 is exactly the same as in the one-dimensional
case.

In addition, Saint-James and de Gennes [20] found that superconductivity appears first
near the boundary for a half-plane, i.e. the order parameter Ψκ decays exponentially fast
away from the boundary. This phenomenon, which appears only in the presence of bound-
aries, is therefore called surface superconductivity. It was later proved for general two-
dimensional domains with smooth boundaries [17, 7], that as the domain’s scale tends to
infinity the onset field tends to de Gennes’ value, and that Ψκ decays exponentially fast away
from the boundary.

Another related problem that has been considered in the literature is the distribution of
|Ψκ| along the boundary near the critical field. In [4], this distribution was formally obtained.
This led to the conjecture that |Ψκ| should be maximal at the point of maximal curvature
along the boundary. This was indeed proved a few years later [15, 16, 11, 12]. Furthermore,
it was shown that Ψκ decays exponentially fast away from the points of maximal curvature
along the boundary.

1.2 Weakly non-linear analysis

Suppose now that hex is further decreased below HC3 . While the minimizer Ψκ still decays
exponentially fast away from the boundary much after the nucleation in the highly non-linear
regime when κ < hex < HC3 [1, 19, 2], the exponential decay along the boundary disappears
quite rapidly as hex decreases. More precisely, if we introduce the distance to the nucleation
field ρ by

ρ(κ) = HC3(κ)− hex ,
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then, exponential rate of decay along the boundary (far from the points of maximal curva-
ture) is guaranteed only when

ρ(κ) −−−→
κ→∞

0 .

Furthermore, it was proved in [10] that if ρ satisfies

lim
κ→∞

ρ(κ) = ∞ ; lim
κ→∞

ρ(κ)

κ1/2
= 0 ,

then there exists u ∈ S(R+) such that∫
Ω

∣∣∣∣|Ψκ(x)|2 −
ρ

κ
u

(
κ√
λ
t(x)

)∣∣∣∣2 dx = o(ρκ−3) , (1.4)

where t = d(x, ∂Ω), λ = κ/hex.

This leaves open the situation when ρ(κ)/κ
1
2 does not tend to 0 as κ→ ∞ and in particular

becomes of the order of κ
1
2 . This is this last case, which will be considered in this article.

1.3 Highly non-linear Analysis : Pan’s conjecture

Given some λ ∈]β0, 1[, let (κn, hnex)n∈N, denote a pair of sequences satisfying

lim
n→+∞

κn = ∞ ; lim
n→+∞

κn
hnex

= λ .

In the above β0 = limκ→∞ κ/HC3(κ) (we provide a better definition of β0 in the next section).
In [19] (Conjecture 1) X.B. Pan conjectures the existence of a function ]β0, 1[∋ λ 7→ C(λ) ∈
R+ such that, for any sequence as above,

|Ψκn(x)| → C(λ) , ∀x ∈ ∂Ω . (1.5)

While the conjecture appears to be correct in its essence – any minimizer, as the results in
[10] and in the present contribution suggest, does tend in some weak sense to a constant
along the boundary – we believe that either the convergence assumed in (1.5) cannot be
uniform, or else that the global minimizer must be discontinuous in hex and κ. Let us sketch
the heuristic arguments supporting this belief. We first write the Euler-Lagrange equations
associated with (1.1) (or the Ginzburg-Landau equations) :(

i

κ
∇+ Aκ

)2

Ψκ = Ψκ

(
1− |Ψκ|2

)
(1.6a)

−∇×∇× Aκ =
i

2κ
(Ψ∗

κ∇Ψκ −Ψκ∇Ψ∗
κ) + |Ψκ|2Aκ . (1.6b)

If |Ψκ| > 0 for all x ∈ ∂Ω (and this is indeed the case if we assume uniform convergence
in (1.5)), we can divide (1.6b) by |Ψκ|2 and integrate over ∂Ω (the measure on ∂Ω being
denoted by ds), to obtain the existence of an integer N(Ψκ) such that∫

∂Ω

∇× (hκ − hex)

|Ψ|2
ds+

∫
Ω

hκ dx =
2π

κ
N(Ψκ) ,
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where hκ = ∇× Aκ is the induced magnetic field.
The integer N(Ψκ) ∈ Z is the winding number (or the degree) of Ψκ around ∂Ω, (which is
invariant under the transformation (1.2) since η must be smooth).
In [9] it is proved that Ψκ vanishes at isolated points or curves which should end on ∂Ω.
If |Ψκ| does not vanish on the boundary, as implied by (1.5), it is clear that Ψκ can only
vanish at isolated points. Thus, we can conclude that N(Ψκ) is the number of vortices of
Ψκ, including multiplicities, in Ω.

In [16], it is proved (see [19] for an extension to the case which is considered here) that,
for any ϵ0 > 0, there exist C > 0 and κ0, such that, if κ/hex ∈ [β0 + ϵ0, 1 − ϵ0] and κ ≥ κ0,
then

||h− hex||L∞(Ω) + ∥∇(hκ − hext)∥L∞(Ω) ≤ C .

Hence there exists a constant C such that :∣∣∣N(Ψκ)− κhex
|Ω|
2π

∣∣∣ ≤ Cκ . (1.7)

Suppose now that the minimizer is unique when varying hex and κ as above. It is in
this case reasonable to think that (Ψκ, Aκ) varies continuously. If there exist κ0, ϵ1 > 0 and
C > 0 such that

|Ψκ| ≥
1

C
on ∂Ω , ∀κ ≥ κ0 s. t.

κ

hex
∈ [λ− ϵ1, λ+ ϵ1] ,

(which would be a consequence of a uniform version of (1.5)), then N(Ψκ) must be fixed, by
continuity, for all κ ≥ κ0 such that κ/hex ∈ [λ− ϵ1, λ+ ϵ1], and this is in contradiction with
(1.7).

The above argument works not only for (ψκ, Aκ) but for any solution of (1.6). If indeed
critical points of (1.1) are continuous functions of κ and hex in this regime, then (1.7) would
contradict another conjecture of Pan (conjecture 2 in [19]), implying that any solution of
(1.6) converges to a constant along the boundary when κ → ∞ and κ/hex ∈ (β0, 1). While
the existence of continuous branches of critical points appears to be reasonable, two counter-
examples come to our mind while discussing the continuity of the global minimizer:

1. Serfaty, [21] proves, for much lower external fields, that a large number of local minimiz-
ers of (1.1) in a disc, characterized by different winding numbers, exist for sufficiently
large κ whenever 1

C
κ−1 ≤ hex ≤ Cκα−1 for some 0 < α < 1. In this regime of applied

magnetic field values the magnetic field in non-uniform inside the domain, and hence
the vortices are kept near the disc’s center, which minimizes the magnetic field term
in (1.1).

While in the present case hex and κ have same order, if we allow for an O(1) change in
the applied magnetic field we might still encounter a global minimizer which turns into
a local minimizer (or a critical point) and vice versa. Thus, this result suggests that
the contradiction between (1.7) and the convergence to a uniform constant along the
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boundary might be explained by arguing that the global minimizer is discontinuous.
However, unlike the case discussed in [21], no equivalent mechanism which keeps the
vortices away from the boundary is presently known as the magnetic field uniformly
converges to hex in Ω [2].

2. Bauman et al. [3] found radially symmetric solutions of the linearized version of (1.6).
These solutions are characterized by a “fat” vortex at the disc’s center. The degree of
the vortex is determined, to leading order in the large κ limit, by the magnetic flux
through the disc. Thus, there is a sequence of critical flux values where the bifurcating
mode changes its winding number. It is shown in [3] that the bifurcating mode is
locally stable near the bifurcation for κ large enough.

Based on the results in [3] one can argue that the minimizer undergoes an abrupt change
when the flux varies around one of the above critical values (and when κ is appropriately
tuned to guarantee that weakly non-linear analysis still holds). However, this result
seems to follow from the special geometry, and in general, for different geometries or
away from the linear regime, nothing would hold the vortices in the center.

1.4 Statement of the main result

In the present contribution we focus on the case

lim
κ→∞

hex(κ)

κ
=

1

λ
,

with λ close to β0. We prove the following theorem :

Theorem 1.1
Let δ > 0 be sufficiently small, so that t = d(x, ∂Ω) is a smooth function of x for 0 ≤ t ≤ δ,
and let

Ωδ =
{
x ∈ Ω̄ : d(x, ∂Ω) ≤ δ

}
.

Then there exist ϵ > 0, a function

[0,+∞[×]β0, β0 + ϵ[∋ (τ, λ) 7→ U(τ, λ) ∈ R+ ,

a constant C > 0 and κ0, such that, for κ ≥ κ0 and hex =
κ
λ
with λ ∈]β0, β0 + ϵ[,∫

Ωδ

[
|Ψκ(x)|2 − U

( κ√
λ
t(x), λ

)]2
dx1dx2 ≤

C

κ2
, (1.8a)∫

∂Ω

[ ∣∣Ψκ

/
∂Ω

∣∣2 − U(0, λ)
]2
ds ≤ C

κ1/2
. (1.8b)

The function U(τ, λ) is defined for τ ∈ R+ by

U(τ, λ) = |fζ(λ)(τ ;λ)|2 ,
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where fz(τ ;λ) and ζ(λ) are associated to minimizers of a family of one-dimensional problems,
which will be analyzed in Section 2. The second statement in the theorem gives the L2(∂Ω)
convergence of |Ψκ|2 to a constant and is consequently a weak form of Pan’s conjecture.

The rest of the contribution is arranged as follows :
In Section 2 we consider a one-dimensional differential operator and prove that it is positive
for β0 < λ < β0 + ϵ. In Section 3 we use the results of Section 2 to analyze a simplified
two-dimensional minimization problem, which was proved in [19] to be a good approxima-
tion of the full Ginzburg-Landau model for β0 < λ < 1. The last section gives the proof of
Theorem 1.1.

Acknowledgments
The authors wish to thank the European program HPRN-CT-2002-00274 (Front Singu-
larities) and their Scientists in Charge in France, Haim Brezis and Danielle Hilhorst, for
providing support for the visit of the first author at the University of Paris XI on February
2005.

2 A one-dimensional problem

Let

β(z) = inf
ϕ∈H1

mag(]0,∞[)\{0}

∫∞
0

|ϕ′(τ)|2 + (τ + z)2|ϕ(τ)|2 dτ∫∞
0

|ϕ(τ)|2 dτ
. (2.1)

Here

H1
mag (]0,+∞[) = {u ∈ L2 (]0,+∞[) , u′ ∈ L2 (]0,+∞[) and τu ∈ L2 (]0,+∞[)} .

It is well known (see [5]) that β(z) has a unique local minimum at z0 < 0, where

β(z0) = β0 = z20 .

Furthermore, β(z) −−−→
z→∞

∞, and β(z) −−−−→
z→−∞

1. Clearly, for β0 < λ < 1 there exist

z1(λ) < z0 < z2(λ), such that

]z1(λ), z2(λ)[= β−1([β0, λ[) .

It is also easy to show [6], that

β′′(z0) = −2z0ϕ
2(0) > 0 , (2.2)

where ϕ is the minimizer of (2.1) whose L2(R+) norm is unity.
Let fz(τ ;λ) denote the minimizer of

Ez,λ(ϕ) =
∫ ∞

0

|ϕ′(τ)|2 + (τ + z)2|ϕ(τ)|2 + λ

2
|ϕ(τ)|4 − λ|ϕ(τ)|2 dτ (2.3)
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in H1
mag(]0,∞[).

The Euler-Lagrange equation associated with (2.3) is

−f ′′
z (τ ;λ) + (τ + z)2fz(τ ;λ) = λfz(τ ;λ)(1− fz(τ ;λ)

2) . (2.4)

It has been proved in [19] (Theorems 3.1 and 3.3) that, whenever z1(λ) < z < z2(λ), there
exists a unique positive global minimizer to (2.3). Furthermore, let

b(z, λ) = inf
φ∈H1

mag(]0,∞[)
Ez,λ(φ) . (2.5)

Then, there exists ζ(λ) ∈]z1(λ), z2(λ)[, where z 7→ b(z, λ) attains its minimum over R :

b(ζ(λ), λ) = inf
z
b(z, λ) .

Moreover, ∫ ∞

0

(τ + ζ(λ))|fζ(λ)(τ ;λ)|2 dτ = 0 . (2.6)

Remark 2.1
Note that when z ̸∈]z1(λ), z2(λ)[, then b(z, λ) = 0, and the minimizer of Ez,λ is the 0-function.
In particular,

b(ζ(λ), λ) < 0 , if λ > β0 .

The following lemma will play a crucial role in the analysis of the two-dimensional problem
in Section 3.

Lemma 2.2
Let

γ(α, λ) = inf
ϕ∈H1

mag(]0,∞[)

∫∞
0

|ϕ′(τ)|2 + (τ + ζ + α)2|ϕ(τ)|2 − λ(1− fζ(τ ;λ)
2)|ϕ(τ)|2 dτ∫∞

0
|ϕ(τ)|2 dτ

, (2.7)

with ζ = ζ(λ).
Then, there exists ϵ > 0 such that, for λ ∈ [β0, β0 + ϵ[,

min
α∈R

γ(α, λ) = 0 . (2.8)

Proof :
We divide the proof into three steps.

Step 1 : γ(0, λ) = γα(0, λ) = 0 .
Let R+ ∋ τ 7→ u(τ ;α, λ) denote the positive minimizer of (2.7), whose L2(R+) norm is one.
Then, u satisfies

−u′′(τ ;α, λ) + (τ + α + ζ)2u(τ ;α, λ)−
λ(1− fζ(τ ;λ)

2)u(τ ;α, λ) = γ(α, λ)u(τ ;α, λ) , (2.9a)

u′(0;α, λ) = 0 . (2.9b)
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For α = 0, we multiply (2.9a) by fζ and integrate over R+ to obtain

γ(0, λ)

∫ ∞

0

fζ(τ ;λ)u(τ ;α, λ) dτ = 0 .

Since both u and fζ are positive, we have using (2.4),

γ(0, λ) = 0 , u(τ, 0, λ) =
fζ(τ ;λ)

∥fζ∥2
, (2.10)

where, for p ∈ [1,+∞], ∥ · ∥p = ∥ · ∥Lp(R+).
Next, we differentiate (2.9) with respect to α to obtain, having in mind (2.4),

− u′′α + (τ + α + ζ)2uα − λ(1− f 2
ζ )uα = γuα + γαu− 2(τ + α + ζ)u , (2.11a)

u′α(0) = 0 , (2.11b)

where uα(τ ;α, λ) = ( ∂u
∂α
)(τ ;α, λ) and γα(α, λ) =

∂γ
∂α
(α, λ).

Multiplying (2.11a) by u and integrating by parts, we obtain

γα(α, λ) = 2

∫ ∞

0

(τ + α + ζ(λ))|u(τ ;α, λ)|2 dτ . (2.12)

In view of (2.6) and (2.10), we thus have

γα(0, λ) = 0 . (2.13)

Step 2 : ∃ϵ1 > 0 : λ < β0 + ϵ1 ⇒ γαα(0, λ) >
1
2
β′′(z0) > 0 . (2.14)

To prove the above statement we notice that z1(λ) ↑ z0 and z2(λ) ↓ z0 as λ → β0 . Hence,
since z1(λ) < ζ(λ) < z2(λ), we have

ζ(λ) −−−→
λ→β0

z0 . (2.15)

Moreover, one gets from the fact that fz is a minimizer the property that

Ez,λ(fz) ≤ 0 .

From this inequality, and (2.1), we easily obtain :

1

2
||fz||44 ≤

(λ− β0)

λ
||fz||22 ,

||(τ + z)fz||22 ≤ λ||fz||22 , (2.16)
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and
||fz||2H1 ≤ (λ+ 1)||fz||22 .

Let z = ζ(λ). Since |ζ(λ)| is bounded in some right semi-neighborhood of β0, it follows
immediately from (2.16) that for R large enough we get

||fζ ||22 ≤ 2||fζ ||2L2(]0,R[) .

We now observe that :

||fζ ||44 ≤ C(λ− β0)||fζ ||2L2(]0,R[) ≤ C(λ− β0)R
1
2 ||fζ ||24 .

This gives first that :
||fζ ||4 ≤ C̃(λ− β0)

1
2 ,

and hence that
||fζ ||2 ≤ Ĉ(λ− β0)

1
2 .

By interpolation, we obtain

||fζ ||∞ ≤ C||fζ ||
1
2
2 ||f ′

ζ ||
1
2
2 ≤ C ′(λ− β0)

1
4 , (2.17)

which implies that
lim
λ→β0

∥fζ(λ)( · ;λ)∥∞ = 0 .

Substituting the above and (2.15) into (2.7) yields

γ(α, λ) −−−→
λ→β0

β(α + z0) ,

where the convergence is uniform on every compact set in R. Since γ is holomorphic in α,
its derivatives must uniformly converge as well, and hence

γαα(α, λ) −−−→
λ→β0

β′′(α + z0) , (2.18)

from which (2.14) easily follows.
We note that a tedious calculation shows that

γαα(0, λ) = −2ζ
f 2
ζ (0;λ)

∥fζ∥22
+

6λ2

∥fζ∥22

∫ ∞

0

f 6
ζ (τ ;λ) dτ − 2λ

3

∫ ∞

0

f 4
ζ (τ ;λ)[λ− (τ + ζ)2]dτ ,

with ζ = ζ(λ), from which one can easily prove (2.14) as well.
From (2.14) we obtain that

∃α0 > 0 : λ < β0 + ϵ1 ⇒ γ(α, λ) ≥ 0 , ∀|α| ≤ α0 .

The last step would thus be to prove the above statement for |α| > α0.
Step 3 : Proof of (2.8).
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From the definition of γ (2.7), it follows that

γ(α, λ) ≥ β(ζ + α)− λ .

Clearly, for any α1 > 0, there exists ϵ2 > 0, such that, if λ ≤ β0 + ϵ2, then [z1(λ), z2(λ)] ⊂
[z0 − α1, z0 + α1]. We now take α1 = α0. This gives that β(ζ + α) ≥ λ for all |α| ≥ α0, and
(2.8) follows.

□

3 On two-dimensional models on half cylinders

We can now prove the following theorem.

Theorem 3.1
For ω ∈]0,+∞[ and λ ∈ [β0,+∞[, let us consider the functional

Hω ∋ ψ 7→ Eω(ψ, λ) =

∫ π/ω

−π/ω

∫ ∞

0

[
|(i∇+ ξ1î2)ψ|2 +

1

2
λ|ψ|4 − λ|ψ|2

]
dξ1dξ2 , (3.1)

where
|(i∇+ ξ1î2)ψ|2 = |i∂ξ1ψ|2 + |(i∂ξ2 + ξ1)ψ|2 ,

and

Hω =
{
ψ ∈ H1

mag

(
R+×]− L,L[,C

)
, ∀L > 0

∣∣ ∃z ∈ R : ψ(ξ1, ξ2 + 2π/ω) = e−iz
2π
ω ψ(ξ1, ξ2)

}
.

Let ψλ the function

(R+ × R) ∋ (ξ1, ξ2) 7→ ψλ(ξ1, ξ2) := e−iζ(λ)ξ2fζ(λ)(ξ1;λ) . (3.2)

Then, there exists ϵ > 0 such that :

Eω(ψ, λ) ≥ Eω(ψλ, λ) , ∀λ ∈]β0, β0 + ϵ[,∀ω > 0 and ∀ψ ∈ Hω . (3.3)

Remark 3.2
Clearly ψλ is in Hω (take z = ζ(λ)). Hence, the theorem states that ψλ is the global minimizer
of Eω in Hω.

Proof :
Consider first functions in Hω which are given in the form

(ξ1, ξ2) 7→ ψ(ξ1, ξ2) := fζ(ξ1;λ)e
−iζξ2v , (3.4)

with v periodic,
v(ξ1, ξ2) = v(ξ1, ξ2 + 2π/ω) , (3.5)
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and
ζ = ζ(λ) .

Then,

Eω(ψ, λ) =

∫ π/ω

−π/ω

∫ ∞

0

[
|(i∇+ (ξ1 + ζ )̂i2)fζv|2 +

1

2
λ|fζv|4 − λ|fζv|2

]
dξ1dξ2 .

Clearly,∫ π/ω

−π/ω

∫ ∞

0

|(i∇+ (ξ1 + ζ )̂i2)fζv|2 dξ1dξ2 =

=

∫ π/ω

−π/ω

∫ ∞

0

[
|v|2
[
|f ′
ζ |2 + (ξ1 + ζ)2|fζ |2

]
+ f 2

ζ |∇v|2 +
1

2
(f 2
ζ )

′ ∂

∂ξ1
(|v|2)+

+i(ξ1 + ζ)f 2
ζ

(
v̄
∂v

∂ξ2
− v

∂v̄

∂ξ2

)]
dξ1dξ2 .

Furthermore, integration by parts and (2.4) yield∫ π/ω

−π/ω

∫ ∞

0

[
|v|2
[
|f ′
ζ |2 + (ξ1 + ζ)2|fζ |2

]
+

1

2
(f 2
ζ )

′ ∂

∂ξ1
(|v|2)

]
dξ1dξ2

= λ

∫ π/ω

−π/ω

∫ ∞

0

|v|2f 2
ζ (1− f 2

ζ ) dξ1dξ2 . (3.6)

Hence,

∆Eω = Eω(ψ, λ)− Eω(fζe
−iζξ2 , λ)

=

∫ π/ω

−π/ω

∫ ∞

0

f 2
ζ

[
|∇v|2 + i(ξ1 + ζ)

(
v̄
∂v

∂ξ2
− v

∂v̄

∂ξ2

)]
dξ1dξ2

+
1

2

∫ π/ω

−π/ω

∫ ∞

0

fζ(ξ1;λ)
4(1− |v(ξ1, ξ2)|2)2 dξ1dξ2 .

Using (3.5), we can write

v(ξ1, ξ2) =
∞∑

n=−∞

vn(ξ1)e
inωξ2 .

Then,

∆Eω =
∞∑

n=−∞

∫ ∞

0

fζ(ξ1;λ)
2
[
|v′n(ξ1)|2 + (n2ω2 + 2nωξ1)|vn(ξ1)|2

]
dξ1+

+
1

2

∫ π/ω

−π/ω

∫ ∞

0

fζ(ξ1;λ)
4(1− |v(ξ1, ξ2)|2)2 dξ1dξ2 . (3.7)
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Consider now the functional

u 7→ J(u, α) =

∫ ∞

0

|fζ(ξ1;λ)|2
[
|u′(ξ1)|2 + [α2 + 2α(ξ1 + ζ)]|u(ξ1)|2

]
dξ1 .

Substituting w(ξ1) = fζ(ξ1;λ)u(ξ1) and utilizing (2.4), we obtain :∫∞
0

|fζ(ξ1)|2|u′(ξ1)|2 dξ1 =
∫∞
0

[
−
(
w2 f

′
ζ

fζ

)′
+ w2 f

′′
ζ

fζ
+ |w′|2

]
dξ1

=
∫∞
0

[
|w′|2 + [(ξ1 + ζ)2 − λ(1− f 2

ζ )]|w|2
]
dξ1 .

Consequently,

J(w/fζ , α) =

∫ ∞

0

(
|w′|2 + [(ξ1 + ζ + α)2 − λ(1− f 2

ζ )]|w|2
)
dξ1 ≥ γ(α, λ)

∫ ∞

0

|w|2 dξ1 .

Combining the above with (3.7), we obtain

∆Eω ≥
∞∑

n=−∞

γ(nω, λ)

∫ ∞

0

f 2
ζ |vn|2 dξ1 +

1

2

∫ π/ω

−π/ω

∫ ∞

0

f 4
ζ (1− |v|2)2 dξ1dξ2 ≥ 0 ,

which proves, using (2.8), Inequality (3.3) for every function in Hω satisfying (3.4).
Note for later use that this implies

|Eω(ψ, λ)− Eω(fζ e
−iζξ2 , λ)| ≥ 1

2

∫ π/ω

−π/ω

∫ ∞

0

fζ(ξ1;λ)
4(1− |v(ξ1, ξ2)|2)2 dξ1dξ2 . (3.8)

To prove (3.3) for all ψ ∈ Hω, we consider now functions of the form

(ξ1, ξ2) 7→ ψ0(ξ1, ξ2) = fζ(ξ1;λ)e
−izξ2v , with v(ξ1, ξ2) = v(ξ1, ξ2 + 2π/ω) . (3.9)

Consider first the case when ω ∈ R+ satisfies

ζ − z

ω
=
p

q
for some pair (p, q) ∈ Z× N . (3.10)

Clearly, if ψ0 satisfies (3.9) for some ω ∈ R+, then it also satisfies (3.9) for ω/q̂, for every
q̂ ∈ (N \ {0}). Moreover, it is easy to show that

Eω/q̂(ψ0) = q̂Eω(ψ0) , Eω/q̂(ψλ) = q̂Eω(ψλ) . (3.11)

We now choose q̂ = q, and observe that, according to (3.10), ω̂ = ω/q satisfies :

ζ − z

ω̂
∈ Z. (3.12)

But in this case, ψ0 admits the representation (3.4), and hence

Eω̂(ψ0) ≥ Eω̂(ψλ) .

Coming back to ω and using (3.11), we have the proof of (3.3) when ω satisfies (3.10) (with
the additional condition that z is fixed).

The proof of (3.3) in the general case follows now immediately from the density of the
rational numbers in R.

□
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4 Surface superconductivity

Let J be given by (1.1). Let (Ψκ, Aκ) denote a minimizer of J in H1(Ω,C) × H1(Ω,R2).
We prove in this section that |Ψκ|2 is nearly a constant along the boundary, in L2(∂Ω) sense,
as κ→ ∞, and for

β0 < λ =
κ

hex
< β0 + ϵ ,

where ϵ is defined in (2.8).
To this end we need to adapt the results in [19]. Let then

x = F(t, s) (4.1)

denote a diffeomorphism from

D(δ) = {(s, t) : |s| ≤ |∂Ω|/2 , 0 ≤ t ≤ δ} ,

to
Ωδ =

{
x ∈ Ω̄ : d(x, ∂Ω) ≤ δ

}
.

In the above t = d(x, ∂Ω) and s denotes the arclength along ∂Ω.
In order to formulate and prove the results of this section it is necessary to fix a specific

gauge for (ψκ, Aκ). To this end we first define the magnetic potential Pκ to be the solution
of 

∇× Pκ = ∇× Aκ − hex , in Ω

∇ · Pκ = 0 , in Ω

Pκ · ν̂ = 0 , in ∂Ω .

(4.2)

(cf. for example [8] for the proof of existence of a unique solution for (4.2).) Moreover, the
map associating the solution Pκ of (4.2) to the field (hκ − hex) is linear continuous from
Lp(Ω) into W 1,p(Ω) for any p ∈ [1,+∞[, and, using the Sobolev injection Theorem, one can
show that

||Pκ||L∞(Ω) ≤ CΩ ||∇ × Aκ − hex||L∞(Ω) . (4.3)

Let then e1 = −ν̂ denote an inward unit normal vector on ∂Ω and let e2 denote a unit
tangential vector. Let further

g = Det(DF) = 1− tκr(s) ,

where κr denote the local curvature on ∂Ω. Let (see [19]) F be any vector potential such
that ∇× F = hex and let a be defined by

a = a1e1 + a2e2 = [F · e1]e1 + [gF · e2]e2 . (4.4)

By [14], or the appendix in [12], there exists Âκ such that if we substitute F = Âκ in (4.4),
we obtain

a1(s, t) = 0 ; a2(s, t) = hex[c2 + t− t2κr(s)] ,
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where

c2 =
|Ω|
|∂Ω|

.

The gauge in (1.2) is now fixed by the condition that the Âκ has in the new coordinates the
normal form given above and that Aκ satisfies

Aκ − Âκ = Pκ .

We now introduce the change of variables :

(ξ1, ξ2) = (
κ√
λ
t ,

κ√
λ
s) , (4.5)

and prove the following lemma :

Lemma 4.1
Let

Ψ̃κ(ξ1, ξ2) =

{
Ψκ(

√
λ
κ
ξ1,

√
λ
κ
ξ2)e

−ic2ξ2 for 0 ≤ ξ1 ≤ κ√
λ
δ ,

Ψκ(κδ/
√
λ, ξ2)e

−ic2ξ2e−(ξ1−κδ/
√
λ) for ξ1 ≥ κ√

λ
δ ,

where c2 = c2(Ω), and let

ωκ =
2π

√
λ

κ|∂Ω|
.

Then, as κ tends to +∞,

J (Ψκ, Aκ) ≥
1

κ2
Eωκ(Ψ̃κ, λ) +O(1/κ2) . (4.6)

We will later prove (see (4.18)), that
∣∣Eωκ(Ψ̃κ, λ)

∣∣ ≥ Cκ, and hence the correction term on
the right-hand-side of (4.6) is much smaller than the first term as κ→ ∞.

Proof :
In [2] (see also [16]), it was proved that for λ < 1, there exists µ > 0 such that

|∇(∇× Aκ)| ≤ Ce−µκd(x,∂Ω) . (4.7)

Consequently, for x ∈ Ωδ, we have

|∇ × Aκ − hex| (x) ≤
∫ d(x,∂Ω)

0

|∇(∇× Aκ)(t, s(x))|dt ≤ C

∫ ∞

0

e−µκtdt .

Hence, there exists C1 > 0 such that

∥∇ × Aκ − hex∥L∞(Ωδ) ≤
C1

κ
.
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In view of (4.7) we can state the above inequality for the L∞(Ω) norm of ∇×Aκ − hex and
thus (4.3) gives that, for some C2 > 0,

∥Aκ − Âκ∥L∞(Ω) ≤
C2

κ
.

Hence, for some C3 > 0, ∫
Ω

|∇ × Aκ − hex|2 dx1dx2 ≤
C3

κ2
, (4.8)

and∫
Ω

∣∣∣∣( iκ∇+ Aκ

)
Ψκ

∣∣∣∣2 dx =

∫
Ω

∣∣∣∣( iκ∇+ Âκ

)
Ψκ

∣∣∣∣2 dx
+

∫
Ω

|Ψκ|2|Aκ − Âκ|2 dx +

∫
Ω

(Aκ − Âκ) ·
[
i

κ
(Ψκ∇Ψκ −Ψκ∇Ψκ) + 2Âκ

]
dx ≥

≥
∫
Ω

∣∣∣∣( iκ∇+ Âκ

)
Ψκ

∣∣∣∣2 dx − 2||Aκ − Âκ||L∞(Ω) ||Ψκ||L∞

∫
Ω

∣∣∣∣( iκ∇+ Âκ

)
Ψκ

∣∣∣∣ dx .
In [2] it is shown that

|Ψκ|+
∣∣∣∣( iκ∇+ Âκ

)
Ψκ

∣∣∣∣ ≤ Ce−µκd(x,∂Ω) , (4.9)

for some µ > 0 when λ < 1. Hence,∫
Ω

∣∣∣∣( iκ∇+ Aκ

)
Ψκ

∣∣∣∣2 dx ≥
∫
Ω

∣∣∣∣( iκ∇+ Âκ

)
Ψκ

∣∣∣∣2 dx − C

κ2
. (4.10)

Combining (4.8) and (4.10) we obtain

J (Ψκ, Aκ) ≥
∫
Ω

(∣∣∣∣( iκ∇+ Âκ

)
Ψκ

∣∣∣∣2 + 1

2
|Ψκ|4 − |Ψκ|2

)
dx − C

κ2
. (4.11)

Using the coordinates (4.1) we obtain∫
Ωδ

(∣∣∣∣( iκ∇+ Âκ

)
Ψκ

∣∣∣∣2 + 1

2
|Ψκ|4 − |Ψκ|2

)
dx1dx2 =

=

∫
D(δ)

{
1

κ2

∣∣∣∣∂Ψκ

∂t

∣∣∣∣2 + 1

g2

∣∣∣∣( iκ ∂

∂s
+ a2

)
Ψκ

∣∣∣∣2 + 1

2
|Ψκ|4 − |Ψκ|2

}
g dsdt .

Applying the transformation (4.5), we obtain∫ κδ√
λ

0

dξ1

∫ κ

2
√
λ|∂Ω|

−κ|∂Ω|
2
√

λ

dξ2
g̃

κ2


∣∣∣∣∣∂Ψ̃κ

∂ξ1

∣∣∣∣∣
2

+
1

g̃2

∣∣∣∣∣
(
i
∂

∂ξ2
+ ξ1 − κr(s)

√
λ

κ
ξ21

)
Ψ̃κ

∣∣∣∣∣
2

+
1

2
λ|Ψ̃κ|4 − λ|Ψ̃κ|2

 ,
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where g̃ is defined by :

g̃(ξ1, ξ2) = 1−
√
λ

κ
ξ1κr(

√
λξ2/κ) .

Since by (4.9), there exist µ̃ > 0 and C̃ such that on [ 0, κδ√
λ
[ × ]− κ|∂Ω|

2
√
λ
, +κ|∂Ω|

2
√
λ
[,∣∣∣∣∣

(
i
∂

∂ξ2
+ ξ1 − κr(

√
λξ2/κ)

√
λ

κ
ξ21

)
Ψ̃κ

∣∣∣∣∣
2

+ |ξ1|2|Ψ̃κ|2 ≤ C̃ e−µ̃ξ1 ,

there exist µ > 0 and C such that :∣∣∣∣(i ∂∂ξ2 + ξ1

)
Ψ̃κ

∣∣∣∣2 ≤ Ce−µξ1 .

We thus obtain∫ κ√
λ
δ

0

dξ1

∫ κ

2
√
λ
|∂Ω|

− κ

2
√
λ
|∂Ω|

dξ2
1

g̃

∣∣∣∣∣
(
i
∂

∂ξ2
+ ξ1 − κr(

√
λξ2/κ)

√
λ

κ
ξ21

)
Ψ̃κ

∣∣∣∣∣
2

=

=

∫ ∞

0

dξ1

∫ κ

2
√
λ
|∂Ω|

− κ

2
√
λ
|∂Ω|

dξ2

∣∣∣∣(i ∂∂ξ2 + ξ1

)
Ψ̃κ

∣∣∣∣2 +O(1) .

Using the above arguments for the remaining terms yields

J (Ψκ, Aκ) =

1

κ2

∫ κ√
λ
δ

0

dξ1

∫ κ

2
√
λ
|∂Ω|

− κ

2
√
λ
|∂Ω|

dξ2

∣∣∣∣∣∂Ψ̃κ

∂ξ1

∣∣∣∣∣
2

+

∣∣∣∣(i ∂∂ξ2 + ξ1

)
Ψ̃κ

∣∣∣∣2 + 1

2
λ|Ψκ|4 − λ|Ψκ|2

 + O(κ−2) ,

so

J (Ψκ, Aκ) =
1

κ2
Eωκ(Ψ̃κ, λ) +O(κ−2) . (4.12)

Combining (4.12) with (4.11) yields (4.6).

□

We can now prove the main result of this work.
Proof of Theorem 1.1:
Let ψ̂λ,κ : Ωδ → C be given by

ψ̂λ,κ(x) = ψλ

( κ√
λ
t(x)

)
exp

{
−ic2

( κ√
λ
s(x)

)}
.

Let further χ : R+ → [0, 1] denote a smooth cutoff function satisfying

χ(t) =

{
1 t ≤ 1

2

0 t ≥ 1
.
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Then, χ
(
t(x)/δ

)
ψ̂λ,κ(x) is in H

1(Ω,C), and it is not difficult to show that

J (Ψκ, Aκ) ≤ J (ψ̂λ,κ, Âκ) = −Cλ|∂Ω|
κ
√
λ

+O(κ−2) (4.13a)

where

Cλ = − ω

2π
Eω(ψλ, λ) . (4.13b)

By Theorem 3.1 there exists ϵ > 0 such that, for β0 < λ < β0 + ϵ, we have, for all ω,

Cλ = − ω

2π
inf
ψ∈Hω

Eω(ψ, λ) (4.14)

Note that this implies in particular :

Cλ = − lim
ω→0

ω

2π
inf
ψ∈Hω

Eω(ψ, λ) . (4.15)

Combining (4.6) and (4.13) we obtain

J (Ψκ, Aκ) = −Cλ|∂Ω|
κ
√
λ

+O(κ−2) , (4.16)

In [19] (Lemma 7.3), Pan proves (4.16), for any fixed β0 < λ < 1, by using as a test
functions the unknown minimizer of Eωκ in Hωκ instead of ψλ, and (4.15) as the definition
of Cλ. He also proves (4.16) when λ(κ) → λ (with λ(κ) = κ

hex(κ)
) but with an additional

O
(
[λ(κ)− λ]/κ

)
error. Note that when λ = β0 this result is no more useful since Cβ0 = 0 ,

and hence the leading order term of J is unknown in this case (see [10] for results in this
case).

By (2.5) and (3.3), we have
Cλ = −b(ζ(λ), λ) ,

which shows that Cλ > 0 for every β0 < λ < 1. Consequently, we have by (4.6) and (4.16),

Eωκ(Ψ̃κ, λ) ≤ Eωκ(ψλ, λ) + C . (4.17)

Thus, by (4.13b)

Eωκ(Ψ̃κ, λ) ≤ −Cλ
|∂Ω|√
λ
κ+ C,

which proves that indeed ∣∣Eωκ(Ψ̃κ, λ)
∣∣ ≥ Cκ , (4.18)

and that the correction term on the right hand side of (4.6) is much smaller than the leading
order term.
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Let wκ be defined by

Ψ̃κ(ξ1, ξ2) = fζ(ξ1;λ)wκ(ξ1, ξ2) e
−ic2ξ2 .

Clearly, wκ is periodic in ξ2. Thus, by (3.8), we get∣∣∣Eωκ(Ψ̃κ, λ)− Eωκ(ψλ, λ)
∣∣∣ ≥ 1

2

∫ π/ωκ

−π/ωκ

dξ2

∫ ∞

0

dξ1 |fζ |4(1− |wκ|2)2 .

Consequently, there exists C0 > 0 such that∫ π/ωκ

−π/ωκ

dξ2

∫ ∞

0

dξ1|fζ |4(1− |wκ|2)2 ≤ C0 ,

and hence, for suitable constants C1 and C2,∫
Ωδ

[|Ψκ|2 − |ψ̂λ,κ|2]2 dx ≤ C1

κ2

∫ π/ωκ

−π/ωκ

dξ2

∫ ∞

0

dξ1 |fζ |4(1− |wκ|2)2 ≤
C2

κ2
,

which proves (1.8a).
To prove (1.8b), we first notice that it is proved in [2] that :

|Ψκ|+
1

κ
|∇Ψκ| ≤ C ,

and using the explicit form of ψ̂λ,κ, we obtain :∣∣∇(|Ψκ|2 − |ψ̂λ,κ|2)
∣∣ ≤ Cκ . (4.19)

Evidently, as a consequence of the mean value formula, there exist C > 0 and δ0 > 0, such
that, for every 0 < δ′ ≤ δ0, there exists 0 ≤ δ′′ ≤ δ′ such that∫

t=δ′′

[
|Ψκ|2 − |ψ̂λ,κ|2

]2
ds ≤ C

δ′

∫
Ωδ′

[
|Ψκ|2 − |ψ̂λ,κ|2

]2
dx1dx2 .

Furthermore by (4.19), we have∫
∂Ω

[
|Ψκ|2 − |ψ̂λ,κ|2

]2
ds ≤ C

∫
t=δ′′

[|Ψκ|2 − |ψ̂λ,κ|2]2 ds + Cκδ′′ .

Consequently, there exists C > 0 such that :∫
∂Ω

[
|Ψκ|2 − |ψ̂λ,κ|2

]2
ds ≤ C

δ′
1

κ2
+ Cκδ′ .

Choosing δ′ = κ−3/2 proves (1.8b).
□

18



Finally, we compare Theorem 1.1 with the results in [10] (Remark 1.5). As was stated
already in the introduction, when ρ(κ) = o(κ1/2) and tends to ∞ as κ → +∞, (1.4) holds.
The function u in (1.4) is given by

u(τ) = β0
|u0(τ)|2

∥u0∥44
,

u0 denoting the minimizer of (2.1).
We first note that, since as λ→ β0, we have

f 2
ζλ
(τ) ∼ λ− β0

β2
0

u(τ) ,

and since
λ− β0
β2
0

∼ ρ

κ
as κ→ ∞ ,

(1.4) and (1.8a) match. The error in (1.4) is substantially smaller than in (1.8a). The
difference is explained by the fact that ψκ itself is small on ∂Ω when λ → β0. Thus, if we
extrapolate the error term in (1.4) to external fields for which ρ/κ ≈ 1, it becomes O(κ−2)
exactly as in (1.8a).
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[17] K. Lu and X. B. Pan, Gauge invariant eigenvalue problems in R2 and R2
+, Trans.

Amer. Math. Soc., 352 (2000), pp. 1247–1276.

[18] W. Meissner and R. Ochsenfeld, Naturwissenschaffen, 21 (1933), p. 787.

[19] X. B. Pan, Surface superconductivity in applied magnetic fields above hC2 , Comm.
Math. Phys., 228 (2002), pp. 327–370.

[20] D. Saint-James and P. de Gennes, Onset of superconductivity in decreasing fields,
Phys. Let., 7 (1963), pp. 306–308.

[21] S. Serfaty, Stable configurations in superconductivity: uniqueness, multiplicity, and
vortex-nucleation, Arch. Ration. Mech. Anal., 149 (1999), pp. 329–365.

20


