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Abstract

A comparison is made of the ‘apparent viscosity’ (as defined by Stokes law) between
two different cases of a test sphere moving slowly through an unbounded, otherwise qui-
escent, globally homogeneous, dilute suspension of identical, neutrally-buoyant spher-
ical particles dispersed in an incompressible Newtonian liquid. In case I the force on
the test sphere is maintained constant for all time (and the torque-free sphere allowed
to rotate) – corresponding to the so-called ”falling ball” case – and its instantaneous
velocity allowed to vary with proximity to each suspended sphere encountered during
its trajectory; in case II the non-rotating test sphere is towed with a uniform (instanta-
neous) velocity through the suspension and the force experienced by it allowed to vary
with proximity to each suspended sphere. Allowing for two-body hydrodynamic inter-
actions between the ball and a suspended particle, the ensemble-average velocity of the
test sphere is calculated in case I and ensemble-average force in case II, and Stokes law
used to calculate the apparent viscosity of the suspension from the ensemble-averaged,
linear force/velocity ratio obtained. In each case the ’apparent suspension viscosity’
coefficient attains, as expected, the limiting, continuum, Einstein value of 2.5 when
the test sphere is much larger than the freely suspended particle. However, in the case
of disparate relative sizes, the apparent viscosity is found to be significantly larger in
case II than in case I. The difference arises from the locally inhomogeneous nature
of the suspension and points up a fundamental non-continuum aspect of suspension
behavior above and beyond the expected test/suspended-sphere size ratio ‘Knudsen’
non-continuum effect.
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1 Introduction

The dynamics of a test sphere (’ball’) moving through an otherwise quiescent suspension

composed of identical, neutrally-buoyant, freely-suspended spherical particles uniformly dis-

persed (at least globally) throughout a Newtonian fluid has been studied both theoretically

and experimentally. Batchelor1 and Batchelor & Wen2 analyzed the problem within the

broader context of dilute bidisperse suspensions, whereas Davis & Hill3 calculated, in ad-

dition to the settling velocity, the variance and the hydrodynamic diffusivity coefficients.

Brenner et al.4 obtained the disturbance velocity field far from the ball in the limiting case

where the ball size greatly exceeds that of the suspended spheres. In the non-dilute range,

Mondy et al.5 and Miliken et al.6 performed falling-ball rheometry experiments for various

particle concentrations, ball sizes, suspended-sphere sizes, etc.

The current work focuses on a completely different aspect of the problem – namely, a

comparison between the values obtained for the suspension’s ‘Stokes-law viscosity’ as expe-

rienced by a test sphere for two opposite, but seemingly equivalent cases. The first is that

observed heretofore in falling-ball experiments and studied theoretically, in which the force

on the ball is a fixed, time-independent constant, and the net torque vanishes. In the second

case the ball is forced to move with a fixed time-independent velocity while rotary motion is

prohibited. [A device which enables the realization of such an experiment has already been

utilized to measure the viscosity of semi-dilute polymer solutions (Adam & Delsanti,7 Adam

et al.8).] Were a suspension truly equivalent to a homogeneous Newtonian fluid, no differ-

ence would exist between the two cases – even allowing for ‘Knudsen-like’ non-continuum,
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‘slip-velocity’ size effects [the latter analogous to the classical Cunningham9 mean-free path

correction factor to Stokes law used in Millikan’s10 classical oil drop experiments for mea-

suring the fundamental electronic charge].

A similar point has recently been made (cf. Almog & Brenner11), but in the context of two

opposite rotating test sphere cases (both in unbounded suspensions): (I) a ball rotating with

a fixed, time-independent angular velocity; and (II) a rotating ball upon which a prescribed,

time-independent couple is exerted. Those results showed that the ’apparent viscosities’

(this time calculated through Kirchoff’s law for the linear couple/angular-velocity relation)

are different, and hence, that the suspension does not behave like a homogeneous medium.

But in order to calculate the ’apparent viscosity’ in the rotating ball case it was necessary

to make an ad hoc assumption of uniformity of the spatial distribution of suspended spheres

near the rotating test sphere – equivalent to assuming uniformity of the pair probability

density function (’Eisenschitz hypothesis’). This assumption can, however, only be justified

for the case of Brownian particles. On the other hand, for the current translating ball

problem one can calculate the pair probablity density for non-Brownian particles without

invoking any similar a priori assumption. As such, the subsquent analysis demonstrates the

manifestly inhomogeneous nature of suspension behavior for a different case, but without

requiring any assumption regarding the pair probability density .

In section 2, which follows, we formulate the relevant problems posed for both cases.

Section 3 presents results for the probability densities and subsequently for the ’apparent

viscosities’. Unlike previous investigations,2,3 in which numerical results were presented only
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for several discrete values of the ball/suspended-sphere size ratio, the dependence on this

important parameter is presented here over a domain for which its values vary continously

from very small to very large. Appendix A pursues some technical details pertaining to the

calculations performed in section 3.

2 Formulation of the problems

Consider a dilute suspension of identical, freely-suspended spherical particles of radii a2

dispersed in a homogeneous Newtonian fluid of viscosity µ through which a test sphere of

radius a1 translates. If the size of the container is much larger than the sizes of both the

suspended and test spheres, it is reasonable to approximate results by those obtained for an

unbounded domain.

We shall subsquently compare between two different cases:

1. I. The force on the ball is prescribed (and a zero net torque prescribed as well – which

allows the ball to rotate).

2. II. The velocity of the ball is prescribed (and its angular velocity is zero).

In case I we shall be interested in the average reduction in the mean ‘sedimentation’ velocity

of the test sphere due to hydrodynamic interactions, whereas in case II we shall calculate

the average extra-force exerted upon it, also due to hydrodynamic interactions. In both

situations the base case for calculating the incremental changes is that in which all of the

other physical parameters of the problem remain unchanged, except that the suspended
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particles are now absent.

Suppose that the (center of the) test sphere is located at x1. Then any ensemble-averaged

quantity may be expressed (Rubinstein & Keller12) in the form

⟨A⟩ (x1) =
∫

A(x1,x2, . . . ,xN)fN(x2, . . . ,xN/x1)dx2 . . . dxN , (2.1)

where fN is the multiparticle conditional probability density, and A(x1,x2, . . . ,xN) is any

configuration-dependent tensor. Since the suspension is supposed dilute, the multisphere

average can be approximated by a two-sphere average (Batchelor,1 Almog & Brenner11).

The average reduction in sedimentation velocity for case I can therefore be approximated by

⟨∆U 1⟩ (x1) = −n(x1)
∫ [

U 1(x1),x2)−
F

6πµa1

]
pF12(x2/x1)dx2, (2.2)

and the average extra-force for case II by

⟨∆F 1⟩ (x1) = n(x1)
∫

[F 1(x1),x2)− 6πµa1U ] pU12(x2/x1)dx2. (2.3)

In the above, n(x1) is the local number density of the freely-suspended particles. The

functions pF12 and pU12 respectively denote the pair probability densities for finding a neutrally

bouyant sphere at x2 when the test sphere is located at x1 for cases I and II. The constant

vectors F and U are, respectively, the prescribed force in case I and the prescribed velocity in

case II. The two-point vector fields U 1(x1,x2) and F 1(x1,x2) are, respectively, the velocity

5



(case I) of the ball and the force (case II) exerted upon it when a freely-suspended sphere is

present at x2.

For case I the configuration-dependent sedimentation velocity can be represented in terms

of Jeffrey & Onishi’s13 mobility functions as

U 1(x1,x2) = U s ·
[
xa
11

rr

r2
+ ya11(I − rr

r2
)
]
. (2.4)

Similarly, for case II the configuration-dependent force exerted upon the ball is expressible

in the form

F 1(x1,x2) = 6πµa1U ·
[
1

xa
11

rr

r2
+

yc11
ya11y

c
11 − 3(yb11)

2
(I − rr

r2
)

]
. (2.5)

Here, U s = F /6πµa1 is the Stokes-law settling velocity of the ball; r = x2 − x1 (r = |r|);

and xa
ij, y

a
ij, y

b
ij and ycij are Jeffrey & Onishi’s13 mobility coefficients, which are expressed as

functions of the dimensionless parameters

s =
r

a1 + a2
; λ =

a2
a1

.

In circumstances where the gap between the ball and suspended sphere is small compared

their center-to-center spacing, it proves useful to introduce the normalized gap width

ξ = s− 2 ≪ 1.
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as the separation parameter in place of s.

The pair probability densities both satisfy the Fokker-Planck equation (Batchelor,1 Davis

& Hill3)

∂p12
∂t

+∇ · (p12v12) = 0 , (2.6)

accompanied by the boundary condition lim
r→∞

p12 = 1. (An appropriate superscript, F or U ,

should be added depending on the specific case.) The quantity v12 stands for the relative

velocity of the neutrally buoyant sphere at x2 with respect to the ball at x1. For case I,

vF
12 = −U s ·

[
LF rr

r2
+MF

(
I − rr

r2

)]
, (2.7)

(Davis & Hill3), where the hydrodynamic coefficients LF and MF are expressible in the

respective forms

LF = xa
11 −

2

1 + λ
xa
12 ; MF = ya11 −

2

1 + λ
ya12 . (2.8a,b)

Similarly, for case II we have

vU
12 = −U ·

[
LU rr

r2
+MU

(
I − rr

r2

)]
, (2.9a,b)
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wherein

LU =
LF

xa
11

; MU =
yc11M

F − 3yb11B

ya11y
c
11 − 3(yb11)

2
(2.10a,b)

in which B = yb11 − 4/(1 + λ)2yb12. As will be subsquently demonstrated (cf. Appendix A),

in order to approximate pU12 for ξ ≪ 1 it is more useful to re-express MU in terms of Jeffrey

& Onishi’s13 resistance functions:

MU =
3Y C

22

[
Y A
22 +

1
2

(
1 + 1

λ

)
Y A
12

]
− Y B

22

[
Y B
22 +

1
4

(
1 + 1

λ

)2
Y B
21

]
(Y B

22 )
2 − 3Y A

22Y
C
22

. (2.11)

3 Results and Discussion

3.1 The pair probablity distribution

In both cases the pair probability distribution, depends solely on the radial coordinate, and

can be easily obtained in the following form: (Batchelor,1 Davis & Hill3)

pF12 =
1

LF
exp

{∫ ∞

s

2

s′

(
1− MF

LF

)
ds′
}
, (3.1a)

pU12 =
1

LU
exp

{∫ ∞

s

2

s′

(
1− MU

LU

)
ds′
}
. (3.1b)
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For s > 2.5, both pF12 and pU12 have been obtained in the form of power series in s up to

O(s−300), the coefficients of these terms having been derived through recurrence relations

(cf. Appendix A) from Jeffrey & Onishi’s13 series expansions for the mobility functions.

For ξ ≪ 1 it is necessary to use near-field expansions for the hydrodynamic coefficients,

namely

LF = LF
1 ξ + LF

2 ξ
2 ln ξ + LF

3 ξ
2 +O(ξ3 ln ξ), (3.2a)

MF = MF
0 +

MF
1 ln ξ−1 +MF

2

ln2 ξ−1 + e1 ln ξ−1 + e2
+O(ξ ln ξ) = MF

0 +
αF
1

ln ξ−1 − zF1
+

αF
2

ln ξ−1 − zF2
,

(3.2b)

LU =
LF
1 ξ + LF

2 ξ ln ξ + LF
3 ξ

2

d111 + d211ξ + d311ξ
2 ln ξ + d411ξ

2
+O(ξ3 ln ξ), (3.2c)

MU =
MU

1 ln ξ−1 +MU
2

ln2 ξ−1 + e1= ln ξ−1 + e2
+O(ξ ln ξ) =

αU
1

ln ξ−1 − zU1
+

αU
2

ln ξ−1 − zU2
. (3.2d)

The various coefficients required in (3.2) can easily be derived by using Jeffrey & Onishi’s13

near-field expansions for the mobility and resistance functions in conjunction with (2.8),(2.10)

and (2.11).

Upon substituting into (3.1) the expressions for MF and MU as well as the leading-order
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terms for LF and LU , we obtain

pF12
∼=

qF

LF
ξx(ln ξ−1 − zF1 )

βF
1 (ln ξ−1 − zF2 )

βF
2 , (3.3a)

pU12
∼=

qU

LU
(ln ξ−1 − zU1 )

βU
1 (ln ξ−1 − zU2 )

βU
2 , (3.3b)

where x = MF
0 /L

F
1 , β

F
i = −αF

i /L
F
1 and βU

i = −αU
i /L

F
1 d

1
11 . The constants q

F and qU have to

be determined by numerical integration of (3.1a) and (3.1b), respectively, at a single point

ξ̄ ≪ 1. Batchelor & Wen2 obtained an approximation for pF12 by expanding MF in power

series in ln ξ−1 and truncating the expansion after the first 2 terms. Their approximation is

therefore accurate up to O(1/ ln ξ), unlike (3.3a) which is accurate up to O(ξ).

Note that pU12 tends to infinity faster than pF12. This follows from the fact that unlike

MF , lim
ξ→0

MU = 0; equivalently, this may be regarded as a consequence of the fact that case

II boundary conditions (as opposed to the zero net torque condition for case I) do not allow

the touching pair of sphere (for ξ → 0) to rotate together.

For s < 2.5 it is still possible to express pF12 and pU12 as power series in s. However, in view

of (3.3), the series becomes ineffective for ξ ≪ 1. Instead, we therefore expand the functions

pF12L
F ξ̃−x(ln ξ̃−1 − zF1 )

−βF
1 (ln ξ̃−1 − zF2 )

−βF
2 and pU12L

U(ln ξ̃−1 − zU1 )
−βU

1 (ln ξ̃−1 − zU2 )
−βU

2 (cf.

Appendix A). The variable ξ̃ = ξ/(1 + γξ) is used in place of ξ to make these functions

analytic as s → ∞. The resulting series have been found generally to accord well with the

numerical integration of (3.1), the explicit value of γ chosen being without significant effect

on the results.

Figure 1 displays the dependence on ξ of pF12 (fig. 1a) and pU12 (fig. 1b) on a logarithmic
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scale for λ = 0.01, λ = 1 and λ = 100. The curves displayed for both functions derive from

the series expansion for s < 2.5. For all values of λ, the asymptotic approximation (3.3)

becomes identical (less than 0.1 percent error) with the preceding series expansion for those

values of ξ < 10−6.

For ξ ∼ O(1) it can be seen that pF12 − 1 decays much faster for λ = 0.01 than for the

two other cases. The far-field expansion

pF12 = 1 +
30λ3

s4(1 + λ)4
+O(s−5) (3.4)

can partially explain this result, since for large s, and λ less than 3, pF12 is an increasing

function of λ.

Comparison of the curves for λ = 1 and λ = 100 in fig. 1a shows that for ξ ∼ O(1),

pF12
∣∣∣
λ=100

< pF12
∣∣∣
λ=1

, whereas for ξ → 0 the function pF12
∣∣∣
λ=100

tends to infinity much faster.

The first difference results from the fact that for λ = 100, hydrodynamic interactions between

the two spheres – which are governed by a1/r – are still small for ξ ∼ O(1). The second

difference results from the diminution in the rate of the rotation of touching spheres when λ is

either very large or very small; explicitly, this is a consequence of the fact that lim
λ→0 or ∞

MF
0 =

0. For λ ≪ 1 the latter statement is physically obvious: a small neutrally buoyant sphere

has a minor effect on a much larger test sphere. In the other limit, if both U s and a2 are

kept constant, and a1 allowed to tend towards zero, the force on the ball together with MF
0

decay as well. In fact, Davis & Hill3 show MF
0
∼= 3/4λ.

To explain the steeper behaviour of pF12 near ξ = 0, one needs to show that lim
λ→0 or ∞

x = 0.
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For λ ≫ 1 this stronger result can easily be demonstrated. Using the relation (Jeffrey &

Onishi13)

LF
1 (λ) + LF

1

(
1

λ

)
=

(1 + λ)3

2λ
, (3.5)

in conjunction with the fact that lim
λ→0

LF
1 (λ) = 0 [since when λ → 0, the velocity field for the

two-sphere problem tends uniformly to that for a single sphere, for which ∂uR/∂R|R=a1
= 0,

where uR is the radial velocity component (Happel & Brenner14)], we obtain

LF
1 ∼ λ/2 + 3/2 +O(1/λ) as λ → ∞ . Upon combining the results for MF

0 and LF
1 we

obtain lim
λ→∞

x = 0, where x is defined following (3.3).

For λ → 0, similar behavior is observed for x; equivalently, MF
0 decays faster than does

LF
1 . Hence, it is expected that for some value of ξ < 10−12, the λ = 0.01 curve will intersect

the λ = 1 curve; in other words, pF12
∣∣∣
λ=0.01

will become larger than pF12
∣∣∣
λ=1

.

Figure 1b supports the latter statement. Upon observing that the λ = 0.01 curves in

both figures are almost identical, it may be argued that for λ ≪ 1 the problems for cases

I and II (for which x = 0 for all λ) become equivalent. Since in this limit the suspension

may be regarded as a continuum (cf. Almog & Brenner11), this result is almost certainly

expected.

Comparison of the λ = 0.01 and λ = 100 curves in fig. 1b for ξ ∼ O(1) yields the surpris-

ing result that pU12
∣∣∣
λ=100

< pU12
∣∣∣
λ=0.01

. This has been confirmed analytically by establishing

the asymptotic behavior for λ ≫ 1 of the hydrodynamic coeficients d111 and d211 appearing

in (3.2c). First it is easy to show, using the fact that two touching spheres move as a rigid
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body (Jeffrey & Onishi13), that

d111(λ) = λd111

(
1

λ

)
.

Obviously, d111 → 1 when λ → 0, and thus d111 ∼ 1/λ for λ ≫ 1. In contrast to the decay of

d111, it is easy to show that d211 ∼ λ/2 in view of the asymptotic behaviour of LF
1 .

If one substitutes the above approximation into (3.2c), expands in terms of 1/λ, and

assumes that the higher-order terms in (3.2c) are negligible, it follows for ξ ∼ O(λ−1) that

LU ∼ 1. The latter result, which – in view of (3.3b) – immediately confirms the large

difference between the λ = 0.01 and λ = 100 curves, may be intuitively explained. Suppose

that the test sphere, which is much smaller than the neutrally buoyant sphere, is located at

a distance several times larger than its radius from the larger, neutrally buoyant one, and

that its prescribed velocity U is parallel to r. Then, the relative velocity will be almost

equal to U (since the larger, neutrally buoyant sphere will be negligibly affected) so long as

ξ ∼ O(λ−1). If, however, we instead prescribe the force, the relative velocity will decay much

faster, since the effect of the larger sphere on the smaller one will be much more important

in that case.

3.2 The suspension’s ’apparent viscosity’

Our goal in this subsection is to obtain the average reduction in sedimentation velocity

for case I, and the average extra-force for case II. Towards these ends we introduce nondi-

mensional apparent viscosity coefficients, kF
m and kU

m, which are defined by the following
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equations

⟨U⟩ = U s

1 + kF
mc

, ⟨F ⟩ = 6πµa1U

1 + kU
mc

, (3.6a,b)

with c the volume fraction of suspended spheres. The quantities kF
mc and kU

mc represent

the additional apparent viscosities for the respective cases (cf. Miliken et al.6 ). Neither,

however, constitutes an intrinsinc property of the suspension since, as will be demonstrated

subsquently, each depends upon the ratio λ of the respective size of the suspended particles

to that of the test sphere.

Upon substituting (2.4) together with (3.1a) into (2.2) we obtain

kF
m =

(1 + λ)3

8λ3

∫ ∞

2
(3− xa

11 − 2ya11)p
F
12s

2ds . (3.7)

Similarly, substitution of (2.5) together with (3.1b) into (2.3) yields

kU
m = −(1 + λ)3

8λ3

∫ ∞

2

(
3− 1

xa
11

− 2
yc11

ya11y
c
11 − 3(yb11)

2

)
pU12s

2ds . (3.8)

Obviously, the difference between the respective values of km results from two different

factors:

(i) Different pair probability densities.

(ii) Different averaged quantities; that is, in order to evaluate kF
m we average the reduction

in sedimentation velocity, whereas kU
m arises from evaluating the average extra force.
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In order to evaluate (3.7) and (3.8) it is first necessary to evaluate the pair probability

densities as well as the various hydrodynamic coefficients appearing in the integrands. The

hydrodynamic coefficients have been obtained for ξ > 0.01 by using their far-field expansions

[once again up to O(s−300)] and for ξ < 0.01 by their near-field expansions (cf. Jeffrey & On-

ishi13). The pair probability densities have been obtained for s > 2.5 as power series in s; for

10−6 < ξ < 0.5 the power series expansions of pF12L
F ξ̃−x(ln ξ̃−1− zF1 )

−βF
1 (ln ξ̃−1− zF2 )

−βF
2 and

pU12L
U(ln ξ̃−1 − zU1 )

−βU
1 (ln ξ̃−1 − zU2 )

−βU
2 have been utilized, whereas for ξ < 10−6 Eqs.(3.3a)

and (3.3b) have been used.

For ξ ∼ O(1) it is possible to obtain the power series representations in s of the in-

tegrands appearing in both (3.7) and (3.8), followed by term-by-term integration to effect

the quadrature. This process was utilized for s > 2.5. For 10−6 < ξ < 0.5 the integrals

were calculated numerically using the Gauss-Concord rule (a Fortran Nag library routine).

Finally, for ξ < 10−6, the integrands in both (3.7) and (3.8) were respectively expanded into

power series in (ln ξ−1 − zF1 ) and (ln ξ−1 − zU1 ); (we assume |zF1 | > |zF2 | and |zU1 | > |zU2 |).

Term-by-term integration then yields

∫ 10−6

0
(3− xa

11 − 2ya11)p
F
12s

2ds ∼=
e−xzF1 4qF

x(D − zF1 )
yFLF

1

·

·
∞∑
0

[
EF +

AF

zF1 − zF2

n

1 + βF
2 − n

+
BF

zF1 − zF2

n

βF
2

](
βF
2

n

)
·

·[x(D − zF1 )]
(yF+n)Γ(1− yF − n, x(D − zF1 )

[
zF1 − zF2
D − zF1

]n
(3.9)
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and

∫ 10−6

0

(
3− 1

xa
11

− 2
yc11

ya11y
c
11 − 3(yb11)

2

)
pU12s

2ds ∼=
4qUd111
LF
1

·

·
∞∑
0

[
EU yU + n

yU + n− 1
+ AU +BU

(
1− n

βU
2

)](
βU
2

n

)
(D − zU1 )

−yU

−(yU + n)

[
zU1 − zU2
D − zU1

]n
(3.10)

In the above, D = ln 106, yF = βF
1 +βF

2 , y
U = βU

1 +βU
2 , Γ(α, x) is the incomplete gamma

function (Abramowitz & Stegun15), and AF , BF , EF , AU ,BU and EU are defined in the

following near-field expansions for the hydrodynamic coefficients:

3− xa
11 − 2ya11

∼= EF +
AF

ln ξ−1 − zF1
+

BF

ln ξ−1 − zF2
+O(ξ ln ξ−1), (3.11a)

3− 1

xa
11

− 2
yc11

ya11y
c
11 − 3(yb11)

2
∼= EU +

AU

ln ξ−1 − zU1
+

BU

ln ξ−1 − zU2
+O(ξ ln ξ−1).

(3.11b)

Figure 2 displays the variation with λ of the parameters kF
m and kU

m (the incremental

apparent viscosities) on a logarithmic scale. The numerical error is estimated to be less than

one percent for 0.1 < λ < 10. As λ tends to either 0 or ∞, the domain in which the near-field

expansions for the hydrodynamic coefficients are valid shrinks (since we must have ξ ≪ 1/λ

as λ → ∞ or ξ ≪ λ as λ → 0), whereas the domain in which the far-field expansion is valid

remains unchanged. Of course, this effects the accuracy of the numerical calculations of (3.7)

and (3.8). However, the contributions to the additional apparent viscosity of both the near

field for λ ≪ 1 and far field for λ ≫ 1 have been found to be negligible – both numerically
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and (as will be subsquently explained) analytically. Consequently, the calculation appears

accurate over the whole range of λ values for which the calculations of kF
m and kU

m have been

performed.

Three highly intuitive modes of behavior can be observed:

1. For λ → 0, both kF
m and kU

m tend to 2.5, which is exactly Einstein’s classical result.

Obviously, when the test sphere is much larger then the suspended spheres it becomes

a part of the boundary, and the suspension behaves like a true continuum (cf. Almog

& Brenner11). It is for this reason that the near-field contribution in that limit is

expected to be negligible.

2. As λ → ∞, both kF
m and kU

m tend to infinity as a consequence of the steepening of the

probability densities pF12 and pU12 near ξ = 0; in other words, the test particle spends

most of its time in close vicinity to one of the large, neutrally buoyant spheres. This

offers an intuitive explanation of the negligible far-field effect in that limit.

3. For all values of λ, the inequality kU
m ≥ kF

m obtains; in words, the apparent viscosity

increment is larger for case II. The main reason for this appears to be the steeper

behavior of pU12 near ξ = 0; equivalently, a touching pair of spheres cannot rotate like

a rigid body.

Less intuitive are the maximum and the minimum respectively attained by kF
m at λ = 0.1

(kF
m = 2.68), and λ = 2 (kF

m = 2.47). Unlike the problem of a rotating sphere in an unbounded

suspension (cf. Almog & Brenner11), there exist two competing mechanisms which effect the
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average sedimentation velocity: The first is that the configuration-dependent reduction in

sedimentation velocity (averaged over a spherical surface and properly normalized), namely

(1 + 1/λ)3(3 − xa
11 − 2ya11), decays much faster with ξ as λ increases. This statement is

supported by the asymptotic expansions of Fuentes et al.16,17 for large and small values of

λ, from which the following approximations can be easily derived:

(1 + λ)3

λ3
(3− xa

11 − 2ya11)
∼=

15

4

(
2

s

)4

+O(s−6, λs−4) as λ → 0, (3.12a)

(1 + λ)3

λ3
(3− xa

11 − 2ya11)
∼=

15

4λ

(
2

s

)4

+O(λ−1s−6, λ−2s−4) as λ → ∞, (3.12b)

which reveal that the far-field contribution in the limit λ ≫ 1 is much smaller than in the

opposite limit, λ ≪ 1. Intuitively, one can argue that a small sedimenting sphere is affected

by a much smaller neighborhood than is a large sphere.

The second mechanism is that of the relatively rapid decay of pF12 with ξ for small values

of λ, arising from the fact that the relative velocity of the ball with respect to the suspended

sphere is almost the Stokes-law velocity, even for λ ≪ ξ ≪ 1. Clearly, the maximum and the

minimum attained by kF
m result from the interaction of these competing mechanisms. For

kU
m, however, the second mechanism appears to be always dominant in view of the monotone

behavior manifested.

As already mentioned, the major contribution to the apparent viscosity in the limit

λ → ∞ is due to near-field effects. However, even a very weak diffusivity would drastically

decrease the near-field contribution. This can perhaps explain the monotone decrease in

apparent viscosity observed in the experiments of Miliken et al.6 It is to be expected,
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however, that in a dilute suspension – for which the interparticle diffusivity is expected to

be very small – an increase in the apparent viscosity would be observed. (As already noted

by Davis & Hill3 such data are not currently available in the literature).
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A Calculation of the pair probability densities

Subsequent calculations will be confined to pF12 since the comparable procedure for obtaining

pU12 is virtually identical. We evaluate pF12 using three different methods, each valid in a

different range of values of ξ. Explicitly, the far-field expansion is valid for s > 2.5, the

intermediate expansion for 10−6 < ξ < 0.5, and the near-field expansion for ξ < 10−6.

(i) Far-field expansion range, s > 2.5: For ξ ∼ O(1) the hydrodynamic coefficients MF

and LF can be efficiently calculated by expanding them into power series in 2/s:

LF =
∞∑
n=0

fx
n (λ)

[
2

(1 + λ)s

]n
; MF =

∞∑
n=0

f y
n(λ)

[
2

(1 + λ)s

]n
,

(A.1a,b)

wherein the functions fx
n (λ) and f y

n(λ) are given by Jeffrey & Onishi.13 From (A.1) it is easy
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to deduce a similar series expansion for the integrand in (3.1a), namely

d
ds
(pF12L

F )

pF12L
F

= −2

s

(
1− MF

LF

)
=

∞∑
n=1

gn(λ)

[
2

(1 + λ)s

]n
, (A.2)

where the gn’s are obtainable through the recurrence relation

gn(λ) = (1 + λ)[ḡn−1(λ)− δ1n] (n ≥ 1) (A.3a)

ḡn(λ) = f y
n(λ)−

n∑
k=1

ḡn−k(λ)f
x
k (λ) (n ≥ 0). (A.3b)

By assigning to pF12L
F the expansion

pF12L
F =

∞∑
n=1

hn(λ)

[
2

(1 + λ)s

]n
, (A.4)

we obtain the following recurrence relation upon substitution of the latter into (A.2):

hn(λ) = − 2

1 + λ

1

n

n∑
k=1

gk+1(λ)hn−k(λ), (A.5)

together with the initial condition hn(0) = 1, resulting from the boundary condition

lim
s→∞

pF12L
F = 1. The series expansion for pF12 can now be easily obtained from (A.1) and

(A.4).

(ii) Intermediate expansion range, 10−6 < ξ < 0.5: In view of (3.3a) we expand in this
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intermediate domain the function

f = pF12L
F ξ̃−x(ln ξ̃−1 − zF1 )

−βF
1 (ln ξ̃−1 − zF2 )

−βF
2 ,

where ξ̃ = ξ/(1 + γξ). To this end we firs notice that

df
ds

f
= −2

s

(
1− MF

LF

)
−
[
1

ξ
− γ

1 + γξ

] [
x− βF

1

ln ξ−1 − zF1
− βF

2

ln ξ−1 − zF2

]
(A.6)

Since all the terms in (A.6) are expandable as power series of 2/s (so long as ln γ > zFi ) it is

easy to derive from it the series expansion for df
ds
/f from which the expansion for f can be

readily obtained.

(iii) Near-field expansion range, ξ < 10−6: The near-field approximation (3.3a) is obtained

in a rather straightforwad manner from (3.1a) and (3.2).
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Figure captions

Figure 1 Variation of the probability densities pF12 (a) and pU12 (b) with the normalized gap

width ξ between the spheres for different values of the suspended/test-sphere radius

ratio λ.

Figure 2 Dependence of the apparent viscosity coefficients kF
m and kU

m, normalized by a 5/2

factor, on the suspended/test-sphere size ratio λ. Note that in the limit λ → 0 of a

large ball they both attain the limiting Einstein value of 2.5.
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